1
|
Chen D, Li S, Yang Y, Liu D, Yang C, Guo H, Bai X, Zhang L, Zhang R, Tian W. Development of bioassay platforms for biopharmaceuticals using Jurkat-CAR cells by AICD. J Pharm Biomed Anal 2024; 251:116431. [PMID: 39197208 DOI: 10.1016/j.jpba.2024.116431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024]
Abstract
The assessment of bioactivity for therapeutic antibody release assay poses challenges, particularly when targeting immune checkpoints. An in vitro bioassay platform was developed using the chimeric antigen receptor on Jurkat cells (Jurkat-CAR) to analyze antibodies targeting immune checkpoints, such as CD47/SIRPα, VEGF/VEGFR1, PD-1/PD-L1, and CD70/CD27. For CD47/SIRPα, the platform involved a Jurkat-CAR cell line expressing the chimeric SIRPα receptor (CarSIRPα). CarSIRPα was created by sequentially fusing the SIRPα extracellular region with the CD8α hinge region, the transmembrane (TM) and intracellular (IC) domains of CD28, and the intracellular signaling domain of CD3ζ. The resulting Jurkat-CarSIRPα cells can undergo "activation-induced cell death (AICD)" upon incubation with purified or cellular CD47, as evidenced by the upregulation of CD69, IL-2, and IFN-γ. Similar results also appeared in Jurkat CarVEGFR1, Jurkat CarPD1 and Jurkat CARCD27 cells. These cells are perfectly utilized for the bioactivity analysis of therapeutic antibody. Our study indicates that the established in vitro assay platform based on Jurkat-CAR has been confirmed repeatedly and has shown robust reproducibility; thus, this platform can be used for screening or for release assays of given antibody drugs targeting immune checkpoints.
Collapse
Affiliation(s)
- Dianze Chen
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai 201203, China
| | - Song Li
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai 201203, China
| | - Yanan Yang
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai 201203, China
| | - Dandan Liu
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai 201203, China
| | - Chunmei Yang
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai 201203, China
| | - Huiqin Guo
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai 201203, China
| | - Xing Bai
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai 201203, China
| | - Li Zhang
- Department of CMC, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai 201203, China
| | - Ruliang Zhang
- Department of CMC, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai 201203, China
| | - Wenzhi Tian
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai 201203, China; Department of CMC, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai 201203, China.
| |
Collapse
|
2
|
Zhao X, Qian W, Hou S, Wu Y, Guo H, Xu J, Zhang D, Li J, Fu R, Xu M, Wang F. Development of a reliable cell-based reporter gene assay to measure the bioactivity of anti-HER2 therapeutic antibodies. J Pharm Biomed Anal 2024; 245:116185. [PMID: 38723556 DOI: 10.1016/j.jpba.2024.116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
Human epidermal growth factor receptor 2 (HER2) is a key player in the pathogenesis and progression of breast cancer and is currently a primary target for breast cancer immunotherapy. Bioactivity determination is necessary to guarantee the safety and efficacy of therapeutic antibodies targeting HER2. Nevertheless, currently available bioassays for measuring the bioactivity of anti-HER2 mAbs are either not representative or have high variability. Here, we established a reliable reporter gene assay (RGA) based on T47D-SRE-Luc cell line that expresses endogenous HER2 and luciferase controlled by serum response element (SRE) to measure the bioactivity of anti-HER2 antibodies. Neuregulin-1 (NRG-1) can lead to the heterodimerization of HER2 on the cell membrane and induce the expression of downstream SRE-controlled luciferase, while pertuzumab can dose-dependently reverse the reaction, resulting in a good dose-response curve reflecting the activity of the antibody. After optimizing the relevant assay parameters, the established RGA was fully validated based on ICH-Q2 (R1), which demonstrated that the method had excellent specificity, accuracy, precision, linearity, and stability. In summary, this robust and innovative bioactivity determination assay can be applied in the development and screening, release control, biosimilar assessment and stability studies of anti-HER2 mAbs.
