1
|
Zhang ML, Zhao X, Li WX, Wang XY, Niu M, Zhang H, Chen YL, Kong DX, Gao Y, Guo YM, Bai ZF, Zhao YL, Tang JF, Xiao XH. Yin/Yang associated differential responses to Psoralea corylifolia Linn. In rat models: an integrated metabolomics and transcriptomics study. Chin Med 2023; 18:102. [PMID: 37592331 PMCID: PMC10433582 DOI: 10.1186/s13020-023-00793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/28/2023] [Indexed: 08/19/2023] Open
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoralea corylifolia Linn. (BGZ) is a commonly used traditional Chinese medicine (TCM) for the treatment of kidney-yang deficiency syndrome (Yangsyn) with good curative effect and security. However, BGZ was also reported to induce liver injury in recent years. According to TCM theory, taking BGZ may induce a series of adverse reactions in patients with kidney-yin deficiency syndrome (Yinsyn), which suggests that BGZ-induced liver damage may be related to its unreasonable clinical use. AIM OF THE STUDY Liver injury caused by TCM is a rare but potentially serious adverse drug reaction, and the identification of predisposed individuals for drug-induced liver injury (DILI) remains challenging. The study aimed to investigate the differential responses to BGZ in Yangsyn and Yinsyn rat models and identify the corresponding characteristic biomarkers. MATERIALS AND METHODS The corresponding animal models of Yangsyn and Yinsyn were induced by hydrocortisone and thyroxine + reserpine respectively. Body weight, organ index, serum biochemistry, and Hematoxylin and Eosin (HE) staining were used to evaluate the liver toxicity effect of BGZ on rats with Yangsyn and Yinsyn. Transcriptomics and metabonomics were used to screen the representative biomarkers (including metabolites and differentially expressed genes (DEGs)) changed by BGZ in Yangsyn and Yinsyn rats, respectively. RESULTS The level changes of liver organ index, alanine aminotransferase (ALT), and aspartate aminotransferase (AST), suggested that BGZ has liver-protective and liver-damaging effects on Yangsyn and Yinsyn rats, respectively, and the results also were confirmed by the pathological changes of liver tissue. The results showed that 102 DEGs and 27 metabolites were significantly regulated related to BGZ's protective effect on Yangsyn, which is mainly associated with the glycerophospholipid metabolism, arachidonic acid metabolism, pantothenate, and coenzyme A (CoA) biosynthesis pathways. While 28 DEGs and 31 metabolites, related to the pathway of pantothenate and CoA biosynthesis, were significantly regulated for the BGZ-induced liver injury in Yinsyn. Furthermore, 4 DEGs (aldehyde dehydrogenase 1 family member B1 (Aldh1b1), solute carrier family 25 member 25 (Slc25a25), Pim-3 proto-oncogene, serine/threonine kinase (Pim3), out at first homolog (Oaf)) and 4 metabolites (phosphatidate, phosphatidylcholine, N-Acetylleucine, biliverdin) in the Yangsyn group and 1 DEG [galectin 5 (Lgals5)] and 1 metabolite (5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate) in Yinsyn group were significantly correlated to the ALT and AST levels of BGZ treated and untreated groups (receiver operating characteristic (ROC) ≥ 0.9). CONCLUSIONS Yinsyn and Yangsyn are the predisposed syndromes for BGZ to exert liver damage and liver protection respectively, which are mainly related to the regulation of amino acid metabolism, lipid metabolism, energy metabolism, and metabolism of cofactors and vitamins. The results further suggest that attention should be paid to the selection of predisposed populations when using drugs related to the regulation of energy metabolism, and the Yinsyn/Yangsyn animal models based on the theory of TCM syndromes may be a feasible method for identifying the susceptible population to receive TCM.
