1
|
McGuigan S, Abrahams BF, Scott DA. A narrative review of gas separation and conservation technologies during xenon anesthesia. Med Gas Res 2025; 15:93-100. [PMID: 39436172 PMCID: PMC11515081 DOI: 10.4103/mgr.medgasres-d-24-00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/17/2024] [Accepted: 05/31/2024] [Indexed: 10/23/2024] Open
Abstract
Xenon gas has significant advantages over conventional general anesthetic agents but its use has been limited by the cost associated with its production. Xenon also has significant potential for medical use in the treatment of acquired brain injuries and for mental health disorders. As the demand for xenon gas from other industries increases, the costs associated with its medical use are only likely to increase. One solution to mitigate the significant cost of xenon use in research or medical care is the conservation of xenon gas. During delivery of xenon anesthesia, this can be achieved either by separating xenon from the other gases within the anesthetic circuit, conserving xenon and allowing other gases to be excluded from the circuit, or by selectively recapturing xenon utilized during the anesthetic episode at the conclusion of the case. Several technologies, including the pressurization and cooling of gas mixtures, the utilization of gas selective membranes and the utilization of gas selective adsorbents have been described in the literature for this purpose. These techniques are described in this narrative review along with important clinical context that informs how these technologies might be best applied. Whilst these technologies are discussed in the context of xenon general anesthesia, they could be applied in the delivery of xenon gas inhalation for other therapeutic purposes.
Collapse
Affiliation(s)
- Steven McGuigan
- Department of Anesthesia and Acute Pain Medicine, St. Vincent’s Hospital Melbourne, Melbourne, Australia
- Department of Critical Care, University of Melbourne, Melbourne, Australia
| | | | - David A. Scott
- Department of Anesthesia and Acute Pain Medicine, St. Vincent’s Hospital Melbourne, Melbourne, Australia
- Department of Critical Care, University of Melbourne, Melbourne, Australia
| |
Collapse
|
2
|
Yang YS, Wu SH, Chen WC, Pei MQ, Liu YB, Liu CY, Lin S, He HF. Effects of xenon anesthesia on postoperative neurocognitive disorders: a systematic review and meta-analysis. BMC Anesthesiol 2023; 23:366. [PMID: 37946114 PMCID: PMC10634138 DOI: 10.1186/s12871-023-02316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/22/2023] [Indexed: 11/12/2023] Open
Abstract
The latest clinical trials have reported conflicting outcomes regarding the effectiveness of xenon anesthesia in preventing postoperative neurocognitive dysfunction; thus, this study assessed the existing evidence. We searched the PubMed, Embase, Cochrane Library, and Web of Science databases from inception to April 9, 2023, for randomized controlled trials of xenon anesthesia in postoperative patients. We included English-language randomized controlled studies of adult patients undergoing surgery with xenon anesthesia that compared its effects to those of other anesthetics. Duplicate studies, pediatric studies, and ongoing clinical trials were excluded. Nine studies with 754 participants were identified. A forest plot revealed that the incidence of postoperative neurocognitive dysfunction did not differ between the xenon anesthesia and control groups (P = 0.43). Additionally, xenon anesthesia significantly shortened the emergence time for time to opening eyes (P < 0.001), time to extubation (P < 0.001), time to react on demand (P = 0.01), and time to time and spatial orientation (P = 0.04). However, the Aldrete score significantly increased with xenon anesthesia (P = 0.005). Postoperative complications did not differ between the anesthesia groups. Egger's test for bias showed no small-study effect, and a trim-and-fill analysis showed no apparent publication bias. In conclusion, xenon anesthesia probably did not affect the occurrence of postoperative neurocognitive dysfunction. However, xenon anesthesia may effectively shorten the emergence time of certain parameters without adverse effects.
