1
|
Loivamaa I, Sillanpää A, Deptula P, Chamlagain B, Edelmann M, Auvinen P, Nyman TA, Savijoki K, Piironen V, Varmanen P. Aerobic adaptation and metabolic dynamics of Propionibacterium freudenreichii DSM 20271: insights from comparative transcriptomics and surfaceome analysis. mSystems 2024; 9:e0061524. [PMID: 39345151 PMCID: PMC11494915 DOI: 10.1128/msystems.00615-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
Propionibacterium freudenreichii (PFR) DSM 20271T is a bacterium known for its ability to thrive in diverse environments and to produce vitamin B12. Despite its anaerobic preference, recent studies have elucidated its ability to prosper in the presence of oxygen, prompting a deeper exploration of its physiology under aerobic conditions. Here, we investigated the response of DSM 20271T to aerobic growth by employing comparative transcriptomic and surfaceome analyses alongside metabolite profiling. Cultivation under controlled partial pressure of oxygen (pO2) conditions revealed significant increases in biomass formation and altered metabolite production, notably of vitamin B12, pseudovitamin-B12, propionate, and acetate, under aerobic conditions. Transcriptomic analysis identified differential expression of genes involved in lactate metabolism, tricarboxylic acid cycle, and electron transport chain, suggesting metabolic adjustments to aerobic environments. Moreover, surfaceome analysis unveiled growth environment-dependent changes in surface protein abundance, with implications for adaptation to atmospheric conditions. Supplementation experiments with key compounds highlighted the potential for enhancing aerobic growth, emphasizing the importance of iron and α-ketoglutarate availability. Furthermore, in liquid culture, FeSO4 supplementation led to increased heme production and reduced vitamin B12 production, highlighting the impact of oxygen and iron availability on the metabolic pathways. These findings deepen our understanding of PFR's physiological responses to oxygen availability and offer insights for optimizing its growth in industrial applications. IMPORTANCE The study of the response of Propionibacterium freudenreichii to aerobic growth is crucial for understanding how this bacterium adapts to different environments and produces essential compounds like vitamin B12. By investigating its physiological changes under aerobic conditions, we can gain insights into its metabolic adjustments and potential for enhanced growth. These findings not only deepen our understanding of P. freudenreichii's responses to oxygen availability but also offer valuable information for optimizing its growth in industrial applications. This research sheds light on the adaptive mechanisms of this bacterium, providing a foundation for further exploration and potential applications in various fields.
Collapse
Affiliation(s)
- Iida Loivamaa
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Annika Sillanpää
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Paulina Deptula
- Department of Food Sciences, University of Copenhagen, Frederiksberg, Denmark
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Bhawani Chamlagain
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Minnamari Edelmann
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Tuula A. Nyman
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Kirsi Savijoki
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
- Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland
| | - Vieno Piironen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Pekka Varmanen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Tang M, You J, Yang T, Sun Q, Jiang S, Xu M, Pan X, Rao Z. Application of modern synthetic biology technology in aromatic amino acids and derived compounds biosynthesis. BIORESOURCE TECHNOLOGY 2024; 406:131050. [PMID: 38942210 DOI: 10.1016/j.biortech.2024.131050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
Aromatic amino acids (AAA) and derived compounds have enormous commercial value with extensive applications in the food, chemical and pharmaceutical fields. Microbial production of AAA and derived compounds is a promising prospect for its environmental friendliness and sustainability. However, low yield and production efficiency remain major challenges for realizing industrial production. With the advancement of synthetic biology, microbial production of AAA and derived compounds has been significantly facilitated. In this review, a comprehensive overview on the current progresses, challenges and corresponding solutions for AAA and derived compounds biosynthesis is provided. The most cutting-edge developments of synthetic biology technology in AAA and derived compounds biosynthesis, including CRISPR-based system, genetically encoded biosensors and synthetic genetic circuits, were highlighted. Finally, future prospects of modern strategies conducive to the biosynthesis of AAA and derived compounds are discussed. This review offers guidance on constructing microbial cell factory for aromatic compound using synthetic biology technology.
Collapse
Affiliation(s)
- Mi Tang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Tianjin Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Qisheng Sun
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Shuran Jiang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China.