Collapse
Affiliation(s)
- Xiang Zhao
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, China
| | - Weizhu Qian
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shang Hai 200120, China.
| | - Sheng Hou
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shang Hai 200120, China
| | - Yimei Wu
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shang Hai 200120, China
| | - Huaizu Guo
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shang Hai 200120, China
| | - Jin Xu
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shang Hai 200120, China
| | - Dapeng Zhang
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shang Hai 200120, China
| | - Jun Li
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, China
| | - Rongrong Fu
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, China
| | - Mengjiao Xu
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, China
| | - Fugui Wang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
3
|
Lei Y, Yong Z, Junzhi W. Development and application of potency assays based on genetically modified cells for biological products. J Pharm Biomed Anal 2023; 230:115397. [PMID: 37079933 DOI: 10.1016/j.jpba.2023.115397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Abstract
Potency assays are key to the development, registration, and quality control of biological products. Although previously preferred for clinical relevance, in vivo bioassays have greatly diminished with the advent of dependent cell lines as well as due to ethical concerns. However, for some products, the development of in vitro cell-based assay is challenging, or existing method has limitations such as tedious procedure or low sensitivity. The generation of genetically modified (GM) cell line with improved response to the analyte provides a scientific and promising solution. Potency assays based on GM cell lines are currently used for the quality control of biological products including cytokines, hormones, therapeutic antibodies, vaccines and gene therapy products. In this review, we have discussed the general principles of designing and developing GM cells-based potency assays, including identification of cellular signaling pathways and detectable biological effects, generation of responsive cell lines and constitution of test systems, based on the current research progress. In addition, the applications of some novel technologies and the common concerns regarding GM cells have also been discussed. The research presented in this review provides insights for the development and application of novel GM cells-based potency assays for biological products.
Collapse
Affiliation(s)
- Yu Lei
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Zhou Yong
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Wang Junzhi
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China.
| |
Collapse
|
4
|
Gopu B, Kour P, Pandian R, Singh K. Insights into the drug screening approaches in leishmaniasis. Int Immunopharmacol 2023; 114:109591. [PMID: 36700771 DOI: 10.1016/j.intimp.2022.109591] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/25/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Leishmaniasis, a tropically neglected disease, is responsible for the high mortality and morbidity ratio in poverty-stricken areas. Currently, no vaccine is available for the complete cure of the disease. Current chemotherapeutic regimens face the limitations of drug resistance and toxicity concerns indicating a great need to develop better chemotherapeutic leads that are orally administrable, potent, non-toxic, and cost-effective. The anti-leishmanial drug discovery process accelerated the desire for large-scale drug screening assays and high-throughput screening (HTS) technology to identify new chemo-types that can be used as potential drug molecules to control infection. Using the HTS approach, about one million compounds can be screened daily within the shortest possible time for biological activity using automation tools, miniaturized assay formats, and large-scale data analysis. Classical and modern in vitro screening assays have led to the progression of active compounds further to ex vivo and in vivo studies. In the present review, we emphasized on the HTS approaches employed in the leishmanial drug discovery program. Recent in vitro screening assays are widely explored to discover new chemical scaffolds. Developing appropriate experimental animal models and their related techniques is necessary to understand the pathophysiological processes and disease host responses, paving the way for unraveling novel therapies against leishmaniasis.
Collapse
Affiliation(s)
- Boobalan Gopu
- Animal House Facility, Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Parampreet Kour
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Ramajayan Pandian
- Animal House Facility, Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Identification of a monoclonal antibody clipping variant by cross-validation using capillary electrophoresis – sodium dodecyl sulfate, capillary zone electrophoresis – mass spectrometry and capillary isoelectric focusing – mass spectrometry. J Chromatogr A 2022; 1684:463560. [DOI: 10.1016/j.chroma.2022.463560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
|
6
|
Sterin I, Santos AC, Park S. Neuronal Activity Reporters as Drug Screening Platforms. MICROMACHINES 2022; 13:1500. [PMID: 36144123 PMCID: PMC9504476 DOI: 10.3390/mi13091500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Understanding how neuronal activity changes and detecting such changes in both normal and disease conditions is of fundamental importance to the field of neuroscience. Neuronal activity plays important roles in the formation and function of both synapses and circuits, and dysregulation of these processes has been linked to a number of debilitating diseases such as autism, schizophrenia, and epilepsy. Despite advances in our understanding of synapse biology and in how it is altered in disease, the development of therapeutics for these diseases has not advanced apace. Many neuronal activity assays have been developed over the years using a variety of platforms and approaches, but major limitations persist. Current assays, such as fluorescence indicators are not designed to monitor neuronal activity over a long time, they are typically low-throughput or lack sensitivity. These are major barriers to the development of new therapies, as drug screening needs to be both high-throughput to screen through libraries of compounds, and longitudinal to detect any effects that may emerge after continued application of the drug. This review will cover existing assays for measuring neuronal activity and highlight a live-cell assay recently developed. This assay can be performed with easily accessible lab equipment, is both scalable and longitudinal, and can be combined with most other established methods.
