1
|
Yates MD, Mickol RL, Tolsma JS, Beasley M, Shepard J, Glaven SM. Lipid production from biofilms of Marinobacter atlanticus in a fixed bed bioreactor. Microb Cell Fact 2024; 23:336. [PMID: 39696323 DOI: 10.1186/s12934-024-02617-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Biotechnologies that utilize microorganisms as production hosts for lipid synthesis will enable an efficient and sustainable solution to produce lipids, decreasing reliance on traditional routes for production (either petrochemical or plant-derived) and supporting a circular bioeconomy. To realize this goal, continuous biomanufacturing processes must be developed to maximize productivity and minimize costs compared to traditional batch fermentation processes. RESULTS Here, we utilized biofilms of the marine bacterium, Marinobacter atlanticus, to produce wax esters from succinate (i.e., a non-sugar feedstock) to determine its potential to serve as a production chassis in a continuous flow, biofilm-based biomanufacturing process. To accomplish this, we evaluated growth as a function of protein concentration and wax ester production from M. atlanticus biofilms in a continuously operated 3-D printed fixed bed bioreactor. We determined that exposing M. atlanticus biofilms to alternating nitrogen-rich (1.8 mM NH4+) and nitrogen-poor (0 mM NH4+) conditions in the bioreactor resulted in wax ester production (26 ± 5 mg/L, normalized to reactor volume) at a similar concentration to what is observed from planktonic M. atlanticus cells grown in shake flasks previously in our lab (ca. 25 mg/L cell culture). The wax ester profile was predominated by multiple compounds with 32 carbon chain length (C32; 50-60% of the total). Biomass production in the reactor was positively correlated with dilution rate, as indicated by protein concentration (maximum of 1380 ± 110 mg/L at 0.4 min-1 dilution rate) and oxygen uptake rate (maximum of 4 mmol O2/L/h at 0.4 min-1 dilution rate) measurements at different flow rates. Further, we determined the baseline succinate consumption rate for M. atlanticus biofilms to be 0.16 ± 0.03 mmol/L/h, which indicated that oxygen is the limiting reactant in the process. CONCLUSION The results presented here are the first step toward demonstrating that M. atlanticus biofilms can be used as the basis for development of a continuous flow wax ester biomanufacturing process from non-sugar feedstocks, which will further enable sustainable lipid production in a future circular bioeconomy.
Collapse
Affiliation(s)
- Matthew D Yates
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, 20375, USA.
| | - Rebecca L Mickol
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, 20375, USA
| | - Joseph S Tolsma
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, 20375, USA
- Catalent Pharma Solutions, Kansas City, MO, 64137, USA
| | - Maryssa Beasley
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, 20375, USA
| | - Jamia Shepard
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, 20375, USA
| | - Sarah M Glaven
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, 20375, USA
| |
Collapse
|
2
|
Vergoz D, Schaumann A, Schmitz I, Afonso C, Dé E, Loutelier-Bourhis C, Alexandre S. Lipidome of Acinetobacter baumannii antibiotic persister cells. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159539. [PMID: 39067686 DOI: 10.1016/j.bbalip.2024.159539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Persister cells constitute a bacterial subpopulation able to survive to high concentrations of antibiotics. This phenotype is temporary and reversible, and thus could be involved in the recurrence of infections and emergence of antibiotic resistance. To better understand how persister cells survive to such high antibiotic concentration, we examined changes in their lipid composition. We thus compared the lipidome of Acinetobacter baumannii ATCC 19606T persister cells formed under ciprofloxacin treatment with the lipidome of control cells grown without antibiotic. Using matrix assisted laser desorption ionisation-Fourier transform ion cyclotron resonance mass spectrometry, we observed a higher abundance of short chains and secondary chains without hydroxylation for lipid A in persister cells. Using liquid chromatography-tandem mass spectrometry, we found that persister cells produced particular phosphatidylglycerols, as LPAGPE and PAGPE, but also lipids with particular acyl chains containing additional hydroxyl group or uncommon di-unsaturation on C18 and C16 acyl chains. In order to determine the impact of these multiple lipidome modifications on membrane fluidity, fluorescence anisotropy assays were performed. They showed an increase of rigidity for the membrane of persister cells, inducing likely a decrease membrane permeability to protect cells during dormancy. Finally, we highlighted that A. baumannii persister cells also produced particular wax esters, composed of two fatty acids and a fatty diol. These uncommon storage lipids are key metabolites allowing a rapid bacterial regrow when antibiotic pressure disappears. These overall changes in persister lipidome may constitute new therapeutic targets to combat these particular dormant cells.
