Current Strategies for the Detection of Minimal Residual Disease in Childhood Acute Lymphoblastic Leukemia.
Mediterr J Hematol Infect Dis 2016;
8:e2016024. [PMID:
27158437 PMCID:
PMC4848021 DOI:
10.4084/mjhid.2016.024]
[Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/25/2016] [Indexed: 01/09/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children. Current treatment strategies for childhood ALL result in long-term remission for approximately 90% of patients. However, the therapeutic response is worse among those who relapse. Several risk stratification approaches based on clinical and biological aspects have been proposed to intensify treatment in patients with high risk of relapse and reduce toxicity on those with a greater probability of cure.
The detection of residual leukemic cells (minimal residual disease, MRD) is the most important prognostic factor to identify high-risk patients, allowing redefinition of chemotherapy. In the last decades, several standardized research protocols evaluated MRD using immunophenotyping by flow cytometry and/or real-time quantitative polymerase chain reaction at different time points during treatment. Both methods are highly sensitive (10−3 a 10−5), but expensive, complex, and, because of that, require qualified staff and frequently are restricted to reference centers.
The aim of this article was to review technical aspects of immunophenotyping by flow cytometry and real-time quantitative polymerase chain reaction to evaluate MRD in ALL.
Collapse