Collapse
Affiliation(s)
- Igal Sterin
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Ana C. Santos
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Sungjin Park
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
7
|
Li Y, Qin Z, Zhang F, Yang ST. Two-color fluorescent proteins reporting survivin regulation in breast cancer cells for high throughput drug screening. Biotechnol Bioeng 2021; 119:1004-1017. [PMID: 34914099 DOI: 10.1002/bit.28006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 02/06/2023]
Abstract
Reporter gene assay is widely used for high throughput drug screening and drug action mechanism evaluation. In this study, we developed a robust dual-fluorescent reporter assay to detect drugs repressing the transcription of survivin, a cancer biomarker from the inhibitor of apoptosis family, in breast cancer cells cultured in three-dimensional (3D) microbioreactors. Survivin is overexpressed in numerous malignancies but almost silent in normal tissue cells and is considered a lead target for cancer therapy. Breast cancer MCF-7 cells were engineered to express enhanced green fluorescent protein driven by a survivin promoter and red fluorescent protein driven by a cytomegalovirus promoter as internal control to detect changes in survivin expression in cells as affected by drugs. This 3D dual-fluorescent reporter assay was validated with YM155 and doxorubicin, which were known to downregulate survivin in cancer cells, and further evaluated with two widely used anticancer compounds, cisplatin, and epigallocatechin gallate, to evaluate their effects on survivin expression. The results showed that the 3D dual-fluorescent reporter assay was robust for high throughput screening of drugs targeting survivin in breast cancer cells.
Collapse
Affiliation(s)
- You Li
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Zhen Qin
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Fengli Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
8
|
A reporter gene assay for determining the biological activity of therapeutic antibodies targeting TIGIT. Acta Pharm Sin B 2021; 11:3925-3934. [PMID: 35024316 PMCID: PMC8727920 DOI: 10.1016/j.apsb.2021.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/08/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022] Open
Abstract
T cell immunoglobulin and ITIM domain (TIGIT) is a novel immune checkpoint that has been considered as a target in cancer immunotherapy. Current available bioassays for measuring the biological activity of therapeutic antibodies targeting TIGIT are restricted to mechanistic investigations because donor primary T cells are highly variable. Here, we designed a reporter gene assay comprising two cell lines, namely, CHO-CD112-CD3 scFv, which stably expresses CD112 (PVRL2, nectin-2) and a membrane-bound anti-CD3 single-chain fragment variable (scFv) as the target cell, and Jurkat-NFAT-TIGIT, which stably expresses TIGIT as well as the nuclear factor of activated T-cells (NFAT) response element-controlled luciferase gene, as the effector cell. The anti-CD3 scFv situated on the target cells activates Jurkat-NFAT-TIGIT cells through binding and crosslinking CD3 molecules of the effector cell, whereas interactions between CD112 and TIGIT prevent activation. The presence of anti-TIGIT mAbs disrupts their interaction, which in turn reverses the inactivation and luciferase expression. Optimization and validation studies have demonstrated that this assay is superior in terms of specificity, accuracy, linearity, and precision. In summary, this reliable and effective reporter gene assay may potentially be utilized in lot release control, stability assays, screening, and development of novel TIGIT-targeted therapeutic antibodies.