Collapse
Affiliation(s)
- Delphine Vergoz
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., F-76000 Rouen, France; Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Annick Schaumann
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., F-76000 Rouen, France
| | - Isabelle Schmitz
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., F-76000 Rouen, France; Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Carlos Afonso
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Emmanuelle Dé
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., F-76000 Rouen, France
| | - Corinne Loutelier-Bourhis
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Stéphane Alexandre
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., F-76000 Rouen, France.
| |
Collapse
|
3
|
Pfefferle K, Averhoff B. Wax Ester and Triacylglycerol Production in Acinetobacter baumannii: Role in Osmostress Protection, Reactive Oxygen Species, and Antibiotic Sensitivity. ACS Infect Dis 2023; 9:2093-2104. [PMID: 37883671 DOI: 10.1021/acsinfecdis.3c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Wax esters (WEs) are neutral lipids that are produced by many different bacteria as potential carbon and energy storage compounds. Comparatively little is known about the role of WE in pathogenic bacteria. The opportunistic pathogen Acinetobacter baumannii is a major cause of hospital-acquired infections worldwide. Salt and desiccation resistance foster A. baumannii infections such as urinary tract infections and allow for reinfection when bacteria are taken up from dry surfaces in the hospital environment. Here we report on WE and triacylglycerol (TAG) production in A. baumannii as a response to nitrogen limitation and high salt stress. Fatty acids and fatty alcohols with chain lengths of C16 and C18 were identified as the most prominent WE constituents. We identified the terminal key enzyme of WE biosynthesis, the bifunctional wax ester synthase/acylCoA:diacylglycerol acyltransferase (WS/DGAT) encoded by the wax/dgat gene, and demonstrated that transcription of wax/dgat and production of WS/DGAT are independent of the nitrogen concentration. A Δwax/dgat mutant was impaired in growth in the presence of high salt concentration and was more sensitive to imipenem and reactive oxygen species.
Collapse
Affiliation(s)
- Katharina Pfefferle
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, 60438 Frankfurt, Germany
| | - Beate Averhoff
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, 60438 Frankfurt, Germany
| |
Collapse
|
4
|
Bird LJ, Mickol RL, Eddie BJ, Thakur M, Yates MD, Glaven SM. Marinobacter: A case study in bioelectrochemical chassis evaluation. Microb Biotechnol 2023; 16:494-506. [PMID: 36464922 PMCID: PMC9948230 DOI: 10.1111/1751-7915.14170] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 12/08/2022] Open
Abstract
The junction of bioelectrochemical systems and synthetic biology opens the door to many potentially groundbreaking technologies. When developing these possibilities, choosing the correct chassis organism can save a great deal of engineering effort and, indeed, can mean the difference between success and failure. Choosing the correct chassis for a specific application requires a knowledge of the metabolic potential of the candidate organisms, as well as a clear delineation of the traits, required in the application. In this review, we will explore the metabolic and electrochemical potential of a single genus, Marinobacter. We will cover its strengths, (salt tolerance, biofilm formation and electrochemical potential) and weaknesses (insufficient characterization of many strains and a less developed toolbox for genetic manipulation) in potential synthetic electromicrobiology applications. In doing so, we will provide a roadmap for choosing a chassis organism for bioelectrochemical systems.
Collapse
Affiliation(s)
- Lina J. Bird
- Center for Bio/Molecular Science and Engineering, Naval Research LaboratoryWashingtonDistrict of ColumbiaUSA
| | - Rebecca L. Mickol
- Center for Bio/Molecular Science and Engineering, Naval Research LaboratoryWashingtonDistrict of ColumbiaUSA
| | - Brian J. Eddie
- Center for Bio/Molecular Science and Engineering, Naval Research LaboratoryWashingtonDistrict of ColumbiaUSA
| | - Meghna Thakur
- Center for Bio/Molecular Science and Engineering, Naval Research LaboratoryWashingtonDistrict of ColumbiaUSA
- College of Science, George Mason UniversityFairfaxVirginiaUSA
| | - Matthew D. Yates
- Center for Bio/Molecular Science and Engineering, Naval Research LaboratoryWashingtonDistrict of ColumbiaUSA
| | - Sarah M. Glaven
- Center for Bio/Molecular Science and Engineering, Naval Research LaboratoryWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
5
|
Luo J, Efimova E, Volke DC, Santala V, Santala S. Engineering cell morphology by CRISPR interference in Acinetobacter baylyi ADP1. Microb Biotechnol 2022; 15:2800-2818. [PMID: 36005297 DOI: 10.1111/1751-7915.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022] Open
Abstract
Microbial production of intracellular compounds can be engineered by redirecting the carbon flux towards products and increasing the cell size. Potential engineering strategies include exploiting clustered regularly interspaced short palindromic repeats interference (CRISPRi)-based tools for controlling gene expression. Here, we applied CRISPRi for engineering Acinetobacter baylyi ADP1, a model bacterium for synthesizing intracellular storage lipids, namely wax esters. We first established an inducible CRISPRi system for strain ADP1, which enables tightly controlled repression of target genes. We then targeted the glyoxylate shunt to redirect carbon flow towards wax esters. Second, we successfully employed CRISPRi for modifying cell morphology by repressing ftsZ, an essential gene required for cell division, in combination with targeted knock-outs to generate significantly enlarged filamentous or spherical cells respectively. The engineered cells sustained increased wax ester production metrics, demonstrating the potential of cell morphology engineering in the production of intracellular lipids.
