1
|
Astola A, Durán-Guerrero E, Díaz AB, Lasanta C, Castro R. Impact of the genetic improvement of fermenting yeasts on the organoleptic properties of beer. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04251-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
AbstractThe brewing industry has experienced a significant boom in recent years through the emergence of, on the one hand, craft breweries that produce beers with unique organoleptic characteristics, and, on the other hand, the brewing of a significant number of beers using hybridized or genetically modified microorganisms with the aim of improving both the brewing processes and the final products. This review covers the influence from yeast strains on the organoleptic properties of the final beers and also the main hybridization and genetic modification methods applied to such yeast strains with the aim of improving the sensory characteristics of the product obtained and/or the brewing process. Different approaches to the phenotypic modification of the yeasts used in beer brewing have arisen in recent years. These are dealt with in this work, with special emphasis on the methodology followed as well as on the effects of the same on the brewing process and/or on the final product.
Collapse
|
4
|
The Effects of Catabolism Relationships of Leucine and Isoleucine with BAT2 Gene of Saccharomyces cerevisiae on High Alcohols and Esters. Genes (Basel) 2022; 13:genes13071178. [PMID: 35885961 PMCID: PMC9321263 DOI: 10.3390/genes13071178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/18/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
This study sought to provide a theoretical basis for effectively controlling the content of higher alcohols and esters in fermented foods. In this work, isoleucine (Ile) or leucine (Leu) at high levels was used as the sole nitrogen source for a BAT2 mutant and its parental Saccharomyces. cerevisiae 38 to investigate the effects of the addition of amounts of Ile or Leu and BAT2 on the aroma components in the flavor profile using gas chromatography mass spectrometer (GC-MS). The results showed that 2-methyl-butyraldehyde, 2-methyl-1-butanol, and 2-methylbutyl-acetate were the products positively correlated with the Ile addition amount. In addition, 3-methyl-butyraldehyde, 3-methyl-1-butanol, and 3-methylbutyl-acetate were the products positively correlated with Leu addition amount. BAT2 deletion resulted in a significant decline in the yields of 2-methyl-butyraldehyde, 3-methyl-butyraldehyde,2-methyl-1-butanol, and 3-methyl-1-butanol, but also an increase in the yields of 2-methylbutyl-acetate and 3-methylbutyl-acetate. We speculated that BAT2 regulated the front and end of this metabolite chain in a feedback manner. Improved metabolic chain analyses, including the simulated energy metabolism of Ile or Leu, indicated that reducing the added amount of branched-chain amino acids, BAT mutation, and eliminating the role of energy cofactors such as NADH/NAD+ were three important ways to control the content of high alcohols and esters in fermented foods.
Collapse
|
6
|
Abstract
Beer production has over a thousand-year tradition, but its development in the present continues with the introduction of new technological and technical solutions. The methods for modeling and optimization in beer production through an applied analytical approach have been discussed in the present paper. For this purpose, the parameters that are essential for the main processes in beer production have been considered—development of malt blends, guaranteeing the main brewing characteristics; obtaining wort through the processes of mashing, lautering and boiling of wort; fermentation and maturation of beer. Data on the mathematical dependences used to describe the different stages of beer production (one-factor experiments, modeling of mixtures, experiment planning, description of the kinetics of microbial growth, etc.) and their limits have been presented, and specific research results of various authors teams working in this field have been cited. The independent variables as well as the objective functions for each stage have been defined. Some new trends in the field of beer production have been considered and possible approaches for their modeling and optimization have been highlighted. The paper suggests a generalized approach to describe the main methods of modeling and optimization, which does not depend on the beer type produced. The proposed approaches can be used to model and optimize the production of different beer types, and the conditions for their application should be consistent with the technological regimes used in each case. The approaches for modeling and optimization of the individual processes have been supported by mathematical dependencies most typical for these stages. Depending on the specific regimes and objectives of the study, these dependencies can be adapted and/or combined into more general mathematical models. Some new trends in the field of beer production have been considered and possible approaches for their modeling and optimization have been highlighted.