Collapse
|
9
|
Development and validation of a reporter gene assay to determine the bioactivity of anti-CTLA-4 monoclonal antibodies. Int Immunopharmacol 2021; 101:108277. [PMID: 34773758 DOI: 10.1016/j.intimp.2021.108277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 11/21/2022]
Abstract
CTLA-4 is an important immune checkpoint for the regulation of T cell activation, and anti-CTLA-4 monoclonal antibodies (mAbs) are being developed as mono- or combination therapy for various tumors with reliable clinical efficacy. Ipilimumab is the first approved inhibitor of immune checkpoint, and many other anti-CTLA-4 mAbs, including ipilimumab biosimilars, are in different stages of clinical trials. However, due to the immunomodulating nature of the mAbs targeting CTLA-4, mode of action (MoA) and cell-based bioassay to determine their bioactivities as the lot release or stability test has been a great challenge to quality control laboratories. In this study, we have developed and validated a reporter gene assay (RGA), in which two kinds of cell lines were engineered to measure the bioactivity of anti-CTLA-4 mAbs. Raji cells were stably transfected with the membrane-anchored anti-CD3 single chain antibody fragment (scFv) as antigen-presenting cells (APCs, Raji-CD3scFv cells), while Jurkat cells were stably transfected with CTLA-4 with Y201V mutation and NFAT controlled luciferase as the effector cells (Jurkat-CTLA-4-NFAT-luc cells). The ligation of CD80/CD86 on the APCs with CTLA-4 could reduce the luciferase expression accompanied with the activation of effector cells, while the anti-CTLA-4 mAb could reverse the reduction, which resulted in good dose response curve to determine its bioactivity. After optimizing various assay conditions, we performed full validation according to ICH-Q2 (R1), which demonstrated the excellent specificity, accuracy, precision, linearity, and the cell passage stability. The satisfied performance characteristics render the RGA a good bioassay in the bioactivity determination of anti-CTLA-4 mAbs, as applied in characterization, batch release control, stability study, and biosimilar assessment.
Collapse
|
10
|
Xiong H, Luo F, Zhou P, Yi J. Development of a reporter gene method to measure the bioactivity of anti-CD38 × CD3 bispecific antibody. Antib Ther 2021; 4:212-221. [PMID: 34676357 PMCID: PMC8524643 DOI: 10.1093/abt/tbab022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 01/04/2023] Open
Abstract
Background A T cell-redirecting bispecific antibody (bsAb) consisting of a tumor-binding unit and a T cell-binding unit is a large group of antibody-based biologics against death-causing cancer diseases. The anti-CD38 × anti-CD3 bsAb (Y150) is potential for treating multiple myeloma (MM). When developing a cell-based reporter gene bioassay to assess the activities of Y150, it was found that the expression of CD38 on the human T lymphocyte cells (Jurkat) caused the nonspecific activation, which interfered with the specific T cells activation of mediated by the Y150 and CD38(+) tumor cells. Methods Here, we first knocked-out the CD38 expression on Jurkat T cell line by CRISPR-Cas9 technology, then developed a stable monoclonal CD38(−) Jurkat T cell line with an NFAT-RE driving luciferase expressing system. Further based on the CD38(−) Jurkat cell, we developed a reporter gene method to assess the bioactivity of the anti-CD38 × anti-CD3 bsAb. Results Knocking out CD38 expression abolished the nonspecific self-activation of the Jurkat cells. The selected stable monoclonal CD38(−) Jurkat T cell line assured the robustness of the report genes assay for the anti-CD38 × anti-CD3 bsAb. The relative potencies of the Y150 measured by the developed reporter gene assay were correlated with those by the flow-cytometry-based cell cytotoxicity assay and by the ELISA-based binding assay. Conclusions The developed reporter gene assay was mechanism of action-reflective for the bioactivity of anti-CD38 × anti-CD3 antibody, and suitable for the quality control for the bsAb product.
Collapse
Affiliation(s)
- Hui Xiong
- Wuhan YZY Biopharma Co., Ltd, Biolake City C2-1, No. 666 Gaoxin Road, Wuhan, Hubei 430075, China
| | - Fengyan Luo
- Wuhan YZY Biopharma Co., Ltd, Biolake City C2-1, No. 666 Gaoxin Road, Wuhan, Hubei 430075, China
| | - Pengfei Zhou
- Wuhan YZY Biopharma Co., Ltd, Biolake City C2-1, No. 666 Gaoxin Road, Wuhan, Hubei 430075, China
| | - Jizu Yi
- Wuhan YZY Biopharma Co., Ltd, Biolake City C2-1, No. 666 Gaoxin Road, Wuhan, Hubei 430075, China
| |
Collapse
|
11
|
Beitz AM, Oakes CG, Galloway KE. Synthetic gene circuits as tools for drug discovery. Trends Biotechnol 2021; 40:210-225. [PMID: 34364685 DOI: 10.1016/j.tibtech.2021.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022]
Abstract
Within mammalian systems, there exists enormous opportunity to use synthetic gene circuits to enhance phenotype-based drug discovery, to map the molecular origins of disease, and to validate therapeutics in complex cellular systems. While drug discovery has relied on marker staining and high-content imaging in cell-based assays, synthetic gene circuits expand the potential for precision and speed. Here we present a vision of how circuits can improve the speed and accuracy of drug discovery by enhancing the efficiency of hit triage, capturing disease-relevant dynamics in cell-based assays, and simplifying validation and readouts from organoids and microphysiological systems (MPS). By tracking events and cellular states across multiple length and time scales, circuits will transform how we decipher the causal link between molecular events and phenotypes to improve the selectivity and sensitivity of cell-based assays.
