1
|
Zhou Z, Liu X, Chen R, Hu X, Guo Q. Treatment of phenolic wastewater by anaerobic fluidized bed microbial fuel cell using carbon brush as anode: microbial community analysis and m-cresol degradation mechanism. Bioprocess Biosyst Eng 2023; 46:1801-1815. [PMID: 37878182 DOI: 10.1007/s00449-023-02936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/14/2023] [Indexed: 10/26/2023]
Abstract
Anaerobic fluidized bed microbial fuel cell (AFB-MFC) is a technology that combines fluidized bed reactor and microbial fuel cell to treat organic wastewater and generate electricity. The performance and the mechanism of treating m-cresol wastewater in AFB-MFC using carbon brush as biofilm anode were studied. After 48 h of operation, the m-cresol removal efficiency of AFB-MFC, MAR-AFB (fluidized bed bioreactor with acclimated anaerobic sludge), MAR-FB (ordinary fluidized bed reactor with only macroporous adsorptive resin) and AST (traditional anaerobic sludge treatment) were 95.29 ± 0.67%, 85.78 ± 1.81%, 71.24 ± 1.86% and 70.41 ± 0.32% respectively. The maximum output voltage and the maximum power density of AFB-MFC using carbon brush as biofilm anode were 679.7 mV and 166.6 mW/m2 respectively. The results of high-throughput sequencing analysis indicated the relative abundance of dominant electroactive bacteria, such as Trichococcus, Geobacter, and Pseudomonas, on the anode carbon brushes was higher than that of AST, and also identified such superior m-cresol-degrading bacteria as Bdellovibrio, Thermomonas, Hydrogenophaga, etc. Based on the determination of m-cresol metabolites detected by Gas Chromatography-Mass Spectrometry (GC-MS), the possible biodegradation pathway of m-cresol under anaerobic and aerobic conditions in AFB-MFC was speculated. The results showed that m-cresol was decomposed into formic acid-acetic anhydride and 3-methylpropionic acid under the action of electrochemistry, which is a simple degradation pathway without peripheral metabolism in AFB-MFC.
Collapse
Affiliation(s)
- Zhaoxin Zhou
- State Key Laboratory Base of Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xinmin Liu
- State Key Laboratory Base of Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Ranran Chen
- State Key Laboratory Base of Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiude Hu
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Qingjie Guo
- State Key Laboratory Base of Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
2
|
Boas JV, Oliveira VB, Simões M, Pinto AMFR. Review on microbial fuel cells applications, developments and costs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114525. [PMID: 35091241 DOI: 10.1016/j.jenvman.2022.114525] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
The microbial fuel cell (MFC) technology has attracted significant attention in the last years due to its potential to recover energy in a wastewater treatment. The idea of using an MFC in industry is very attractive as the organic wastes can be converted into energy, reducing the waste disposal costs and the energy needs while increasing the company profit. However, taking aside these promising prospects, the attempts to apply MFCs in large-scale have not been succeeded so far since their lower performance and high costs remains challenging. This review intends to present the main applications of the MFC systems and its developments, particularly the advances on configuration and operating conditions. The diagnostic techniques used to evaluate the MFC performance as well as the different modeling approaches are described. Towards the introduction of the MFC in the market, a cost analysis is also included. The development of low-cost materials and more efficient systems, with high higher power outputs and durability, are crucial towards the application of MFCs in industrial/large scale. This work is a helpful tool for discovering new operation and design regimes.
Collapse
Affiliation(s)
- Joana Vilas Boas
- CEFT, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Vânia B Oliveira
- CEFT, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Manuel Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Alexandra M F R Pinto
- CEFT, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
3
|
Suresh R, Rajendran S, Kumar PS, Dutta K, Vo DVN. Current advances in microbial fuel cell technology toward removal of organic contaminants - A review. CHEMOSPHERE 2022; 287:132186. [PMID: 34509759 DOI: 10.1016/j.chemosphere.2021.132186] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/22/2021] [Accepted: 09/04/2021] [Indexed: 05/27/2023]
Abstract
At present, water pollution and demand for clean energy are most pressing global issues. On a daily basis, huge quantity of organic wastes gets released into the water ecosystems, causing health related problems. The need-of-the-hour is to utilize proficient and cheaper techniques for complete removal of harmful organic contaminants from water. In this regard, microbial fuel cell (MFC) has emerged as a promising technique, which can produce useful electrical energy from organic wastes and decontaminate polluted water. Herein, we have systematically reviewed recently published results, observations and progress made on the applications of MFCs in degradation of organic contaminants, including organic synthetic dyes, agro pollutants, health care contaminants and other organics (such as phenols and their derivatives, polyhydrocarbons and caffeine). MFC-based hybrid technologies, including MFC-constructed wetland, MFC-photocatalysis, MFC-catalysis, MFC-Fenton process, etc., developed to obtain high removal efficiency and bioelectricity production simultaneously have been discussed. Further, this review assessed the influence of factors, such as nature of electrode catalysts, organic pollutants, electrolyte, microbes and operational conditions, on the performance of pristine and hybrid MFC reactors in terms of pollutant removal efficiency and power generation simultaneously. Moreover, the limitations and future research directions of MFCs for wastewater treatment have been discussed. Finally, a conclusive summary of the findings has been outlined.
