1
|
Leonard AC, Friedman AJ, Chayer R, Petersen BM, Woojuh J, Xing Z, Cutler SR, Kaar JL, Shirts MR, Whitehead TA. Rationalizing Diverse Binding Mechanisms to the Same Protein Fold: Insights for Ligand Recognition and Biosensor Design. ACS Chem Biol 2024; 19:1757-1772. [PMID: 39017707 DOI: 10.1021/acschembio.4c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The engineering of novel protein-ligand binding interactions, particularly for complex drug-like molecules, is an unsolved problem, which could enable many practical applications of protein biosensors. In this work, we analyzed two engineered biosensors, derived from the plant hormone sensor PYR1, to recognize either the agrochemical mandipropamid or the synthetic cannabinoid WIN55,212-2. Using a combination of quantitative deep mutational scanning experiments and molecular dynamics simulations, we demonstrated that mutations at common positions can promote protein-ligand shape complementarity and revealed prominent differences in the electrostatic networks needed to complement diverse ligands. MD simulations indicate that both PYR1 protein-ligand complexes bind a single conformer of their target ligand that is close to the lowest free-energy conformer. Computational design using a fixed conformer and rigid body orientation led to new WIN55,212-2 sensors with nanomolar limits of detection. This work reveals mechanisms by which the versatile PYR1 biosensor scaffold can bind diverse ligands. This work also provides computational methods to sample realistic ligand conformers and rigid body alignments that simplify the computational design of biosensors for novel ligands of interest.
Collapse
Affiliation(s)
- Alison C Leonard
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80305, United States
| | - Anika J Friedman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80305, United States
| | - Rachel Chayer
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80305, United States
| | - Brian M Petersen
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80305, United States
| | - Janty Woojuh
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521-9800, United States
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California 92521, United States
- Center for Plant Cell Biology, University of California, Riverside, Riverside, California 92521, United States
| | - Zenan Xing
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521-9800, United States
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California 92521, United States
- Center for Plant Cell Biology, University of California, Riverside, Riverside, California 92521, United States
| | - Sean R Cutler
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521-9800, United States
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California 92521, United States
- Center for Plant Cell Biology, University of California, Riverside, Riverside, California 92521, United States
| | - Joel L Kaar
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80305, United States
| | - Michael R Shirts
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80305, United States
| | - Timothy A Whitehead
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80305, United States
| |
Collapse
|
2
|
Chaisupa P, Wright RC. State-of-the-art in engineering small molecule biosensors and their applications in metabolic engineering. SLAS Technol 2024; 29:100113. [PMID: 37918525 PMCID: PMC11314541 DOI: 10.1016/j.slast.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Genetically encoded biosensors are crucial for enhancing our understanding of how molecules regulate biological systems. Small molecule biosensors, in particular, help us understand the interaction between chemicals and biological processes. They also accelerate metabolic engineering by increasing screening throughput and eliminating the need for sample preparation through traditional chemical analysis. Additionally, they offer significantly higher spatial and temporal resolution in cellular analyte measurements. In this review, we discuss recent progress in in vivo biosensors and control systems-biosensor-based controllers-for metabolic engineering. We also specifically explore protein-based biosensors that utilize less commonly exploited signaling mechanisms, such as protein stability and induced degradation, compared to more prevalent transcription factor and allosteric regulation mechanism. We propose that these lesser-used mechanisms will be significant for engineering eukaryotic systems and slower-growing prokaryotic systems where protein turnover may facilitate more rapid and reliable measurement and regulation of the current cellular state. Lastly, we emphasize the utilization of cutting-edge and state-of-the-art techniques in the development of protein-based biosensors, achieved through rational design, directed evolution, and collaborative approaches.