Collapse
Affiliation(s)
- Adam M Beitz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Conrad G Oakes
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kate E Galloway
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
12
|
Yuan J, Li J, Yang L, Lv Y, Wang C, Jin Z, Ni X, Xia H. Development and validation of a novel reporter gene assay for determination of recombinant human thrombopoietin. Int Immunopharmacol 2021; 99:107982. [PMID: 34333355 DOI: 10.1016/j.intimp.2021.107982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 11/15/2022]
Abstract
Recombinant human thrombopoietin (rhTPO) was approved by the National Medical Products Administration in 2010 for the treatment of thrombocytopenia in patients with immune thrombocytopenic purpura and chemotherapy-induced thrombocytopenia. Nevertheless, no method for determining rhTPO bioactivity has been recorded in different national/regional pharmacopoeia. Novel methods for lot release and stability testing are needed that are simpler, quicker, and more accurate. Here, we developed a novel reporter gene assay (RGA) for rhTPO bioassay with Ba/F3 cell lines that stably expressed human TPO receptor and luciferase reporter driven by sis-inducible element, gamma response region, and gamma-interferon activated sequence. During careful optimization, the RGA method demonstrated high performance characteristics. According to the International Council for Harmonization Q2 (R1) guidelines and the Chinese Pharmacopoeia 2020 edition, the validation results demonstrated that this method is highly time-saving, sensitive, and robust for research, development, manufacture, and quality control of rhTPO.
Collapse
Affiliation(s)
- Jie Yuan
- School of Life Science and Biopharmaceuticals, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, China; Shenyang Sunshine Pharmaceutical CO., Ltd, 1(st) 3, 10(th) Road, Economic and Technological Development Zone, Shenyang, Liaoning 110027, China
| | - Jia Li
- Shenyang Sunshine Pharmaceutical CO., Ltd, 1(st) 3, 10(th) Road, Economic and Technological Development Zone, Shenyang, Liaoning 110027, China
| | - Lihua Yang
- School of Life Science and Biopharmaceuticals, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, China; Shenyang Sunshine Pharmaceutical CO., Ltd, 1(st) 3, 10(th) Road, Economic and Technological Development Zone, Shenyang, Liaoning 110027, China
| | - Yunying Lv
- School of Life Science and Biopharmaceuticals, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, China; Shenyang Sunshine Pharmaceutical CO., Ltd, 1(st) 3, 10(th) Road, Economic and Technological Development Zone, Shenyang, Liaoning 110027, China
| | - Chao Wang
- Shenyang Sunshine Pharmaceutical CO., Ltd, 1(st) 3, 10(th) Road, Economic and Technological Development Zone, Shenyang, Liaoning 110027, China
| | - Zheng Jin
- Shenyang Sunshine Pharmaceutical CO., Ltd, 1(st) 3, 10(th) Road, Economic and Technological Development Zone, Shenyang, Liaoning 110027, China
| | - Xianpu Ni
- School of Life Science and Biopharmaceuticals, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| | - Huanzhang Xia
- School of Life Science and Biopharmaceuticals, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| |
Collapse
|
13
|
Evaluation of Firefly and Renilla Luciferase Inhibition in Reporter-Gene Assays: A Case of Isoflavonoids. Int J Mol Sci 2021; 22:ijms22136927. [PMID: 34203212 PMCID: PMC8268740 DOI: 10.3390/ijms22136927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/21/2022] Open
Abstract
Firefly luciferase is susceptible to inhibition and stabilization by compounds under investigation for biological activity and toxicity. This can lead to false-positive results in in vitro cell-based assays. However, firefly luciferase remains one of the most commonly used reporter genes. Here, we evaluated isoflavonoids for inhibition of firefly luciferase. These natural compounds are often studied using luciferase reporter-gene assays. We used a quantitative structure–activity relationship (QSAR) model to compare the results of in silico predictions with a newly developed in vitro assay that enables concomitant detection of inhibition of firefly and Renilla luciferases. The QSAR model predicted a moderate to high likelihood of firefly luciferase inhibition for all of the 11 isoflavonoids investigated, and the in vitro assays confirmed this for seven of them: daidzein, genistein, glycitein, prunetin, biochanin A, calycosin, and formononetin. In contrast, none of the 11 isoflavonoids inhibited Renilla luciferase. Molecular docking calculations indicated that isoflavonoids interact favorably with the D-luciferin binding pocket of firefly luciferase. These data demonstrate the importance of reporter-enzyme inhibition when studying the effects of such compounds and suggest that this in vitro assay can be used to exclude false-positives due to firefly or Renilla luciferase inhibition, and to thus define the most appropriate reporter gene.