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China.
| |
Collapse
|
3
|
Chen H, Wang Y, Wang W, Cao T, Zhang L, Wang Z, Chi X, Shi T, Wang H, He X, Liang M, Yang M, Jiang W, Lv D, Yu J, Zhu G, Xie Y, Gao B, Wang X, Liu X, Li Y, Ouyang L, Zhang J, Liu H, Li Z, Tong Y, Xia X, Tan GY, Zhang L. High-yield porphyrin production through metabolic engineering and biocatalysis. Nat Biotechnol 2024:10.1038/s41587-024-02267-3. [PMID: 38839873 DOI: 10.1038/s41587-024-02267-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 04/26/2024] [Indexed: 06/07/2024]
Abstract
Porphyrins and their derivatives find extensive applications in medicine, food, energy and materials. In this study, we produced porphyrin compounds by combining Rhodobacter sphaeroides as an efficient cell factory with enzymatic catalysis. Genome-wide CRISPRi-based screening in R. sphaeroides identifies hemN as a target for improved coproporphyrin III (CPIII) production, and exploiting phosphorylation of PrrA further improves the production of bioactive CPIII to 16.5 g L-1 by fed-batch fermentation. Subsequent screening and engineering high-activity metal chelatases and coproheme decarboxylase results in the synthesis of various metalloporphyrins, including heme and the anti-tumor agent zincphyrin. After pilot-scale fermentation (200 L) and setting up the purification process for CPIII (purity >95%), we scaled up the production of heme and zincphyrin through enzymatic catalysis in a 5-L bioreactor, with CPIII achieving respective enzyme conversion rates of 63% and 98% and yielding 10.8 g L-1 and 21.3 g L-1, respectively. Our strategy offers a solution for high-yield bioproduction of heme and other valuable porphyrins with substantial industrial and medical applications.
Collapse
Affiliation(s)
- Haihong Chen
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Yaohong Wang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ting Cao
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Lu Zhang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Zhengduo Wang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xuran Chi
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Tong Shi
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Huangwei Wang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xinwei He
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Mindong Liang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Mengxue Yang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Wenyi Jiang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Dongyuan Lv
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jiaming Yu
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Yongtao Xie
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Bei Gao
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xinye Wang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Youyuan Li
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Liming Ouyang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jingyu Zhang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Huimin Liu
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yaojun Tong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuekui Xia
- Key Biosensor Laboratory of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China.
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
4
|
Zhang L, Hu Y, Xie B, Zhang B, Wei D, Zhang H, Chen Y, Chen S, Song X. Ultraviolet-induced red fluorescence in androgenetic alopecia-indicating alterations in microbial composition. Skin Res Technol 2024; 30:e13777. [PMID: 38899718 PMCID: PMC11187801 DOI: 10.1111/srt.13777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Ultraviolet (UV)-induced fluorescence technology is widely used in dermatology to identify microbial infections. Our clinical observations under an ultraviolet-induced fluorescent dermatoscope (UVFD) showed red fluorescence on the scalps of androgenetic alopecia (AGA) patients. In this study, based on the hypothesis that microbes are induced to emit red fluorescence under UV light, we aimed to explore the microbial disparities between the AGA fluorescent area (AF group) and AGA non-fluorescent area (ANF group). METHODS Scalp swab samples were collected from 36 AGA patients, including both fluorescent and non-fluorescent areas. The bacterial communities on the scalp were analyzed by 16S rRNA gene sequencing and bioinformatics analysis, as well as through microbial culture methods. RESULTS Significant variations were observed in microbial evenness, abundance composition, and functional predictions between fluorescent and non-fluorescent areas. Sequencing results highlighted significant differences in Cutibacterium abundance between these areas (34.06% and 21.36%, respectively; p < 0.05). Furthermore, cultured red fluorescent colonies primarily consisted of Cutibacterium spp., Cutibacterium acnes, Staphylococcus epidermidis, and Micrococcus spp. CONCLUSIONS This is the first study to investigate scalp red fluorescence, highlighting microbial composition variability across different scalp regions. These findings may provide novel insights into the microbiological mechanisms of AGA.