Collapse
Affiliation(s)
- Patarasuda Chaisupa
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - R Clay Wright
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, United States; Translational Plant Sciences Center (TPSC), Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
3
|
Leonard AC, Friedman AJ, Chayer R, Petersen BM, Kaar J, Shirts MR, Whitehead TA. Rationalizing diverse binding mechanisms to the same protein fold: insights for ligand recognition and biosensor design. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586677. [PMID: 38586024 PMCID: PMC10996623 DOI: 10.1101/2024.03.25.586677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The engineering of novel protein-ligand binding interactions, particularly for complex drug-like molecules, is an unsolved problem which could enable many practical applications of protein biosensors. In this work, we analyzed two engineer ed biosensors, derived from the plant hormone sensor PYR1, to recognize either the agrochemical mandipropamid or the synthetic cannabinoid WIN55,212-2. Using a combination of quantitative deep mutational scanning experiments and molecular dynamics simulations, we demonstrated that mutations at common positions can promote protein-ligand shape complementarity and revealed prominent differences in the electrostatic networks needed to complement diverse ligands. MD simulations indicate that both PYR1 protein-ligand complexes bind a single conformer of their target ligand that is close to the lowest free energy conformer. Computational design using a fixed conformer and rigid body orientation led to new WIN55,212-2 sensors with nanomolar limits of detection. This work reveals mechanisms by which the versatile PYR1 biosensor scaffold can bind diverse ligands. This work also provides computational methods to sample realistic ligand conformers and rigid body alignments that simplify the computational design of biosensors for novel ligands of interest.
Collapse
|
4
|
Zeng M, Sarker B, Rondthaler SN, Vu V, Andrews LB. Identifying LasR Quorum Sensors with Improved Signal Specificity by Mapping the Sequence-Function Landscape. ACS Synth Biol 2024; 13:568-589. [PMID: 38206199 DOI: 10.1021/acssynbio.3c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Programmable intercellular signaling using components of naturally occurring quorum sensing can allow for coordinated functions to be engineered in microbial consortia. LuxR-type transcriptional regulators are widely used for this purpose and are activated by homoserine lactone (HSL) signals. However, they often suffer from imperfect molecular discrimination of structurally similar HSLs, causing misregulation within engineered consortia containing multiple HSL signals. Here, we studied one such example, the regulator LasR from Pseudomonas aeruginosa. We elucidated its sequence-function relationship for ligand specificity using targeted protein engineering and multiplexed high-throughput biosensor screening. A pooled combinatorial saturation mutagenesis library (9,486 LasR DNA sequences) was created by mutating six residues in LasR's β5 sheet with single, double, or triple amino acid substitutions. Sort-seq assays were performed in parallel using cognate and noncognate HSLs to quantify each corresponding sensor's response to each HSL signal, which identified hundreds of highly specific variants. Sensor variants identified were individually assayed and exhibited up to 60.6-fold (p = 0.0013) improved relative activation by the cognate signal compared to the wildtype. Interestingly, we uncovered prevalent mutational epistasis and previously unidentified residues contributing to signal specificity. The resulting sensors with negligible signal crosstalk could be broadly applied to engineer bacteria consortia.
Collapse
Affiliation(s)
- Min Zeng
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Biprodev Sarker
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Stephen N Rondthaler
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Vanessa Vu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Lauren B Andrews
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Biotechnology Training Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
5
|
Babaei M, Thomsen PT, Pastor MC, Jensen MK, Borodina I. Coupling High-Throughput and Targeted Screening for Identification of Nonobvious Metabolic Engineering Targets. ACS Synth Biol 2024; 13:168-182. [PMID: 38141039 PMCID: PMC10804409 DOI: 10.1021/acssynbio.3c00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Identification of metabolic engineering targets is a fundamental challenge in strain development programs. While high-throughput (HTP) genetic engineering methodologies capable of generating vast diversity are being developed at a rapid rate, a majority of industrially interesting molecules cannot be screened at sufficient throughput to leverage these techniques. We propose a workflow that couples HTP screening of common precursors (e.g., amino acids) that can be screened either directly or by artificial biosensors, with low-throughput targeted validation of the molecule of interest to uncover nonintuitive beneficial metabolic engineering targets and combinations hereof. Using this workflow, we identified several nonobvious novel targets for improving p-coumaric acid (p-CA) and l-DOPA production from two large 4k gRNA libraries each deregulating 1000 metabolic genes in the yeast Saccharomyces cerevisiae. We initially screened yeast cells transformed with gRNA library plasmids for individual regulatory targets improving the production of l-tyrosine-derived betaxanthins, identifying 30 targets that increased intracellular betaxanthin content 3.5-5.7 fold. Hereafter, we screened the targets individually in a high-producing p-CA strain, narrowing down the targets to six that increased the secreted titer by up to 15%. To investigate whether any of the six targets could be additively combined to improve p-CA production further, we created a gRNA multiplexing library and subjected it to our proposed coupled workflow. The combination of regulating PYC1 and NTH2 simultaneously resulted in the highest (threefold) improvement of the betaxanthin content, and an additive trend was also observed in the p-CA strain. Lastly, we tested the initial 30 targets in a l-DOPA producing strain, identifying 10 targets that increased the secreted titer by up to 89%, further validating our screening by proxy workflow. This coupled approach is useful for strain development in the absence of direct HTP screening assays for products of interest.
