1
|
Han L, Calcutt NA, Zhou X. Rate-Dependent Depression of the Hoffmann Reflex: Practical Applications in Painful Diabetic Neuropathy. Diabetes Metab J 2024; 48:1029-1046. [PMID: 39610132 PMCID: PMC11621664 DOI: 10.4093/dmj.2024.0614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
Measurement of the rate-dependent depression (RDD) of the Hoffmann (H) reflex, a technique developed over half a century ago, is founded on repeated stimulation of the H-reflex with tracking of sequentially evoked H-wave amplitudes in the resulting electromyogram. RDD offers insight into the integrity of spinal reflex pathways and spinal inhibitory regulation. Initially, RDD was predominantly utilized in the mechanistic exploration and evaluation of movement disorders characterized by spasticity symptoms, as may occur following spinal cord injury. However, there is increasing recognition that sensory input from the periphery is modified at the spinal level before ascending to the higher central nervous system and that some pain states can arise from, or be exaggerated by, disruption of spinal processing via a mechanism termed spinal disinhibition. This, along with the urgent clinical need to identify biological markers of pain generator and/or amplifier sites to facilitate targeted pain therapies, has prompted interest in RDD as a biomarker for the contribution of spinal disinhibition to neuropathic pain states. Current research in animals and humans with diabetes has revealed specific disorders of spinal GABAergic function associated with impaired RDD. Future investigations on RDD aim to further elucidate its underlying pathways and enhance its clinical applications.
Collapse
Affiliation(s)
- Lu Han
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Nigel A. Calcutt
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Xiajun Zhou
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Song W, Jayaprakash N, Saleknezhad N, Puleo C, Al-Abed Y, Martin JH, Zanos S. Transspinal Focused Ultrasound Suppresses Spinal Reflexes in Healthy Rats. Neuromodulation 2024; 27:614-624. [PMID: 37530695 DOI: 10.1016/j.neurom.2023.04.476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVES Low-intensity, focused ultrasound (FUS) is an emerging noninvasive neuromodulation approach, with improved spatial and temporal resolution and penetration depth compared to other noninvasive electrical stimulation strategies. FUS has been used to modulate circuits in the brain and the peripheral nervous system, however, its potential to modulate spinal circuits is unclear. In this study, we assessed the effect of trans-spinal FUS (tsFUS) on spinal reflexes in healthy rats. MATERIALS AND METHODS tsFUS targeting different spinal segments was delivered for 1 minute, under anesthesia. Monosynaptic H-reflex of the sciatic nerve, polysynaptic flexor reflex of the sural nerve, and withdrawal reflex tested with a hot plate were measured before, during, and after tsFUS. RESULTS tsFUS reversibly suppresses the H-reflex in a spinal segment-, acoustic pressure- and pulse-repetition frequency (PRF)-dependent manner. tsFUS with high PRF augments the degree of homosynaptic depression of the H-reflex observed with paired stimuli. It suppresses the windup of components of the flexor reflex associated with slower, C-afferent, but not faster, A- afferent fibers. Finally, it increases the latency of the withdrawal reflex. tsFUS does not elicit neuronal loss in the spinal cord. CONCLUSIONS Our study provides evidence that tsFUS reversibly suppresses spinal reflexes and suggests that tsFUS could be a safe and effective strategy for spinal cord neuromodulation in disorders associated with hyperreflexia, including spasticity after spinal cord injury and painful syndromes.
Collapse
Affiliation(s)
- Weiguo Song
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Naveen Jayaprakash
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Nafiseh Saleknezhad
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chris Puleo
- General Electric Research, Niskayuna, NY, USA
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - John H Martin
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA; Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY.
| |
Collapse
|
3
|
Effects of Ankle Continuous Passive Motion on Soleus Hypertonia in Individuals with Cerebral Palsy: A Case Series. Biomed J 2021; 45:708-716. [PMID: 34332162 PMCID: PMC9486241 DOI: 10.1016/j.bj.2021.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 11/23/2022] Open
Abstract
Background Continuous passive motion device (CPM) provides repetitive movement over extended periods of time for those who have low functional ability. The purpose of this research was to evaluate the effects of a four-week program of continuous passive motion of the ankle joint on the changes in soleus hypertonia in individuals with cerebral palsy who suffered from life-long hypertonia. Methods A single group, repeated-measures study was conducted. Eight individuals (7 males and 1 female with a mean age of 21.8 ± 8.5 years) with spastic cerebral palsy underwent bilateral ankle CPM for 1 h a day, 5 days a week, for 4 weeks. The outcome measures included the Modified Ashworth Scale (MAS) score, passive range of motion (PROM) of the ankle, the ratio of maximum H reflex to maximum soleus M-response (H/M ratio), and post-activation depression (PAD). All outcomes were measured before and after the intervention. A paired t-test was used to examine treatment effects pre-versus post-intervention. Results Paired t-tests showed that the CPM program significantly decreased the MAS score (p = 0.006), decreased the maximum H/M ratio (p=0.001), improved PAD (p = 0.003, p = 0.040, and p = 0.032 at 0.2 Hz, 1 Hz, and 2 Hz, respectively), and increased the passive ankle range of motion (p = 0.049). Conclusion Ankle CPM not only reduced soleus hypertonia but also improved the PROM in individuals with cerebral palsy. The results of this study show ankle CPM to be an effective intervention for individuals with cerebral palsy.
