1
|
He J, Xue K, Liu J, Gu JH, Peng B, Xu L, Wang G, Jiang Z, Li X, Zhang Y. Timely and Appropriate Administration of Inhaled Argon Provides Better Outcomes for tMCAO Mice: A Controlled, Randomized, and Double-Blind Animal Study. Neurocrit Care 2022; 37:91-101. [PMID: 35137354 DOI: 10.1007/s12028-022-01448-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/10/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Inhaled argon (iAr) has shown promising therapeutic efficacy for acute ischemic stroke and has exhibited impressive advantages over other inert gases as a neuroprotective agent. However, the optimal dose, duration, and time point of iAr for acute ischemic stroke are unknown. Here, we explored variable iAr schedules and evaluated the neuroprotective effects of acute iAr administration on lesion volume, brain edema, and neurological function in a mouse model of cerebral ischemic/reperfusion injury. METHODS Adult ICR (Institute of Cancer Research) mice were randomly subjected to sham, moderate (1.5 h), or severe (3 h) transient middle cerebral artery occlusion (tMCAO). One hour after tMCAO, the mice were randomized to variable iAr protocols or air. General and focal deficit scores were assessed during double-blind treatment. Infarct volume, overall recovery, and brain edema were analyzed 24 h after cerebral ischemic/reperfusion injury. RESULTS Compared with those in the tMCAO-only group, lesion volume (p < 0.0001) and neurologic outcome (general, p < 0.0001; focal, p < 0.0001) were significantly improved in the group administered iAr 1 h after stroke onset (during ischemia). Short-term argon treatment (1 or 3 h) significantly improved the infarct volume (1 vs. 24 h, p < 0.0001; 3 vs. 24 h, p < 0.0001) compared with argon inhalation for 24 h. The concentration of iAr was confirmed to be a key factor in improving focal neurological outcomes relative to that in the tMCAO group, with higher concentrations of iAr showing better effects. Additionally, even though ischemia research has shown an increase in cerebral damage proportional to the ischemia time, argon administration showed significant neuroprotective effects on infarct volume (p < 0.0001), neurological deficits (general, p < 0.0001; focal, p < 0.0001), weight recovery (p < 0.0001), and edema (p < 0.0001) in general, particularly in moderate stroke. CONCLUSIONS Timely iAr administration during ischemia showed optimal neurological outcomes and minimal infarct volumes. Moreover, an appropriate duration of argon administration was important for better neuroprotective efficacy. These findings may provide vital guidance for using argon as a neuroprotective agent and moving to clinical trials in acute ischemic stroke.
Collapse
Affiliation(s)
- Juan He
- Stroke Center and Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226019, Jiangsu, China
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Ke Xue
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Jiayi Liu
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Jin-Hua Gu
- Stroke Center and Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226019, Jiangsu, China
| | - Bin Peng
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Lihua Xu
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Guohua Wang
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Zhenglin Jiang
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Xia Li
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China.
| | - Yunfeng Zhang
- Stroke Center and Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226019, Jiangsu, China.
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
2
|
Wang J, Cai C, Geng P, Tan F, Yang Q, Wang R, Shen W. A New Discovery of Argon Functioning in Plants: Regulation of Salinity Tolerance. Antioxidants (Basel) 2022; 11:antiox11061168. [PMID: 35740064 PMCID: PMC9220380 DOI: 10.3390/antiox11061168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/12/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
Argon, a non-polar molecule, easily diffuses into deeper tissue and interacts with larger proteins, protein cavities, or even receptors. Some of the biological effects of argon, notably its activity as an antioxidant, have been revealed in animals. However, whether and how argon influences plant physiology remains elusive. Here, we provide the first report that argon can enable plants to cope with salinity toxicity. Considering the convenience of the application, argon gas was dissolved into water (argon-rich water (ARW)) to investigate the argon’s functioning in phenotypes of alfalfa seed germination and seedling growth upon salinity stress. The biochemical evidence showed that NaCl-decreased α/β-amylase activities were abolished by the application of ARW. The qPCR experiments confirmed that ARW increased NHX1 (Na+/H+ antiporter) transcript and decreased SKOR (responsible for root-to-shoot translocation of K+) mRNA abundance, the latter of which could be used to explain the lower net K+ efflux and higher K accumulation. Subsequent results using non-invasive micro-test technology showed that the argon-intensified net Na+ efflux and its reduced Na accumulation resulted in a lower Na+/K+ ratio. NaCl-triggered redox imbalance and oxidative stress were impaired by ARW, as confirmed by histochemical and confocal analyses, and increased antioxidant defense was also detected. Combined with the pot experiments in a greenhouse, the above results clearly demonstrated that argon can enable plants to cope with salinity toxicity via reestablishing ion and redox homeostasis. To our knowledge, this is the first report to address the function of argon in plant physiology, and together these findings might open a new window for the study of argon biology in plant kingdoms.
Collapse
Affiliation(s)
- Jun Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.W.); (C.C.); (P.G.); (F.T.); (Q.Y.)
| | - Chenxu Cai
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.W.); (C.C.); (P.G.); (F.T.); (Q.Y.)
| | - Puze Geng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.W.); (C.C.); (P.G.); (F.T.); (Q.Y.)
| | - Feng Tan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.W.); (C.C.); (P.G.); (F.T.); (Q.Y.)
| | - Qing Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.W.); (C.C.); (P.G.); (F.T.); (Q.Y.)
| | - Ren Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China;
| | - Wenbiao Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.W.); (C.C.); (P.G.); (F.T.); (Q.Y.)
- Correspondence: ; Tel.: +86-025-84399032
| |
Collapse
|