Collapse
|
8
|
Lu S, Zheng F, Wen L, He Y, Wang D, Wu M, Wang B. Yeast engineering technologies and their applications to the food industry. FOOD BIOTECHNOL 2021. [DOI: 10.1080/08905436.2021.1942037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Siyan Lu
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Fei Zheng
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Liankui Wen
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Yang He
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Donghui Wang
- SBU of Agriculture, Sinochem Group Co., Ltd., Beijing, China
| | - Manyu Wu
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Bixiang Wang
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| |
Collapse
|
9
|
Puligundla P, Smogrovicova D, Mok C. Recent innovations in the production of selected specialty (non-traditional) beers. Folia Microbiol (Praha) 2021; 66:525-541. [PMID: 34097198 DOI: 10.1007/s12223-021-00881-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Customer demand for product diversity is the key driving force for innovations in the brewing industry. Specialty beers are regarded as a distinct group of beers different from two major types, lagers and ales, without established definitions or boundaries. Specialty beers, including low- to no-alcohol beer, low carbohydrate beer, gluten-free beer, sour beer, probiotic beer, and enriched beer, are exclusively brewed and developed keeping in mind their functionality, the health and wellbeing of the consumer, and emerging market trends. Compared with conventional beer-brewing, the production of specialty beers is technologically challenging and usually requires additional process steps, unique microorganisms, and special equipment, which in turn may incur additional costs. In addition, the maintenance of quality and stability of the products as well as consumer acceptability of the products are major challenges to successful commercialization. A harmonious integration of traditional brewing practices and modern technological approaches may hold potential for future developments. In the present review, latest developments in the fermentative production of selected specialty beers are discussed.
Collapse
Affiliation(s)
- Pradeep Puligundla
- Department of Food Science & Biotechnology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
| | - Daniela Smogrovicova
- Institute of Biotechnology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Chulkyoon Mok
- Department of Food Science & Biotechnology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| |
Collapse
|
10
|
Liu J, Li X, Liu Y, Xing C, Xie Y, Cai G, Lu J. Evaluation of genetic diversity and development of core collections of industrial brewing yeast using ISSR markers. Arch Microbiol 2020; 203:1001-1008. [PMID: 33112996 DOI: 10.1007/s00203-020-02091-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
Abstract
Germplasm of industrial brewing yeast of the worldwide have a richer diversity, and various successes in improving the performance of brewing yeasts. However, they are limited in that they have relatively low odds of combining desirable traits in a correct manner. To improve germplasm resource preservation, management, and utilization efficiency. In this study, the genetic diversity of 35 industrial brewing yeasts were analyzed based upon inter simple sequence repeat (ISSR) markers, in which 151 out of 167 SSR loci (90.42%) were polymorphic between two or more strains. Three preliminary core collections were established using ISSR data, and based on three different strategies as follows: an advanced maximization (M) strategy, an allele preferred sampling (A) strategy, and a random sampling (R) strategy. Comparison of genetic parameters, including polymorphic information content, Nei's genetic diversity (H), effective allele number, observed allele number, Shannon's index (I), and principal coordinate analyses, confirmed that all the core collections accurately recapitulated the diversity of the initial germplasm. Considering the loci retention ratio and trait coverage efficiency, Core1 was considered the best core collection.
Collapse
Affiliation(s)
- Jun Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China
| | - Xiaomin Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China
| | - Yueqin Liu
- China Resources Snow Breweries's Technical Center, China Resources Building, No. 8 Jianguomen North Avenue, Beijing, 100005, People's Republic of China
| | - Chengyu Xing
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China
| | - Ying Xie
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China
| | - Guolin Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China. .,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China. .,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China.
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China. .,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China. .,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
11
|
Mehta DV, Curtis SJ, Rudolph AB, Mary CS, Goodrich R, Schneider KR, MacIntosh AJ. A Mini Review: The History of Yeast Flocculation with an Emphasis on Measurement Techniques. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2020.1806006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Devanshu V. Mehta
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, U.S.A
| | - Savanna J. Curtis
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, U.S.A
| | - Arthur B. Rudolph
- Chemistry Research Unit, Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, FL, U.S.A
| | - Colette St. Mary
- Department of Biology, University of Florida, Gainesville, FL, U.S.A
| | - Renee Goodrich
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, U.S.A
| | - Keith R. Schneider
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, U.S.A
| | - Andrew J. MacIntosh
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, U.S.A
| |
Collapse
|