Collapse
Affiliation(s)
- Yu-Shen Yang
- Department of Anaesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shan-Hu Wu
- Department of Anaesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wei-Can Chen
- Department of Anaesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Meng-Qin Pei
- Department of Anaesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yi-Bin Liu
- Department of Anaesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Chu-Yun Liu
- Department of Anaesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
- Neuroendocrinology Group, Garvan Institute of Medical Research, Darlinghurst, Australia.
| | - He-Fan He
- Department of Anaesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| |
Collapse
|
3
|
McGuigan S, Marie DJ, O'Bryan LJ, Flores FJ, Evered L, Silbert B, Scott DA. The cellular mechanisms associated with the anesthetic and neuroprotective properties of xenon: a systematic review of the preclinical literature. Front Neurosci 2023; 17:1225191. [PMID: 37521706 PMCID: PMC10380949 DOI: 10.3389/fnins.2023.1225191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Xenon exhibits significant neuroprotection against a wide range of neurological insults in animal models. However, clinical evidence that xenon improves outcomes in human studies of neurological injury remains elusive. Previous reviews of xenon's method of action have not been performed in a systematic manner. The aim of this review is to provide a comprehensive summary of the evidence underlying the cellular interactions responsible for two phenomena associated with xenon administration: anesthesia and neuroprotection. Methods A systematic review of the preclinical literature was carried out according to the PRISMA guidelines and a review protocol was registered with PROSPERO. The review included both in vitro models of the central nervous system and mammalian in vivo studies. The search was performed on 27th May 2022 in the following databases: Ovid Medline, Ovid Embase, Ovid Emcare, APA PsycInfo, and Web of Science. A risk of bias assessment was performed utilizing the Office of Health Assessment and Translation tool. Given the heterogeneity of the outcome data, a narrative synthesis was performed. Results The review identified 69 articles describing 638 individual experiments in which a hypothesis was tested regarding the interaction of xenon with cellular targets including: membrane bound proteins, intracellular signaling cascades and transcription factors. Xenon has both common and subtype specific interactions with ionotropic glutamate receptors. Xenon also influences the release of inhibitory neurotransmitters and influences multiple other ligand gated and non-ligand gated membrane bound proteins. The review identified several intracellular signaling pathways and gene transcription factors that are influenced by xenon administration and might contribute to anesthesia and neuroprotection. Discussion The nature of xenon NMDA receptor antagonism, and its range of additional cellular targets, distinguishes it from other NMDA antagonists such as ketamine and nitrous oxide. This is reflected in the distinct behavioral and electrophysiological characteristics of xenon. Xenon influences multiple overlapping cellular processes, both at the cell membrane and within the cell, that promote cell survival. It is hoped that identification of the underlying cellular targets of xenon might aid the development of potential therapeutics for neurological injury and improve the clinical utilization of xenon. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier: 336871.
Collapse
Affiliation(s)
- Steven McGuigan
- Department of Anesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, VIC, Australia
- Department of Critical Care, University of Melbourne, Melbourne, VIC, Australia
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Boston, MA, United States
| | - Daniel J. Marie
- Department of Anesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Liam J. O'Bryan
- Department of Anesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Francisco J. Flores
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Boston, MA, United States
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lisbeth Evered
- Department of Anesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, VIC, Australia
- Department of Critical Care, University of Melbourne, Melbourne, VIC, Australia
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
| | - Brendan Silbert
- Department of Anesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, VIC, Australia
- Department of Critical Care, University of Melbourne, Melbourne, VIC, Australia
| | - David A. Scott
- Department of Anesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, VIC, Australia
- Department of Critical Care, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Recent progress in theranostic microbubbles. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
A hybrid batch distillation/membrane process for high purification part 2: Removing of heavy impurities from xenon extracted from natural gas. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Zhang M, Cui Y, Cheng Y, Wang Q, Sun H. The neuroprotective effect and possible therapeutic application of xenon in neurological diseases. J Neurosci Res 2021; 99:3274-3283. [PMID: 34716615 DOI: 10.1002/jnr.24958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 07/19/2021] [Accepted: 08/20/2021] [Indexed: 11/09/2022]
Abstract
Xenon is an inert gas with stable chemical properties which is used as an anesthetic. Recent in vitro and in vivo findings indicate that xenon also elicits an excellent neuroprotective effect in subanesthetic concentrations. The mechanisms underlying this primarily involve the attenuation of excitotoxicity and the inhibition of N-methyl-d-aspartic acid (NMDA) receptors and NMDA receptor-related effects, such as antioxidative effects, reduced activation of microglia, and Ca2+ -dependent mechanisms, as well as the interaction with certain ion channels and glial cells. Based on this strong neuroprotective role, a large number of experimental and clinical studies have confirmed the significant therapeutic effect of xenon in the treatment of neurological diseases. This review summarizes the reported neuroprotective mechanisms of xenon and discusses its possible therapeutic application in the treatment of various neurological diseases.