Collapse
Affiliation(s)
- Mahsa Babaei
- Novo Nordisk Foundation
Center
for Biosustainability, Technical University
of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Philip Tinggaard Thomsen
- Novo Nordisk Foundation
Center
for Biosustainability, Technical University
of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Marc Cernuda Pastor
- Novo Nordisk Foundation
Center
for Biosustainability, Technical University
of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Michael Krogh Jensen
- Novo Nordisk Foundation
Center
for Biosustainability, Technical University
of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Irina Borodina
- Novo Nordisk Foundation
Center
for Biosustainability, Technical University
of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Xi C, Diao J, Moon TS. Advances in ligand-specific biosensing for structurally similar molecules. Cell Syst 2023; 14:1024-1043. [PMID: 38128482 PMCID: PMC10751988 DOI: 10.1016/j.cels.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/23/2023] [Accepted: 10/19/2023] [Indexed: 12/23/2023]
Abstract
The specificity of biological systems makes it possible to develop biosensors targeting specific metabolites, toxins, and pollutants in complex medical or environmental samples without interference from structurally similar compounds. For the last two decades, great efforts have been devoted to creating proteins or nucleic acids with novel properties through synthetic biology strategies. Beyond augmenting biocatalytic activity, expanding target substrate scopes, and enhancing enzymes' enantioselectivity and stability, an increasing research area is the enhancement of molecular specificity for genetically encoded biosensors. Here, we summarize recent advances in the development of highly specific biosensor systems and their essential applications. First, we describe the rational design principles required to create libraries containing potential mutants with less promiscuity or better specificity. Next, we review the emerging high-throughput screening techniques to engineer biosensing specificity for the desired target. Finally, we examine the computer-aided evaluation and prediction methods to facilitate the construction of ligand-specific biosensors.
Collapse
Affiliation(s)
- Chenggang Xi
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jinjin Diao
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
7
|
Aggarwal N, Liang Y, Foo JL, Ling H, Hwang IY, Chang MW. FELICX: A robust nucleic acid detection method using flap endonuclease and CRISPR-Cas12. Biosens Bioelectron 2023; 222:115002. [PMID: 36527830 DOI: 10.1016/j.bios.2022.115002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/26/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Nucleic acid detection is crucial for monitoring diseases for which rapid, sensitive, and easy-to-deploy diagnostic tools are needed. CRISPR-based technologies can potentially fulfill this need for nucleic acid detection. However, their widespread use has been restricted by the requirement of a protospacer adjacent motif in the target and extensive guide RNA optimization. In this study, we developed FELICX, a technique that can overcome these limitations and provide a useful alternative to existing technologies. FELICX comprises flap endonuclease, Taq ligase and CRISPR-Cas for diagnostics (X) and can be used for detecting nucleic acids and single-nucleotide polymorphisms. This method can be deployed as a point-of-care test, as only two temperatures are needed without thermocycling for its functionality, with the result generated on lateral flow strips. As a proof-of-concept, we showed that up to 0.6 copies/μL of DNA and RNA could be detected by FELICX in 60 min and 90 min, respectively, using simulated samples. Additionally, FELICX could be used to probe any base pair, unlike other CRISPR-based technologies. Finally, we demonstrated the versatility of FELICX by employing it for virus detection in infected human cells, the identification of antibiotic-resistant bacteria, and cancer diagnostics using simulated samples. Based on its unique advantages, we envision the use of FELICX as a next-generation CRISPR-based technology in nucleic acid diagnostics.
