1
|
Kumar R, Singh R, das Chagas Almeida A, da Trindade Granato J, de Oliveira Lemos AS, Kumar K, Patil MT, da Silva AD, Rode AB, Coimbra ES, Salunke DB. Imidazo[1,2- a]pyrimidine as a New Antileishmanial Pharmacophore against Leishmania amazonensis Promastigotes and Amastigotes. ACS OMEGA 2023; 8:40613-40621. [PMID: 37929127 PMCID: PMC10621021 DOI: 10.1021/acsomega.3c05441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023]
Abstract
Leishmania poses a substantial threat to the human population all over the globe because of its visceral and cutaneous spread engendered by all 20 species. Unfortunately, the available drugs against leishmania are already hobbled with toxicity, prolonged treatment, and increasing instances of acquirement of resistance. Under these grave circumstances, the development of new drugs has become imperative to keep these harmful microbes at bay. To this end, a Groebke-Blackburn-Bienaymé multicomponent reaction-based library of different imidazo-fused heterocycles has been synthesized and screened against Leishmania amazonensis promastigotes and amastigotes. Among the library compounds, the imidazo-pyrimidine 24 has been found to be the most effective (inhibitory concentration of 50% (IC50) < 10 μM), with selective antileishmanial activity on amastigote forms, a stage of the parasite related to human disease. The compound 24 has exhibited an IC50 value of 6.63 μM, being ∼two times more active than miltefosine, a reference drug. Furthermore, this compound is >10 times more destructive to the intracellular parasites than host cells. The observed in vitro antileishmanial activity along with suitable in silico physicochemical and absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of compound 24 reinforce the imidazo-pyrimidine scaffold as a new antileishmanial pharmacophore and encourage further murine experimental leishmaniasis studies.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
| | - Rahul Singh
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
| | - Ayla das Chagas Almeida
- Department
of Parasitology, Microbiology and Immunology, Institute of Biological
Sciences, Federal University of Juiz de
Fora, Juiz de
Fora 36036-900, Brazil
| | - Juliana da Trindade Granato
- Department
of Parasitology, Microbiology and Immunology, Institute of Biological
Sciences, Federal University of Juiz de
Fora, Juiz de
Fora 36036-900, Brazil
| | - Ari Sérgio de Oliveira Lemos
- Department
of Parasitology, Microbiology and Immunology, Institute of Biological
Sciences, Federal University of Juiz de
Fora, Juiz de
Fora 36036-900, Brazil
| | - Kushvinder Kumar
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
| | - Madhuri T. Patil
- Mehr
Chand Mahajan DAV College for Women, Sector 36, Chandigarh 160036, India
| | - Adilson D. da Silva
- Department
of Chemistry, Institute of Exacts Sciences, Federal University of Juiz de Fora, 36036-900, Juiz de Fora, Brazil
| | - Ambadas B. Rode
- Regional
Centre for Biotechnology, NCR Biotech Science
Cluster, third Milestone, Faridabad-Gurgaon Expressway, Faridabad - 121 001, India
| | - Elaine S. Coimbra
- Department
of Parasitology, Microbiology and Immunology, Institute of Biological
Sciences, Federal University of Juiz de
Fora, Juiz de
Fora 36036-900, Brazil
| | - Deepak B. Salunke
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
- National
Interdisciplinary Centre of Vaccine, Immunotherapeutic and Antimicrobials, Panjab University, Chandigarh 160 014, India
| |
Collapse
|
2
|
Ahsan MJ, Choudhary K, Ali A, Ali A, Azam F, Almalki AH, Santali EY, Bakht MA, Tahir A, Salahuddin. Synthesis, DFT Analyses, Antiproliferative Activity, and Molecular Docking Studies of Curcumin Analogues. PLANTS (BASEL, SWITZERLAND) 2022; 11:2835. [PMID: 36365289 PMCID: PMC9655326 DOI: 10.3390/plants11212835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 10/03/2023]
Abstract
With 19.3 million new cases and almost 10 million deaths in 2020, cancer has become a leading cause of death today. Curcumin and its analogues were found to have promising anticancer activity. Inspired by curcumin’s promising anticancer activity, we prepared three semi-synthetic analogues by chemically modifying the diketone function of curcumin to its pyrazole counterpart. The curcumin analogues (3a−c) were synthesized by two different methods, followed by their DFT analyses to study the HOMO/LUMO configuration to access the stability of compounds (∆E = 3.55 to 3.35 eV). The curcumin analogues (3a−c) were tested for antiproliferative activity against a total of five dozen cancer cell lines in a single (10 µM) and five dose (0.001 to 100 µM) assays. 