Collapse
Affiliation(s)
- Mengdi Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Yaru Cui
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Yao Cheng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| |
Collapse
|
7
|
Jin J, Li M, Li J, Li B, Duan L, Yang F, Gu N. Xenon Nanobubbles for the Image-Guided Preemptive Treatment of Acute Ischemic Stroke via Neuroprotection and Microcirculatory Restoration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43880-43891. [PMID: 34493044 DOI: 10.1021/acsami.1c06014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Early lesion site diagnosis and neuroprotection are crucial to the theranostics of acute ischemic stroke. Xenon (Xe), as a nontoxic gaseous neuroprotectant, holds great promise for ischemic stroke therapy. In this study, Xe-encapsulated lipid nanobubbles (Xe-NBs) have been prepared for the real-time ultrasound image-guided preemptive treatment of the early stroke. The lipids are self-assembled at the interface of free Xe bubbles, and the mean diameter of Xe-NBs is 225 ± 11 nm with a Xe content of 73 ± 2 μL/mL. The in vitro results show that Xe-NBs can protect oxygen/glucose-deprived PC12 cells against apoptosis and oxidative stress. Based on the ischemic stroke mice model, the biodistribution, timely ultrasound imaging, and the therapeutic effects of Xe-NBs for stroke lesions were investigated in vivo. The accumulation of Xe-NBs to the ischemic lesion endows ultrasound contrast imaging with the lesion area. The cerebral blood flow measurement indicates that the administration of Xe-NBs can improve microcirculatory restoration, resulting in reduced acute microvascular injury in the lesion area. Furthermore, local delivery of therapeutic Xe can significantly reduce the volume of cerebral infarction and restore the neurological function with reduced neuron injury against apoptosis. Therefore, Xe-NBs provide a novel nanosystem for the safe and rapid theranostics of acute ischemic stroke, which is promising to translate into the clinical management of stroke.
Collapse
Affiliation(s)
- Juan Jin
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, P. R. China
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Mei Li
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, P. R. China
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Jing Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Bin Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Lei Duan
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Ning Gu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, P. R. China
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
8
|
McGuigan S, Evered L, Scott DA, Silbert B, Zetterberg H, Blennow K. Comparing the effect of xenon and sevoflurane anesthesia on postoperative neural injury biomarkers: a randomized controlled trial. Med Gas Res 2021; 12:10-17. [PMID: 34472497 PMCID: PMC8447955 DOI: 10.4103/2045-9912.324591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
General anesthesia and surgery are associated with an increase in neural injury biomarkers. Elevations of these neural injury biomarkers in the perioperative period are associated with postoperative delirium. Xenon has been shown to be protective against a range of neurological insults in animal models. It remains to be seen if xenon anesthesia is neuroprotective in the perioperative setting in humans. Twenty-four participants scheduled for lithotripsy were randomized to receive either xenon or sevoflurane general anesthesia. There was no statistically significant difference in the concentrations of postoperative neural injury biomarkers between the xenon and sevoflurane group. Following the procedure there was a significant increase in the concentration from baseline of all three biomarkers at 1 hour post-induction with a return to baseline at 5 hours. General anesthesia for lithotripsy was associated with a significant increase at 1 hour post-induction in the neural injury biomarkers total tau, neurofilament light and tau phosphorylated at threonine 181, a marker of tau phosphorylation. The protocol was approved by the St. Vincent’s Hospital Melbourne Ethics Committee (approval No. HREC/18/SVHM/221) on July 20, 2018 and was registered with the Australia New Zealand Clinical Trials Registry (registration No. ACTRN12618000916246) on May 31, 2018.