Collapse
Affiliation(s)
- R Suresh
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Saravanan Rajendran
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Kingshuk Dutta
- Advanced Polymer Design and Development Research Laboratory (APDDRL), School for Advanced Research in Petrochemicals (SARP), Central Institute of Petrochemicals Engineering and Technology (CIPET), Bengaluru, 562149, India
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| |
Collapse
|
4
|
Cabrera J, Irfan M, Dai Y, Zhang P, Zong Y, Liu X. Bioelectrochemical system as an innovative technology for treatment of produced water from oil and gas industry: A review. CHEMOSPHERE 2021; 285:131428. [PMID: 34237499 DOI: 10.1016/j.chemosphere.2021.131428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/26/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Disposal of the high volume of produced water (PW) is a big challenge to the oil and gas industry. High cost of conventional treatment facilities, increasing energy prices and environmental concern had focused governments and the industry itself on more efficient treatment methods. Bioelectrochemical system (BES) has attracted the attention of researchers because it represents a sustainable way to treat wastewater. This is the first review that summarizes the progress done in PW-fed BESs with a critical analysis of the parameters that influence their performances. Inoculum, temperature, hydraulic retention time, external resistance, and the use of real or synthetic produced water were found to be deeply related to the performance of BES. Microbial fuel cells are the most analyzed BES in this field followed by different types of microbial desalination cells. High concentration of sulfates in PW suggests that most of hydrocarbons are removed mainly by using sulfates as terminal electron acceptor (TEA), but other TEAs such as nitrate or metals can also be employed. The use of real PW as feed in experiments is highly recommended because biofilms when using synthetic PW are not the same. This review is believed to be helpful in guiding the research directions on the use of BES for PW treatment, and to speed up the practical application of BES technology in oil and gas industry.
Collapse
Affiliation(s)
- Jonnathan Cabrera
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, PR China
| | - Muhammad Irfan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, PR China
| | - Yexin Dai
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, PR China
| | - Pingping Zhang
- College of Food Science and Engineering, Tianjin Agricultural University, Tianjin, 300384, PR China
| | - Yanping Zong
- Tianjin Marine Environmental Center Station, Ministry of Natural Resources, Tianjin, PR China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, PR China.
| |
Collapse
|
5
|
Chung TH, Dhar BR. Paper-based platforms for microbial electrochemical cell-based biosensors: A review. Biosens Bioelectron 2021; 192:113485. [PMID: 34274625 DOI: 10.1016/j.bios.2021.113485] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022]
Abstract
The development of low-cost analytical devices for on-site water quality monitoring is a critical need, especially for developing countries and remote communities in developed countries with limited resources. Microbial electrochemical cell-based (MXC) biosensors have been quite promising for quantitative and semi-quantitative (often qualitative) measurements of various water quality parameters due to their low cost and simplicity compared to traditional analytical methods. However, conventional MXC biosensors often encounter challenges, such as the slow establishment of biofilms, low sensitivity, and poor recoverability, making them unable to be applied for practical cases. In response, MXC biosensors assembled with paper-based materials demonstrated tremendous potentials to enhance sensitivity and field applicability. Furthermore, the paper-based platforms offer many prominent features, including autonomous liquid transport, rapid bacterial adhesion, lowered resistance, low fabrication cost (<$1 in USD), and eco-friendliness. Therefore, this review aims to summarize the current trend and applications of paper-based MXC biosensors, along with critical discussions on their field applicability. Moreover, future advancements of paper-based MXC biosensors, such as developing a novel paper-based biobatteries, increasing the system performance using an unique biocatalyst, such as yeast, and integrating the biosensor system with other advanced tools, such as machine learning and 3D printing, are highlighted.
Collapse
Affiliation(s)
- Tae Hyun Chung
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB, T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
6
|
Characterization of Anaerobic Biofilms Growing on Carbon Felt Bioanodes Exposed to Air. Catalysts 2020. [DOI: 10.3390/catal10111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The role of oxygen in anodic biofilms is still a matter of debate. In this study, we tried to elucidate the structure and performance of an electrogenic biofilm that develops on air-exposed, carbon felt electrodes, commonly used in bioelectrochemical systems. By simultaneously recording the current density produced by the bioanode and dissolved oxygen concentration, both inside and in the vicinity of the biofilm, it was possible to demonstrate the influence of a protective aerobic layer present in the biofilm (mainly formed by Pseudomonas genus bacteria) that prevents electrogenic bacteria (such as Geobacter sp.) from hazardous exposure to oxygen during its normal operation. Once this protective barrier was deactivated for a long period of time, the catalytic capacity of the biofilm was severely affected. In addition, our results highlighted the importance of the material’s porous structure for oxygen penetration in the electrode.
Collapse
|