Collapse
Affiliation(s)
- Jin Luo
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Elena Efimova
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Daniel Christoph Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ville Santala
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Suvi Santala
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| |
Collapse
|
6
|
Chen G, Harwood JL, Lemieux MJ, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: Properties, physiological roles, metabolic engineering and intentional control. Prog Lipid Res 2022; 88:101181. [PMID: 35820474 DOI: 10.1016/j.plipres.2022.101181] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the last reaction in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG). DGAT activity resides mainly in membrane-bound DGAT1 and DGAT2 in eukaryotes and bifunctional wax ester synthase-diacylglycerol acyltransferase (WSD) in bacteria, which are all membrane-bound proteins but exhibit no sequence homology to each other. Recent studies also identified other DGAT enzymes such as the soluble DGAT3 and diacylglycerol acetyltransferase (EaDAcT), as well as enzymes with DGAT activities including defective in cuticular ridges (DCR) and steryl and phytyl ester synthases (PESs). This review comprehensively discusses research advances on DGATs in prokaryotes and eukaryotes with a focus on their biochemical properties, physiological roles, and biotechnological and therapeutic applications. The review begins with a discussion of DGAT assay methods, followed by a systematic discussion of TAG biosynthesis and the properties and physiological role of DGATs. Thereafter, the review discusses the three-dimensional structure and insights into mechanism of action of human DGAT1, and the modeled DGAT1 from Brassica napus. The review then examines metabolic engineering strategies involving manipulation of DGAT, followed by a discussion of its therapeutic applications. DGAT in relation to improvement of livestock traits is also discussed along with DGATs in various other eukaryotic organisms.
Collapse
Affiliation(s)
- Guanqun Chen
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Membrane Protein Disease Research Group, Edmonton T6G 2H7, Canada
| | - Scot J Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Randall J Weselake
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| |
Collapse
|
7
|
Wang J, Singer SD, Souto BA, Asomaning J, Ullah A, Bressler DC, Chen G. Current progress in lipid-based biofuels: Feedstocks and production technologies. BIORESOURCE TECHNOLOGY 2022; 351:127020. [PMID: 35307524 DOI: 10.1016/j.biortech.2022.127020] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
The expanding use of fossil fuels has caused concern in terms of both energy security and environmental issues. Therefore, attempts have been made worldwide to promote the development of renewable energy sources, among which biofuel is especially attractive. Compared to other biofuels, lipid-derived biofuels have a higher energy density and better compatibility with existing infrastructure, and their performance can be readily improved by adjusting the chemical composition of lipid feedstocks. This review thus addresses the intrinsic interactions between lipid feedstocks and lipid-based biofuels, including biodiesel, and renewable equivalents to conventional gasoline, diesel, and jet fuel. Advancements in lipid-associated biofuel technology, as well as the properties and applicability of various lipid sources in terms of biofuel production, are also discussed. Furthermore, current progress in lipid production and profile optimization in the context of plant lipids, microbial lipids, and animal fats are presented to provide a wider context of lipid-based biofuel technology.
Collapse
Affiliation(s)
- Juli Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Stacy D Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| | - Bernardo A Souto
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Justice Asomaning
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - David C Bressler
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
8
|
Acinetobacter baylyi ADP1-naturally competent for synthetic biology. Essays Biochem 2021; 65:309-318. [PMID: 33769448 DOI: 10.1042/ebc20200136] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 02/02/2023]
Abstract
Acinetobacter baylyi ADP1 is a non-pathogenic soil bacterium known for its metabolic diversity and high natural transformation and recombination efficiency. For these features, A. baylyi ADP1 has been long exploited in studying bacterial genetics and metabolism. The large pool of information generated in the fundamental studies has facilitated the development of a broad range of sophisticated and robust tools for the genome and metabolic engineering of ADP1. This mini-review outlines and describes the recent advances in ADP1 engineering and tool development, exploited in, for example, pathway and enzyme evolution, genome reduction and stabilization, and for the production of native and non-native products in both pure and rationally designed multispecies cultures. The rapidly expanding toolbox together with the unique features of A. baylyi ADP1 provide a strong base for a microbial cell factory excelling in synthetic biology applications where evolution meets rational engineering.
Collapse
|