Collapse
|
14
|
Yu X, Yu C, Wang K, Liu C, Wang L, Wang J. A robust reporter assay for the determination of the bioactivity of IL-4R-targeted therapeutic antibodies. J Pharm Biomed Anal 2021; 199:114033. [PMID: 33774455 DOI: 10.1016/j.jpba.2021.114033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/01/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Type 2 inflammatory cytokines, including IL-4, IL-5 and IL-13, contribute considerably to the pathogenesis of asthma. Anti-IL-4R monoclonal antibody (mAb) has been approved for the therapeutic treatment of asthma, and many mAbs with the same target are in the different stages of R&D and clinical trials. Bioactivity determination is required to ensure the quality control of mAbs. However, current ELISA and SPR assays or cell-based anti-proliferation assays for IL-4R mAbs are either not mechanism-of-action (MOA) representative or tedious and time consuming. Therefore, we developed a reporter gene assay (RGA) based on the HEK-293 cell line that stably expressed signal transducer and activator of transcription 6 (STAT6) and the luciferase reporter controlled by STAT6 binding elements. Anti-4R mAb could bind to IL-4R, and block the interaction between IL-4 and IL-4R, resulting in the reduction of IL-4 induced STAT6 controlled luciferase expression. After careful optimization of the experiment parameters, the RGA method demonstrated optimal dose-response curve between anti-IL-4R mAb concentration and luciferase expression level. Validation according ICH-Q2 proved the excellent assay performance characteristics of the established RGA, including specificity, accuracy, precision, linearity and range. The established transgenic cell line was stable for the bioactivity determination of anti-IL-4R mAb up to 46 generations, and the RGA was also suitable for the bioactivity determination of anti-IL-4 mAbs, and potentially of anti-IL-13 mAbs. The established RGA could be adopted to determine the bioactivity during the development, characterization, lot release, stability, and comparability studies of anti-IL-4R mAbs.
Collapse
Affiliation(s)
- Xiaojuan Yu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing, 102629, China
| | - Chuanfei Yu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing, 102629, China
| | - Kaiqin Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing, 102629, China
| | - Chunyu Liu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing, 102629, China
| | - Lan Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing, 102629, China.