Collapse
Affiliation(s)
- Li Zhang
- Department of DermatologyHangzhou Third Hospital Affiliated to Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yebei Hu
- Department of DermatologyHangzhou Third People's HospitalHangzhouChina
| | - Bo Xie
- Department of DermatologyHangzhou Third People's HospitalHangzhouChina
| | - Beilei Zhang
- Department of DermatologyHangzhou Third Hospital Affiliated to Zhejiang Chinese Medical UniversityHangzhouChina
| | - Dongfan Wei
- Department of DermatologyAffiliated Hangzhou Dermatology HospitalZhejiang University School of MedicineHangzhouChina
| | - Hongyan Zhang
- Department of DermatologyHangzhou Third People's HospitalHangzhouChina
| | - Yi Chen
- Department of DermatologyThe Children's HospitalZhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouChina
| | - Shi Chen
- Department of Clinical LaboratoryHangzhou Third People's HospitalHangzhouChina
| | - Xiuzu Song
- Department of DermatologyHangzhou Third People's HospitalHangzhouChina
| |
Collapse
|
5
|
Yang Q, Sun X, Wang H, Chen T, Wang Z. Multi-modular metabolic engineering of heme synthesis in Corynebacterium glutamicum. Synth Syst Biotechnol 2024; 9:285-293. [PMID: 38496319 PMCID: PMC10940142 DOI: 10.1016/j.synbio.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Heme, an iron-containing porphyrin derivative, holds great promise in fields like medicine, food production and chemicals. Here, we developed an engineered Corynebacterium glutamicum strain for efficient heme production by combining modular engineering and RBS engineering. The whole heme biosynthetic pathway was methodically divided into 5-ALA synthetic module, uroporphyrinogen III (UPG III) synthetic module and heme synthetic module for further construction and optimization. Three heme synthetic modules were compared and the siroheme-dependent (SHD) pathway was identified to be optimal in C. glutamicum for the first time. To further improve heme production, the expression of genes in UPG III synthetic module and heme synthetic module was coordinated optimized through RBS engineering, respectively. Subsequently, heme oxygenase was knocked out to reduce heme degradation. The engineered strain HS12 showed a maximum iron-containing porphyrin derivatives titer of 1592 mg/L with the extracellular secretion rate of 45.5% in fed-batch fermentation. Our study constructed a C. glutamicum chassis strain for efficient heme accumulation, which was beneficial for the advancement of efficient heme and other porphyrins production.
Collapse
Affiliation(s)
- Qiuyu Yang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xi Sun
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Hong Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- School of Life Science, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
6
|
Chen Z, Wu T, Yu S, Li M, Fan X, Huo YX. Self-assembly systems to troubleshoot metabolic engineering challenges. Trends Biotechnol 2024; 42:43-60. [PMID: 37451946 DOI: 10.1016/j.tibtech.2023.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
Enzyme self-assembly is a technology in which enzyme units can aggregate into ordered macromolecules, assisted by scaffolds. In metabolic engineering, self-assembly strategies have been explored for aggregating multiple enzymes in the same pathway to improve sequential catalytic efficiency, which in turn enables high-level production. The performance of the scaffolds is critical to the formation of an efficient and stable assembly system. This review comprehensively analyzes these scaffolds by exploring how they assemble, and it illustrates how to apply self-assembly strategies for different modules in metabolic engineering. Functional modifications to scaffolds will further promote efficient strategies for production.
Collapse
Affiliation(s)
- Zhenya Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Tong Wu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Shengzhu Yu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Min Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Xuanhe Fan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China.
| |
Collapse
|
7
|
Yang Q, Zhao J, Zheng Y, Chen T, Wang Z. Microbial Synthesis of Heme b: Biosynthetic Pathways, Current Strategies, Detection, and Future Prospects. Molecules 2023; 28:3633. [PMID: 37110868 PMCID: PMC10144233 DOI: 10.3390/molecules28083633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Heme b, which is characterized by a ferrous ion and a porphyrin macrocycle, acts as a prosthetic group for many enzymes and contributes to various physiological processes. Consequently, it has wide applications in medicine, food, chemical production, and other burgeoning fields. Due to the shortcomings of chemical syntheses and bio-extraction techniques, alternative biotechnological methods have drawn increasing attention. In this review, we provide the first systematic summary of the progress in the microbial synthesis of heme b. Three different pathways are described in detail, and the metabolic engineering strategies for the biosynthesis of heme b via the protoporphyrin-dependent and coproporphyrin-dependent pathways are highlighted. The UV spectrophotometric detection of heme b is gradually being replaced by newly developed detection methods, such as HPLC and biosensors, and for the first time, this review summarizes the methods used in recent years. Finally, we discuss the future prospects, with an emphasis on the potential strategies for improving the biosynthesis of heme b and understanding the regulatory mechanisms for building efficient microbial cell factories.