Collapse
Affiliation(s)
- Nikhil Aggarwal
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yuanmei Liang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jee Loon Foo
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hua Ling
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - In Young Hwang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Matthew Wook Chang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
8
|
Heng YC, Foo JL. Development of destabilized mCherry fluorescent proteins for applications in the model yeast Saccharomyces cerevisiae. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2022; 3:108-112. [PMID: 39416457 PMCID: PMC11446383 DOI: 10.1016/j.biotno.2022.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 10/19/2024]
Abstract
Fluorescent proteins are widely used molecular reporters in studying gene expression and subcellular protein localization. To enable the monitoring of transient cellular events in the model yeast Saccharomyces cerevisiae, destabilized green and cyan fluorescent proteins have been constructed. However, their co-utilization is limited by an overlap in their excitation and emission spectra. Although red fluorescent protein is compatible with both green and cyan fluorescent proteins with respect to spectra resolution, a destabilized red fluorescent protein is yet to be constructed for applications in S. cerevisiae. To realize this, we adopted a degron-fusion strategy to prompt destabilization of red fluorescent protein. Specifically, we fused two degrons derived from Cln2, a G1-specific cyclin that mediates cell cycle transition, to the N- or C-terminus of mCherry to generate four destabilized fluorescent proteins that are soluble and functional in S. cerevisiae. Importantly, the four mCherry fluorescent proteins are highly differential with regards to fluorescence half-life and intensity, which provides a greater choice of tools available for the study of dynamic gene expression and transient cellular processes in the model yeast.
Collapse
Affiliation(s)
- Yu Chyuan Heng
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jee Loon Foo
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Leonard AC, Whitehead TA. Design and engineering of genetically encoded protein biosensors for small molecules. Curr Opin Biotechnol 2022; 78:102787. [PMID: 36058141 DOI: 10.1016/j.copbio.2022.102787] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
Genetically encoded protein biosensors controlled by small organic molecules are valuable tools for many biotechnology applications, including control of cellular decisions in living cells. Here, we review recent advances in protein biosensor design and engineering for binding to novel ligands. We categorize sensor architecture as either integrated or portable, where portable biosensors uncouple molecular recognition from signal transduction. Proposed advances to improve portable biosensor development include standardizing a limited set of protein scaffolds, and automating ligand-compatibility screening and ligand-protein-interface design.
Collapse
Affiliation(s)
- Alison C Leonard
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80305, USA
| | - Timothy A Whitehead
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80305, USA.
| |
Collapse
|
10
|
Zimran G, Feuer E, Pri-Tal O, Shpilman M, Mosquna A. Directed Evolution of Herbicide Biosensors in a Fluorescence-Activated Cell-Sorting-Compatible Yeast Two-Hybrid Platform. ACS Synth Biol 2022; 11:2880-2888. [PMID: 35922400 PMCID: PMC9396700 DOI: 10.1021/acssynbio.2c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Indexed: 11/27/2022]
Abstract
Developing sensory modules for specific molecules of interest represents a fundamental challenge in synthetic biology and its applications. A somewhat generalizable approach for this challenge is demonstrated here by evolving a naturally occurring chemically induced heterodimer into a genetically encoded sensor for herbicides. The interaction between PYRABACTIN-RESISTANT-like receptors and type-2C protein phosphatases is induced by abscisic acid─a small-molecule hormone in plants. We considered abscisic acid receptors as a potential scaffold for the development of biosensors because of past successes in their engineering, a structurally defined ligand cavity and the availability of large-scale assays for their activation. A panel of 475 receptor variants, mutated at ligand-proximal residues, was screened for activation by 37 herbicides from several classes. Twelve compounds activated at least one member of the mutant panel. To facilitate the subsequent improvement of herbicide receptors through directed evolution, we engineered a yeast two-hybrid platform optimized for sequential positive and negative selection using fluorescence-activated cell sorting. By utilizing this system, we were able to isolate receptors with low nanomolar sensitivity and a broad dynamic range in sensing a ubiquitous group of chloroacetamide herbicides. Aside from its possible applicative value, this work lays down conceptual groundwork and provides infrastructure for the future development of biosensors through directed evolution.
Collapse
Affiliation(s)
- Gil Zimran
- The Robert H. Smith Institute
of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610000, Israel
| | - Erez Feuer
- The Robert H. Smith Institute
of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610000, Israel
| | - Oded Pri-Tal
- The Robert H. Smith Institute
of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610000, Israel
| | - Michal Shpilman
- The Robert H. Smith Institute
of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610000, Israel
| | - Assaf Mosquna
- The Robert H. Smith Institute
of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610000, Israel
| |
Collapse
|
11
|
Pham C, Stogios PJ, Savchenko A, Mahadevan R. Advances in engineering and optimization of transcription factor-based biosensors for plug-and-play small molecule detection. Curr Opin Biotechnol 2022; 76:102753. [PMID: 35872379 DOI: 10.1016/j.copbio.2022.102753] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022]
Abstract
Transcription factor (TF)-based biosensors have been applied in biotechnology for a variety of functions, including protein engineering, dynamic control, environmental detection, and point-of-care diagnostics. Such biosensors are promising analytical tools due to their wide range of detectable ligands and modular nature. However, designing biosensors tailored for applications of interest with the desired performance parameters, including ligand specificity, remains challenging. Biosensors often require significant engineering and tuning to meet desired specificity, sensitivity, dynamic range, and operating range parameters. Another limitation is the orthogonality of biosensors across hosts, given the role of the cellular context. Here, we describe recent advances and examples in the engineering and optimization of TF-based biosensors for plug-and-play small molecule detection. We highlight novel developments in TF discovery and biosensor design, TF specificity engineering, and biosensor tuning, with emphasis on emerging computational methods.