Collapse
|
4
|
Worthington A, Kalteniece A, Ferdousi M, D’Onofrio L, Dhage S, Azmi S, Adamson C, Hamdy S, Malik RA, Calcutt NA, Marshall AG. Optimal Utility of H-Reflex RDD as a Biomarker of Spinal Disinhibition in Painful and Painless Diabetic Neuropathy. Diagnostics (Basel) 2021; 11:1247. [PMID: 34359330 PMCID: PMC8306975 DOI: 10.3390/diagnostics11071247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 11/20/2022] Open
Abstract
Impaired rate-dependent depression of the Hoffman reflex (HRDD) is a potential biomarker of impaired spinal inhibition in patients with painful diabetic neuropathy. However, the optimum stimulus-response parameters that identify patients with spinal disinhibition are currently unknown. We systematically compared HRDD, performed using trains of 10 stimuli at five stimulation frequencies (0.3, 0.5, 1, 2 and 3 Hz), in 42 subjects with painful and 62 subjects with painless diabetic neuropathy with comparable neuropathy severity, and 34 healthy controls. HRDD was calculated using individual and mean responses compared to the initial response. At stimulation frequencies of 1, 2 and 3 Hz, HRDD was significantly impaired in patients with painful diabetic neuropathy compared to patients with painless diabetic neuropathy for all parameters and for most parameters when compared to healthy controls. HRDD was significantly enhanced in patients with painless diabetic neuropathy compared to controls for responses towards the end of the 1 Hz stimulation train. Receiver operating characteristic curve analysis in patients with and without pain showed that the area under the curve was greatest for response averages of stimuli 2-4 and 2-5 at 1 Hz, AUC = 0.84 (95%CI 0.76-0.92). Trains of 5 stimuli delivered at 1 Hz can segregate patients with painful diabetic neuropathy and spinal disinhibition, whereas longer stimulus trains are required to segregate patients with painless diabetic neuropathy and enhanced spinal inhibition.
Collapse
Affiliation(s)
- Anne Worthington
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (A.W.); (S.H.)
| | - Alise Kalteniece
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (A.K.); (M.F.); (S.D.); (S.A.); (R.A.M.)
| | - Maryam Ferdousi
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (A.K.); (M.F.); (S.D.); (S.A.); (R.A.M.)
| | - Luca D’Onofrio
- Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy;
| | - Shaishav Dhage
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (A.K.); (M.F.); (S.D.); (S.A.); (R.A.M.)
| | - Shazli Azmi
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (A.K.); (M.F.); (S.D.); (S.A.); (R.A.M.)
- Diabetes Centre, Manchester University NHS Foundation Trust, Manchester M13 0JE, UK;
| | - Clare Adamson
- Diabetes Centre, Manchester University NHS Foundation Trust, Manchester M13 0JE, UK;
| | - Shaheen Hamdy
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (A.W.); (S.H.)
| | - Rayaz A. Malik
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (A.K.); (M.F.); (S.D.); (S.A.); (R.A.M.)
- Weill Cornell Medicine-Qatar, Research Division, Qatar Foundation, Education City, Doha 24144, Qatar
| | - Nigel A. Calcutt
- Department of Pathology, University of California, San Diego, CA 92093-0612, USA;
| | - Andrew G. Marshall
- Division of Neuroscience and Experimental Psychology, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PL, UK
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
5
|
Häfner SJ. Tumour travel tours - Why circulating cancer cells value company. Biomed J 2020; 43:1-7. [PMID: 32200951 PMCID: PMC7090313 DOI: 10.1016/j.bj.2020.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022] Open
Abstract
Welcome to the New Year and a new issue of the Biomedical Journal, where we learn that travelling with company boosts the metastatic potential of circulating tumour cells, as well as that a worm could be an excellent model to study antidiabetic drugs. In addition, we discover another pair of molecular scissors for genetic engineering, how exactly Leptospira wreaks havoc on its run through the host organism, and that hyperparathyroidism brings its own risks, but does not worsen the outcome of papillary thyroid carcinoma. Furthermore, the importance of taking into account differing beauty ideals for aesthetic surgery surveys is discussed, alongside the question how bad isolated local recurrence is in the case of HR + breast cancer. Finally, we find out that virtual colonoscopy deserves more credit, that the first medical experiment in space was all about the H-reflex, and that it is possible to survive advanced necrotising fasciitis of the face and neck.
Collapse
Affiliation(s)
- Sophia Julia Häfner
- University of Copenhagen, BRIC Biotech Research & Innovation Centre, Anders Lund Group, Copenhagen, Denmark.
| |
Collapse
|