Collapse
Affiliation(s)
- Steven McGuigan
- Department of Anaesthesia and Acute Pain Medicine, St. Vincent's Hospital; Department of Critical Care, University of Melbourne, Melbourne, Australia
| | - Lisbeth Evered
- Department of Anaesthesia and Acute Pain Medicine, St. Vincent's Hospital; Department of Critical Care, University of Melbourne, Melbourne, Australia; Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - David A Scott
- Department of Anaesthesia and Acute Pain Medicine, St. Vincent's Hospital; Department of Critical Care, University of Melbourne, Melbourne, Australia
| | - Brendan Silbert
- Department of Anaesthesia and Acute Pain Medicine, St. Vincent's Hospital; Department of Critical Care, University of Melbourne, Melbourne, Australia
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology; UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
9
|
Devroe S, Van der Veeken L, Bleeser T, Van der Merwe J, Meeusen R, Van de Velde M, Deprest J, Rex S. The effect of xenon on fetal neurodevelopment following maternal sevoflurane anesthesia and laparotomy in rabbits. Neurotoxicol Teratol 2021; 87:106994. [PMID: 33961970 DOI: 10.1016/j.ntt.2021.106994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND There is concern that maternal anesthesia during pregnancy impairs brain development of the human fetus. Xenon is neuroprotective in pre-clinical models of anesthesia-induced neurotoxicity in neonates. It is not known if xenon also protects the developing fetal brain when administered in addition to maternal sevoflurane-anesthesia during pregnancy. OBJECTIVE To investigate the effects of sevoflurane and xenon on neurobehaviour and neurodevelopment of the offspring in a pregnant rabbit model. METHODS Pregnant rabbits on post-conception day 28 (term = 31d) underwent two hours of general anesthesia with 1 minimum alveolar concentration (MAC) of sevoflurane in 30% oxygen (n = 17) or 1 MAC sevoflurane plus 50-60 % xenon in 30% oxygen (n = 10) during a standardized laparotomy while receiving physiological monitoring. A sham-group (n = 11) underwent monitoring alone for two hours. At term, the rabbits were delivered by caesarean section. On the first postnatal day, neonatal rabbits underwent neurobehavioral assessment using a validated test battery. Following euthanasia, the brains were harvested for neurohistological analysis. A mixed effects-model was used for statistical analysis. RESULTS Maternal cardiopulmonary parameters during anesthesia were within the reference range. Fetal survival rates were significantly higher in the sham-group as compared to the sevoflurane-group and the fetal brain/body weight ratio was significantly lower in the sevoflurane-group as compared with the sham- and xenon-group. Pups antenatally exposed to anesthesia had significantly lower motor and sensory neurobehavioral scores when compared to the sham-group (mean ± SD; sevo: 22.70 ± 3.50 vs. sevo+xenon: 22.74 ± 3.15 vs. sham: 24.37 ± 1.59; overall p = 0.003; sevo: 14.98 ± 3.00 vs. sevo+xenon: 14.80 ± 2.83 vs. sham: 16.43 ± 2.63; overall p = 0.006; respectively). Neuron density, neuronal proliferation and synaptic density were reduced in multiple brain regions of the exposed neonates. The co-administration of xenon had no measurable neuroprotective effects in this model. CONCLUSIONS In rabbits, sevoflurane anesthesia for a standardized laparotomy during pregnancy resulted in impaired neonatal neurobehavior and a decreased neuron count in several regions of the neonatal rabbit brain. Co-administration of xenon did not prevent this effect.
Collapse
Affiliation(s)
- Sarah Devroe
- Department of Anesthesiology, University Hospitals of the KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Lennart Van der Veeken
- Department of Obstetrics and Gynecology, University Hospitals of the KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Development and Regeneration, Cluster Woman and Child, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Tom Bleeser
- Department of Anesthesiology, University Hospitals of the KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Johannes Van der Merwe
- Department of Obstetrics and Gynecology, University Hospitals of the KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Development and Regeneration, Cluster Woman and Child, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Roselien Meeusen
- Department of Anesthesiology, University Hospitals of the KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Marc Van de Velde
- Department of Anesthesiology, University Hospitals of the KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Jan Deprest
- Department of Obstetrics and Gynecology, University Hospitals of the KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Development and Regeneration, Cluster Woman and Child, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Institute for Women's Health, University College London, London, UK; King's College University, BMEIS School, Interventional Image Computing, London, UK.