Collapse
Affiliation(s)
- Chester Pham
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada; Department of Microbiology, Immunology and Infectious Disease, University of Calgary, AB, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada; The Institute of Biomedical Engineering, University of Toronto, ON, Canada.
| |
Collapse
|
12
|
Engineering of Synthetic Transcriptional Switches in Yeast. Life (Basel) 2022; 12:life12040557. [PMID: 35455048 PMCID: PMC9030632 DOI: 10.3390/life12040557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 02/04/2023] Open
Abstract
Transcriptional switches can be utilized for many purposes in synthetic biology, including the assembly of complex genetic circuits to achieve sophisticated cellular systems and the construction of biosensors for real-time monitoring of intracellular metabolite concentrations. Although to date such switches have mainly been developed in prokaryotes, those for eukaryotes are increasingly being reported as both rational and random engineering technologies mature. In this review, we describe yeast transcriptional switches with different modes of action and how to alter their properties. We also discuss directed evolution technologies for the rapid and robust construction of yeast transcriptional switches.
Collapse
|
13
|
Miyake R, Ling H, Foo JL, Fugono N, Chang MW. Transporter-Driven Engineering of a Genetic Biosensor for the Detection and Production of Short-Branched Chain Fatty Acids in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2022; 10:838732. [PMID: 35372305 PMCID: PMC8975619 DOI: 10.3389/fbioe.2022.838732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
Biosensors can be used for real-time monitoring of metabolites and high-throughput screening of producer strains. Use of biosensors has facilitated strain engineering to efficiently produce value-added compounds. Following our recent work on the production of short branched-chain fatty acids (SBCFAs) in engineered Saccharomyces cerevisiae, here we harnessed a weak organic acid transporter Pdr12p, engineered a whole-cell biosensor to detect exogenous and intracellular SBCFAs and optimized the biosensor’s performance by varying PDR12 expression. We firstly constructed the biosensor and evaluated its response to a range of short-chain carboxylic acids. Next, we optimized its sensitivity and operational range by deletion and overexpression of PDR12. We found that the biosensor responded to exogenous SBCFAs including isovaleric acid, isobutyric acid and 2-methylbutanoic acid. PDR12 deletion enhanced the biosensor’s sensitivity to isovaleric acid at a low concentration and PDR12 overexpression shifted the operational range towards a higher concentration. Lastly, the deletion of PDR12 improved the biosensor’s sensitivity to the SBCFAs produced in our previously engineered SBCFA-overproducing strain. To our knowledge, our work represents the first study on employing an ATP-binding-cassette transporter to engineer a transcription-factor-based genetic biosensor for sensing SBCFAs in S. cerevisiae. Our findings provide useful insights into SBCFA detection by a genetic biosensor that will facilitate the screening of SBCFA-overproducing strains.
Collapse
Affiliation(s)
- Ryoma Miyake
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Science & Innovation Center, Mitsubishi Chemical Corporation, Yokohama, Japan
| | - Hua Ling
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jee Loon Foo
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nobutake Fugono
- Science & Innovation Center, Mitsubishi Chemical Corporation, Yokohama, Japan
| | - Matthew Wook Chang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Matthew Wook Chang,
| |
Collapse
|
14
|
Miller CA, Ho JML, Bennett MR. Strategies for Improving Small-Molecule Biosensors in Bacteria. BIOSENSORS 2022; 12:bios12020064. [PMID: 35200325 PMCID: PMC8869690 DOI: 10.3390/bios12020064] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 05/03/2023]
Abstract
In recent years, small-molecule biosensors have become increasingly important in synthetic biology and biochemistry, with numerous new applications continuing to be developed throughout the field. For many biosensors, however, their utility is hindered by poor functionality. Here, we review the known types of mechanisms of biosensors within bacterial cells, and the types of approaches for optimizing different biosensor functional parameters. Discussed approaches for improving biosensor functionality include methods of directly engineering biosensor genes, considerations for choosing genetic reporters, approaches for tuning gene expression, and strategies for incorporating additional genetic modules.