3,5-Bis(4-hydroxy-3-methoxystyryl)-1H-pyrazole-1-yl-(phenoxy)ethanone (3b) and 3,5-bis(4-hydroxy-3-methoxystyryl)-1H-pyrazole-1-yl-(2,4-dichlorophenoxy)ethanone (3c) demonstrated the most promising antiproliferative activity against the cancer cell lines with growth inhibitions of 92.41% and 87.28%, respectively, in a high single dose of 10 µM and exhibited good antiproliferative activity (%GIs > 68%) against 54 out of 56 cancer cell lines and 54 out of 60 cell lines, respectively. The compound 3b and 3c demonstrated the most potent antiproliferative activity in a 5-dose assay with GI50 values ranging between 0.281 and 5.59 µM and 0.39 and 0.196 and 3.07 µM, respectively. The compound 3b demonstrated moderate selectivity against a leukemia panel with a selectivity ratio of 4.59. The HOMO-LUMO energy-gap (∆E) of the compounds in the order of 3a > 3b > 3c, was found to be in harmony with the anticancer activity in the order of 3c ≥ 3b > 3a. Following that, all of the curcumin analogues were molecular docked against EGFR, one of the most appealing targets for antiproliferative activity. In a molecular docking simulation, the ligand 3b exhibited three different types of interactions: H-bond, π-π-stacking and π-cationic. The ligand 3b displayed three H-bonds with the residues Met793 (with methoxy group), Lys875 (with phenolic group) and Asp855 (with methoxy group). The π-π-stacking interaction was observed between the phenyl (of phenoxy) and the residue Phe997, while π-cationic interaction was displayed between the phenyl (of curcumin) and the residue Arg841. Similarly, the ligand 3c displayed five H-bonds with the residue Met793 (with methoxy and phenolic groups), Lys845 (methoxy group), Cys797 (phenoxy oxygen), and Asp855 (phenolic group), as well as a halogen bond with residue Cys797 (chloro group). Furthermore, all the compound 3a−c demonstrated significant binding affinity (−6.003 to −7.957 kcal/mol) against the active site of EGFR. The curcumin analogues described in the current work might offer beneficial therapeutic intervention for the treatment and prevention of cancer. Future anticancer drug discovery programs can be expedited by further modifying these analogues to create new compounds with powerful anticancer potentials.
Collapse
Affiliation(s)
- Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur 302 039, Rajasthan, India
| | - Kavita Choudhary
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur 302 039, Rajasthan, India
| | - Amena Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Uniazah 51911, Saudi Arabia
| | - Atiah H. Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Health Science Campus, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Eman Y. Santali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Md. Afroz Bakht
- Department of Chemistry, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, P.O. Box 83, Al-Kharj 11942, Saudi Arabia
| | - Abu Tahir
- Department of Pharmacology, Hakikullah Choudhary College of Pharmacy, Ghari Ghat 271 312, Uttar Pradesh, India
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Technology (Pharmacy Institute), Knowledge Park-2, Greater Noida 201 306, Uttar Pradesh, India
| |
Collapse
|
4
|
de Almeida TT, Ribeiro MADS, Polonio JC, Garcia FP, Nakamura CV, Meurer EC, Sarragiotto MH, Baldoqui DC, Azevedo JL, Pamphile JA. Curvulin and spirostaphylotrichins R and U from extracts produced by two endophytic Bipolaris sp. associated to aquatic macrophytes with antileishmanial activity. Nat Prod Res 2017; 32:2783-2790. [PMID: 28948837 DOI: 10.1080/14786419.2017.1380011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the present study, biological activity and chemical composition of two crude extracts of endophytic fungal strains of Bipolaris genera isolated from two species of aquatic macrophytes: Eichhornia azurea (Kunth) and Eichhornia crassipes (Mart.) were investigated. The nuclear magnetic resonance and mass spectrometry data provided the identification of three main compounds: curvulin (1), spirostaphylotrichin R (2) and U (3). The fragmentation mechanism of the precursor ions towards collision induced dissociation (CID) tandem mass spectrometry experiment (MS/MS) is also proposed. Furthermore, biological screening of the crude extracts displayed antileishmanial activity with IC50 values ranging from 70-84.2 μg.mL-1.
Collapse
Affiliation(s)
- Tiago Tognolli de Almeida
- a Departamento de Biotecnologia, Genética e Biologia Celular , Universidade Estadual de Maringá , Maringá , Brazil.,b Centro de Energia Nuclear na Agricultura (CENA) , Universidade de São Paulo (USP) , Piracicaba , Brazil
| | - Marcos Alessandro Dos Santos Ribeiro
- a Departamento de Biotecnologia, Genética e Biologia Celular , Universidade Estadual de Maringá , Maringá , Brazil.,c Departamento de Química , Universidade Estadual de Maringá , Maringá , Brazil
| | - Julio Cesar Polonio
- a Departamento de Biotecnologia, Genética e Biologia Celular , Universidade Estadual de Maringá , Maringá , Brazil
| | - Francielle Pelegrin Garcia
- d Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos , Universidade Estadual de Maringá , Maringá , Brazil
| | - Celso Vataru Nakamura
- d Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos , Universidade Estadual de Maringá , Maringá , Brazil
| | - Eduardo Cesar Meurer
- e Fenn Mass Spectrometry Laboratory , Universidade Federal do Paraná , Jandaia do Sul , Brazil
| | | | | | - João Lúcio Azevedo
- f Departamento de Genética , Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo , Piracicaba , Brazil
| | - João Alencar Pamphile
- a Departamento de Biotecnologia, Genética e Biologia Celular , Universidade Estadual de Maringá , Maringá , Brazil
| |
Collapse
|