| | - Steffen Rex
- Department of Anesthesiology, University Hospitals of the KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
10
|
Lingling XMM, Yihan CMM, Qiaofeng JP, Li ZMD, Wenpei FBS, Shan LMM, Ling LBS, Rui WBS, Dandan CMM, Zhengyang HMM, Mingxing XMD, Yali YMD. Targeted Delivery of Therapeutic Gas by Microbubbles. ADVANCED ULTRASOUND IN DIAGNOSIS AND THERAPY 2021. [DOI: 10.37015/audt.2021.200059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
11
|
Robert D. Sanders, B.Sc., M.B.B.S., Ph.D., F.R.C.A., Recipient of the 2020 James E. Cottrell, M.D., Presidential Scholar Award. Anesthesiology 2020; 133:720-723. [DOI: 10.1097/aln.0000000000003512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Devroe S, Devriese L, Debuck F, Fieuws S, Cools B, Gewillig M, Van de Velde M, Rex S. Effect of xenon and dexmedetomidine as adjuncts for general anesthesia on postoperative emergence delirium after elective cardiac catheterization in children: study protocol for a randomized, controlled, pilot trial. Trials 2020; 21:310. [PMID: 32245513 PMCID: PMC7126401 DOI: 10.1186/s13063-020-4231-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/04/2020] [Indexed: 12/29/2022] Open
Abstract
Background Emergence delirium, a manifestation of acute postoperative brain dysfunction, is frequently observed after pediatric anesthesia and has been associated with the use of sevoflurane. Both xenon and dexmedetomidine possess numerous desirable properties for the anesthesia of children with congenital heart disease, including hemodynamic stability, lack of neurotoxicity, and a reduced incidence of emergence delirium. Combining both drugs has never been studied as a balanced-anesthesia technique. This combination allows the provision of anesthesia without administering anesthetic drugs against which the Food and Drug Administration (FDA) issued a warning for the use in young children. Methods/Design In this phase-II, mono-center, prospective, single-blinded, randomized, controlled pilot trial, we will include a total of 80 children aged 0–3 years suffering from congenital heart disease and undergoing general anesthesia for elective diagnostic and/or interventional cardiac catheterization. Patients are randomized into two study groups, receiving either a combination of xenon and dexmedetomidine or mono-anesthesia with sevoflurane for the maintenance of anesthesia. The purpose of this study is to estimate the effect size for xenon-dexmedetomidine versus sevoflurane anesthesia with respect to the incidence of emergence delirium in children. We will also describe group differences for a variety of secondary outcome parameters including peri-interventional hemodynamics, emergence characteristics, incidence of postoperative vomiting, and the feasibility of a combined xenon-dexmedetomidine anesthesia in children. Discussion Sevoflurane is the most frequently used anesthetic in young children, but has been indicated as an independent risk factor in the development of emergence delirium. Xenon and dexmedetomidine have both been associated with a reduction in the incidence of emergence delirium. Combining xenon and dexmedetomidine has never been described as a balanced-anesthesia technique in children. Our pilot study will therefore deliver important data required for future prospective clinical trials. Trial registration EudraCT, 2018–002258-56. Registered on 20 August 2018. https://www.clinicaltrialsregister.eu.
Collapse
Affiliation(s)
- Sarah Devroe
- Department of Anesthesiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium. .,Department of Pediatric and Congenital Cardiology, University Hospitals Leuven, Leuven, Belgium.
| | - Lisa Devriese
- Department of Anesthesiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Frederik Debuck
- Department of Anesthesiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Steffen Fieuws
- I-Biostat, KU Leuven - University of Leuven, Leuven, Belgium
| | - Bjorn Cools
- Department of Pediatric and Congenital Cardiology, University Hospitals Leuven, Leuven, Belgium.,Department of Cardiovascular Sciences, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Marc Gewillig
- Department of Pediatric and Congenital Cardiology, University Hospitals Leuven, Leuven, Belgium.,Department of Cardiovascular Sciences, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Marc Van de Velde
- Department of Anesthesiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.,Department of Cardiovascular Sciences, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Steffen Rex
- Department of Anesthesiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.,Department of Cardiovascular Sciences, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Melnyk V, Fedorko L, Djaiani G. Xenon Anesthesia: Is it in Due Course for a Mainstream Comeback? J Cardiothorac Vasc Anesth 2019; 34:134-135. [PMID: 31587929 DOI: 10.1053/j.jvca.2019.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/08/2019] [Indexed: 11/11/2022]
Affiliation(s)
- V Melnyk
- Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - L Fedorko
- Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - G Djaiani
- Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|