Collapse
Affiliation(s)
- Corwin A. Miller
- Department of Biosciences, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA; (C.A.M.); (J.M.L.H.)
| | - Joanne M. L. Ho
- Department of Biosciences, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA; (C.A.M.); (J.M.L.H.)
| | - Matthew R. Bennett
- Department of Biosciences, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA; (C.A.M.); (J.M.L.H.)
- Department of Bioengineering, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA
- Correspondence:
| |
Collapse
|
15
|
Otto M, Liu D, Siewers V. Saccharomyces cerevisiae as a Heterologous Host for Natural Products. Methods Mol Biol 2022; 2489:333-367. [PMID: 35524059 DOI: 10.1007/978-1-0716-2273-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cell factories can provide a sustainable supply of natural products with applications as pharmaceuticals, food-additives or biofuels. Besides being an important model organism for eukaryotic systems, Saccharomyces cerevisiae is used as a chassis for the heterologous production of natural products. Its success as a cell factory can be attributed to the vast knowledge accumulated over decades of research, its overall ease of engineering and its robustness. Many methods and toolkits have been developed by the yeast metabolic engineering community with the aim of simplifying and accelerating the engineering process.In this chapter, a range of methodologies are highlighted, which can be used to develop novel natural product cell factories or to improve titer, rate and yields of an existing cell factory with the goal of developing an industrially relevant strain. The addressed topics are applicable for different stages of a cell factory engineering project and include the choice of a natural product platform strain, expression cassette design for heterologous or native genes, basic and advanced genetic engineering strategies, and library screening methods using biosensors. The many engineering methods available and the examples of yeast cell factories underline the importance and future potential of this host for industrial production of natural products.
Collapse
Affiliation(s)
- Maximilian Otto
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Dany Liu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
16
|
Jung H, Ling H, Tan YQ, Chua NH, Yew WS, Chang MW. Heterologous expression of cyanobacterial gas vesicle proteins in Saccharomyces cerevisiae. Biotechnol J 2021; 16:e2100059. [PMID: 34499423 DOI: 10.1002/biot.202100059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/11/2022]
Abstract
Given the potential applications of gas vesicles (GVs) in multiple fields including antigen-displaying and imaging, heterologous reconstitution of synthetic GVs is an attractive and interesting study that has translational potential. Here, we attempted to express and assemble GV proteins (GVPs) into GVs using the model eukaryotic organism Saccharomyces cerevisiae. We first selected and expressed two core structural proteins, GvpA and GvpC from cyanobacteria Anabaena flos-aquae and Planktothrix rubescens, respectively. We then optimized the protein production conditions and validated GV assembly in the context of GV shapes. We found that when two copies of anaA were integrated into the genome, the chromosomal expression of AnaA resulted in GV production regardless of GvpC expression. Next, we co-expressed chaperone-RFP with the GFP-AnaA to aid the AnaA aggregation. The co-expression of individual chaperones (Hsp42, Sis1, Hsp104, and GvpN) with AnaA led to the formation of larger inclusions and enhanced the sequestration of AnaA into the perivacuolar site. To our knowledge, this represents the first study on reconstitution of GVs in S. cerevisiae. Our results could provide insights into optimizing conditions for heterologous protein production as well as the reconstitution of other synthetic microcompartments in yeast.
Collapse
Affiliation(s)
- Harin Jung
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Wilmar-NUS Corporate Laboratory, National University of Singapore, Singapore, Singapore
| | - Hua Ling
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Wilmar-NUS Corporate Laboratory, National University of Singapore, Singapore, Singapore
| | - Yong Quan Tan
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Wilmar-NUS Corporate Laboratory, National University of Singapore, Singapore, Singapore
| | - Nam-Hai Chua
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Wilmar-NUS Corporate Laboratory, National University of Singapore, Singapore, Singapore.,Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Wen Shan Yew
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Wilmar-NUS Corporate Laboratory, National University of Singapore, Singapore, Singapore
| | - Matthew Wook Chang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Wilmar-NUS Corporate Laboratory, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
Regulatory control circuits for stabilizing long-term anabolic product formation in yeast. Metab Eng 2020; 61:369-380. [DOI: 10.1016/j.ymben.2020.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/02/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
|