Collapse
Affiliation(s)
- Qiuyu Yang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Juntao Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yangyang Zheng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
8
|
Wang R, Liu X, Lv B, Sun W, Li C. Designing Intracellular Compartments for Efficient Engineered Microbial Cell Factories. ACS Synth Biol 2023; 12:1378-1395. [PMID: 37083286 DOI: 10.1021/acssynbio.2c00671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
With the rapid development of synthetic biology, various kinds of microbial cell factories (MCFs) have been successfully constructed to produce high-value-added compounds. However, the complexity of metabolic regulation and pathway crosstalk always cause issues such as intermediate metabolite accumulation, byproduct generation, and metabolic burden in MCFs, resulting in low efficiencies and low yields of industrial biomanufacturing. Such issues could be solved by spatially rearranging the pathways using intracellular compartments. In this review, design strategies are summarized and discussed based on the types and characteristics of natural and artificial subcellular compartments. This review systematically presents information for the construction of efficient MCFs with intracellular compartments in terms of four aspects of design strategy goals: (1) improving local reactant concentration; (2) intercepting and isolating competing pathways; (3) providing specific reaction substances and environments; and (4) storing and accumulating products.
Collapse
Affiliation(s)
- Ruwen Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Xin Liu
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Wentao Sun
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Center for Synthetic and System Biology, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
9
|
Zhang J, Li Q, Wang Q, Zhao J, Zhu Y, Su T, Qi Q, Wang Q. Heme biosensor-guided in vivo pathway optimization and directed evolution for efficient biosynthesis of heme. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:33. [PMID: 36859288 PMCID: PMC9979517 DOI: 10.1186/s13068-023-02285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/18/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Heme has attracted much attention because of its wide applications in medicine and food. The products of genes hemBCDEFY convert 5-aminolevulinic acid to protoporphyrin IX (PPIX; the immediate precursor of heme); protoporphyrin ferrochelatase (FECH) inserts Fe2+ into PPIX to generate heme. Biosynthesis of heme is limited by the need for optimized expression levels of multiple genes, complex regulatory mechanisms, and low enzymatic activity; these problems need to be overcome in metabolic engineering to improve heme synthesis. RESULTS We report a heme biosensor-guided screening strategy using the heme-responsive protein HrtR to regulate tcR expression in Escherichia coli, providing a quantifiable link between the intracellular heme concentration and cell survival in selective conditions (i.e., the presence of tetracycline). This system was used for rapid enrichment screening of heme-producing strains from a library with random ribosome binding site (RBS) variants and from a FECH mutant library. Through up to four rounds of iterative evolution, strains with optimal RBS intensities for the combination of hemBCDEFY were screened; we obtained a PPIX titer of 160.8 mg/L, the highest yield yet reported in shaken-flask fermentation. A high-activity FECH variant was obtained from the saturation mutagenesis library. Fed-batch fermentation of strain SH20C, harboring the optimized hemBCDEFY and the FECH mutant, produced 127.6 mg/L of heme. CONCLUSION We sequentially improved the multigene biosynthesis pathway of PPIX and performed in vivo directed evolution of FECH, based on a heme biosensor, which demonstrated the effectiveness of the heme biosensor-based pathway optimization strategy and broadens our understanding of the mechanism of heme synthesis.