| | - Junzhi Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing, 102629, China
| |
Collapse
|
15
|
Zare Jeddi M, Hopf NB, Viegas S, Price AB, Paini A, van Thriel C, Benfenati E, Ndaw S, Bessems J, Behnisch PA, Leng G, Duca RC, Verhagen H, Cubadda F, Brennan L, Ali I, David A, Mustieles V, Fernandez MF, Louro H, Pasanen-Kase R. Towards a systematic use of effect biomarkers in population and occupational biomonitoring. ENVIRONMENT INTERNATIONAL 2021; 146:106257. [PMID: 33395925 DOI: 10.1016/j.envint.2020.106257] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/25/2020] [Accepted: 10/30/2020] [Indexed: 06/12/2023]
Abstract
Effect biomarkers can be used to elucidate relationships between exposure to environmental chemicals and their mixtures with associated health outcomes, but they are often underused, as underlying biological mechanisms are not understood. We aim to provide an overview of available effect biomarkers for monitoring chemical exposures in the general and occupational populations, and highlight their potential in monitoring humans exposed to chemical mixtures. We also discuss the role of the adverse outcome pathway (AOP) framework and physiologically based kinetic and dynamic (PBK/D) modelling to strengthen the understanding of the biological mechanism of effect biomarkers, and in particular for use in regulatory risk assessments. An interdisciplinary network of experts from the European chapter of the International Society for Exposure Science (ISES Europe) and the Organization for Economic Co-operation and Development (OECD) Occupational Biomonitoring activity of Working Parties of Hazard and Exposure Assessment group worked together to map the conventional framework of biomarkers and provided recommendations for their systematic use. We summarized the key aspects of this work here, and discussed these in three parts. Part I, we inventory available effect biomarkers and promising new biomarkers for the general population based on the H2020 Human Biomonitoring for Europe (HBM4EU) initiative. Part II, we provide an overview AOP and PBK/D modelling use that improved the selection and interpretation of effect biomarkers. Part III, we describe the collected expertise from the OECD Occupational Biomonitoring subtask effect biomarkers in prioritizing relevant mode of actions (MoAs) and suitable effect biomarkers. Furthermore, we propose a tiered risk assessment approach for occupational biomonitoring. Several effect biomarkers, especially for use in occupational settings, are validated. They offer a direct assessment of the overall health risks associated with exposure to chemicals, chemical mixtures and their transformation products. Promising novel effect biomarkers are emerging for biomonitoring of the general population. Efforts are being dedicated to prioritizing molecular and biochemical effect biomarkers that can provide a causal link in exposure-health outcome associations. This mechanistic approach has great potential in improving human health risk assessment. New techniques such as in silico methods (e.g. QSAR, PBK/D modelling) as well as 'omics data will aid this process. Our multidisciplinary review represents a starting point for enhancing the identification of effect biomarkers and their mechanistic pathways following the AOP framework. This may help in prioritizing the effect biomarker implementation as well as defining threshold limits for chemical mixtures in a more structured way. Several ex vivo biomarkers have been proposed to evaluate combined effects including genotoxicity and xeno-estrogenicity. There is a regulatory need to derive effect-based trigger values using the increasing mechanistic knowledge coming from the AOP framework to address adverse health effects due to exposure to chemical mixtures. Such a mechanistic strategy would reduce the fragmentation observed in different regulations. It could also stimulate a harmonized use of effect biomarkers in a more comparable way, in particular for risk assessments to chemical mixtures.
Collapse
Affiliation(s)
- Maryam Zare Jeddi
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Italy
| | - Nancy B Hopf
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Epalinges, Switzerland
| | - Susana Viegas
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal; Comprehensive Health Research Center (CHRC), 1150-090 Lisbon, Portugal; H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
| | - Anna Bal Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Alicia Paini
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Christoph van Thriel
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa, 19, 20156 Milano, Italy
| | - Sophie Ndaw
- INRS-French National Research and Safety Institute, France
| | - Jos Bessems
- VITO - Flemish Institute for Technological Research, Belgium
| | - Peter A Behnisch
- BioDetection Systems b.v., Science Park 406, 1098 XH Amsterdam, the Netherlands
| | - Gabriele Leng
- Currenta GmbH Co. OHG, Institute of Biomonitoring, Leverkusen, Germany
| | - Radu-Corneliu Duca
- Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, National Health Laboratory, Dudelange, Luxembourg
| | - Hans Verhagen
- Food Safety & Nutrition Consultancy (FSNConsultancy), Zeist, the Netherlands
| | - Francesco Cubadda
- Istituto Superiore di Sanità-National Institute of Health, Rome, Italy
| | - Lorraine Brennan
- School of Agriculture and Food Science, Institute of Food and Health, University College Dublin, Dublin, Ireland
| | - Imran Ali
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Arthur David
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, F-35000 Rennes, France
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM), Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Madrid, Spain
| | - Mariana F Fernandez
- University of Granada, Center for Biomedical Research (CIBM), Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Madrid, Spain
| | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, Lisboa and ToxOmics - Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade Nova de Lisboa, Portugal
| | - Robert Pasanen-Kase
- State Secretariat for Economic Affairs (SECO), Labour Directorate Section Chemicals and Work (ABCH), Switzerland.