Collapse
Affiliation(s)
- Jian Zhang
- grid.27255.370000 0004 1761 1174National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Qingbin Li
- grid.27255.370000 0004 1761 1174National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Qi Wang
- grid.27255.370000 0004 1761 1174National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Jingyu Zhao
- grid.27255.370000 0004 1761 1174National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Yuan Zhu
- grid.27255.370000 0004 1761 1174National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Tianyuan Su
- grid.27255.370000 0004 1761 1174National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Qingsheng Qi
- grid.27255.370000 0004 1761 1174National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China ,grid.9227.e0000000119573309CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 People’s Republic of China
| | - Qian Wang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China. .,CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China.
| |
Collapse
|
10
|
Unveiling the Effect of NCgl0580 Gene Deletion on 5-Aminolevulinic Acid Biosynthesis in Corynebacterium glutamicum. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
5-Aminolevulinic acid (5-ALA) has recently received much attention for its wide applications in medicine and agriculture. In this study, we investigated the effect of NCgl0580 in Corynebacterium glutamicum on 5-ALA biosynthesis as well as its possible mechanism. It was found that the overexpression of NCgl0580 increased 5-ALA production by approximately 53.3%. Interestingly, the knockout of this gene led to an even more significant 2.49-fold increase in 5-ALA production. According to transcriptome analysis and functional validation of phenotype-related targets, the deletion of NCgl0580 brought about considerable changes in the transcript levels of genes involved in central carbon metabolism, leading to fluxes redistribution toward the 5-ALA precursor succinyl-CoA as well as ATP-binding cassette (ABC) transporters affecting 5-ALA biosynthesis. In particular, the positive effects of enhanced sugar transport (by overexpressing NCgl1445 and iolT1), glycolysis (by overexpressing pyk2), iron uptake (by overexpressing afuABC), and phosphate uptake (by overexpressing pstSCAB and ugpQ) on 5-ALA biosynthesis were demonstrated for the first time. Thus, the transcriptional mechanism underlying the effect of NCgl0580 deletion on 5-ALA biosynthesis was elucidated, providing new strategies to regulate the metabolic network of C. glutamicum to achieve a further increase in 5-ALA production.
Collapse
|
11
|
Zhou Y, Mo M, Luo D, Yang Y, Hu J, Ye C, Lin L, Xu C, Chen W. Evolutionary Trend Analysis of Research on 5-ALA Delivery and Theranostic Applications Based on a Scientometrics Study. Pharmaceutics 2022; 14:pharmaceutics14071477. [PMID: 35890373 PMCID: PMC9320574 DOI: 10.3390/pharmaceutics14071477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/12/2022] [Accepted: 07/05/2022] [Indexed: 12/10/2022] Open
Abstract
5-aminolevulinic acid (5-ALA) has been extensively studied for its sustainability and broad-spectrum applications in medical research and theranostics, as well as other areas. It’s a precursor of protoporphyrin IX (PpIX), a sustainable endogenous and naturally-existing photosensitizer. However, to the best of our knowledge, a scientometrics study based on the scientific knowledge assay of the overall situation on 5-ALA research has not been reported so far, which would be of major importance to the relevant researchers. In this study, we collected all the research articles published in the last two decades from the Web of Science Core Collection database and employed bibliometric methods to comprehensively analyze the dataset from different perspectives using CiteSpace. A total of 1595 articles were identified. The analysis results showed that China published the largest number of articles, and SBI Pharmaceuticals Co., Ltd. was the most productive institution that sponsored several of the most productive authors. The cluster analysis and burst detections indicated that the improvement of photodynamic efficacy theranostics is the up-to-date key direction in 5-ALA research. Furthermore, we emphatically studied nanotechnology involvement in 5-ALA delivery and theranostics research. We envision that our results will be beneficial for researchers to have a panorama of and deep insights into this area, thus inspiring further exploitations, especially of the nanomaterial-based systems for 5-ALA delivery and theranostic applications.
Collapse
Affiliation(s)
- You Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
- Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, College of Chemistry and Materials, Ningde Normal University, Ningde 352100, China;
| | - Mulan Mo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
| | - Dexu Luo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
| | - Yi Yang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
| | - Jialin Hu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
| | - Chenqing Ye
- Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, College of Chemistry and Materials, Ningde Normal University, Ningde 352100, China;
| | - Longxiang Lin
- Shenzhen Osteomore Biotechnology Co., Ltd., Shenzhen 518118, China;
| | - Chuanshan Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
- Correspondence: (C.X.); (W.C.)
| | - Wenjie Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
- State Key Laboratory of Respiratory Disease, Guangdong-Hongkong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou 510182, China
- Sydney Vital Translational Cancer Research Centre, Westbourne St., Sydney, NSW 2065, Australia
- Correspondence: (C.X.); (W.C.)
| |
Collapse
|