| |
Collapse
|
16
|
Zhou G, Ai Y, Guo S, Chen Q, Feng X, Xu K, Wang G, Ma C. Association Between Red Blood Cell Distribution Width and Thyroid Function. Front Endocrinol (Lausanne) 2021; 12:807482. [PMID: 35116009 PMCID: PMC8805204 DOI: 10.3389/fendo.2021.807482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
AIM Red blood cell distribution width (RDW) is an important parameter with broad biological implications. However, the study investigating the association between RDW and thyroid function remains sparse and inconsistent. We aimed to investigate the association between RDW and thyroid function in the US population. METHODS A cross-sectional analysis was performed using the data from the National Health and Nutrition Examination Survey (NHANES) conducted from 2007 to 2010. The thyroid parameters investigated were mainly free triiodothyronine (fT3), free thyroxine (fT4), thyroid-stimulating hormone (TSH), antithyroglobulin antibody (TgAb), and antithyroperoxidase antibody (TPOAb). In the 6,895 adults aged 18 years or older, logistic regression modeling was applied to estimate the association between RDW quartiles and thyroid parameters. Smooth curve fittings and generalized additive models were then performed to address the nonlinear relationship. RESULTS The association between RDW and TSH followed a J-shaped curve, and a significant positive relationship existed in the 12.5%-17.5% range of RDW (β = 0.350, 95% confidence interval (CI): 0.225 to 0.474), which was prominent in females. We further demonstrated a negative association (β = -0.018, 95% CI: -0.030 to -0.005) between RDW and fT3. Moreover, elevated RDW was more likely to be subclinical hypothyroidism. However, there was no obvious association between RDW and fT4. CONCLUSION This study confirmed a significant association between RDW and TSH, and future studies are needed to elucidate the underlying mechanisms of the peculiar RDW-fT3 relationship. RDW may be a significant clinical marker of subclinical hypothyroidism.
Collapse
Affiliation(s)
- Guowei Zhou
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yueqin Ai
- Department of Pneumology, Jinling Hospital, Nanjing, China
| | - Song Guo
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Quan Chen
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao Feng
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Kun Xu
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Gaoyuan Wang
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Gaoyuan Wang, ; Chaoqun Ma,
| | - Chaoqun Ma
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Gaoyuan Wang, ; Chaoqun Ma,
| |
Collapse
|
17
|
Wang L, Yu C, Wang K, Wang J. A reporter gene assay for measuring the bioactivity of anti-LAG-3 therapeutic antibodies. LUMINESCENCE 2020; 35:1408-1415. [PMID: 32598535 DOI: 10.1002/bio.3905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 11/06/2022]
Abstract
Although enormous success has been achieved with anti-PD-1/PD-L1 and anti-CTLA-4 monoclonal antibodies (mAbs), their unsatisfactory response rate in cancer patients has been driving the research and development of novel immune checkpoint inhibitors (ICIs). Anti-LAG-3 mAbs, as one of the most promising candidates, are now being tested for various human cancers at different stages of clinical trials. Here, we describe the development and validation of a reporter gene assay (RGA) to measure the bioactivity of anti-LAG-3 mAbs. We established the bioassay based on parental Raji cells and a Jurkat cell line stably transfected with human LAG-3 gene and luciferase reporter elements controlled by nuclear factor of activated T cell (NFAT) from the IL-2 promoter. After optimization of key parameters, the established RGA showed excellent precision, specificity, accuracy, and stability. The mechanism of action (MOA) relatedness and the excellent assay performance make the RGA suitable for the characterization, lot release, and stability test of anti-LAG-3 mAbs.
Collapse
Affiliation(s)
- Lan Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Biomedical Base,Daxing District, Beijing, China
| | - Chuanfei Yu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Biomedical Base,Daxing District, Beijing, China
| | - Kaiqin Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Biomedical Base,Daxing District, Beijing, China
| | - Junzhi Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Biomedical Base,Daxing District, Beijing, China
| |
Collapse
|
18
|
Guo S, Yu C, Wang Y, Zhang F, Cao J, Zheng C, Wang L. A robust and stable reporter gene bioassay for anti-IgE antibodies. Anal Bioanal Chem 2020; 412:1901-1914. [DOI: 10.1007/s00216-020-02442-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022]
|