Collapse
Affiliation(s)
- Ming-Liang Zhang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xu Zhao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Wei-Xia Li
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xiao-Yan Wang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ming Niu
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Hui Zhang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yu-Long Chen
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - De-Xin Kong
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yuan Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yu-Ming Guo
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Zhao-Fang Bai
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yan-Ling Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, China.
| | - Jin-Fa Tang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China.
| | - Xiao-He Xiao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
2
|
Koech MK, Ali SM, Karoney MJ, Kigen G. Severe abacavir hypersensitivity reaction in a patient with human immunodeficiency virus infection: a case report. J Med Case Rep 2022; 16:407. [PMID: 36345015 PMCID: PMC9641955 DOI: 10.1186/s13256-022-03647-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Background Abacavir is a nucleoside reverse transcriptase inhibitor that is used as a component of the antiretroviral treatment regimen in the management of the human immunodeficiency virus for both adults and children. It is efficacious, but its use may be limited by a hypersensitivity reaction linked with the HLA-B*57:01 genotype. HLA-B*57:01 has been reported to be rare in African populations. Because of the nature of its presentation, abacavir hypersensitivity is prone to late diagnosis and treatment, especially in settings where HLA-B*57:01 genotyping is not routinely done. Case report We report a case of a severe hypersensitivity reaction in a 44-year-old Kenyan female living with the human immunodeficiency virus and on abacavir-containing antiretroviral therapy. The patient presented to the hospital after recurrent treatment for a throat infection with complaints of fever, headache, throat ache, vomiting, and a generalized rash. Laboratory results evidenced raised aminotransferases, for which she was advised to stop the antiretrovirals that she had recently been started on. The regimen consisted of abacavir, lamivudine, and dolutegravir. She responded well to treatment but was readmitted a day after discharge with vomiting, severe abdominal pains, diarrhea, and hypotension. Her symptoms disappeared upon admission, but she was readmitted again a few hours after discharge in a hysterical state with burning chest pain and chills. Suspecting abacavir hypersensitivity, upon interrogation she reported that she had taken the abacavir-containing antiretrovirals shortly before she was taken ill. A sample for HLA-B*57:01 was taken and tested positive. Her antiretroviral regimen was substituted to tenofovir, lamivudine, and dolutegravir, and on subsequent follow-up she has been well. Conclusions Clinicians should always be cognizant of this adverse reaction whenever they initiate an abacavir-containing therapy. We would recommend that studies be done in our setting to verify the prevalence of HLA-B*57:01. Supplementary Information The online version contains supplementary material available at 10.1186/s13256-022-03647-6.
Collapse
|
3
|
Jiménez-Osorio AS, Jaen-Vega S, Fernández-Martínez E, Ortíz-Rodríguez MA, Martínez-Salazar MF, Jiménez-Sánchez RC, Flores-Chávez OR, Ramírez-Moreno E, Arias-Rico J, Arteaga-García F, Estrada-Luna D. Antiretroviral Therapy-Induced Dysregulation of Gene Expression and Lipid Metabolism in HIV+ Patients: Beneficial Role of Antioxidant Phytochemicals. Int J Mol Sci 2022; 23:5592. [PMID: 35628408 PMCID: PMC9146859 DOI: 10.3390/ijms23105592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/02/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection has continued to be the subject of study since its discovery nearly 40 years ago. Significant advances in research and intake of antiretroviral therapy (ART) have slowed the progression and appearance of the disease symptoms and the incidence of concomitant diseases, which are the leading cause of death in HIV+ persons. However, the prolongation of ART is closely related to chronic degenerative diseases and pathologies caused by oxidative stress (OS) and alterations in lipid metabolism (increased cholesterol levels), both of which are conditions of ART. Therefore, recent research focuses on using natural therapies to diminish the effects of ART and HIV infection: regulating lipid metabolism and reducing OS status. The present review summarizes current information on OS and cholesterol metabolism in HIV+ persons and how the consumption of certain phytochemicals can modulate these. For this purpose, MEDLINE and SCOPUS databases were consulted to identify publications investigating HIV disease and natural therapies and their associated effects.
Collapse
Affiliation(s)
- Angélica Saraí Jiménez-Osorio
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico; (A.S.J.-O.); (S.J.-V.); (R.C.J.-S.); (O.R.F.-C.); (J.A.-R.)
| | - Sinaí Jaen-Vega
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico; (A.S.J.-O.); (S.J.-V.); (R.C.J.-S.); (O.R.F.-C.); (J.A.-R.)
| | - Eduardo Fernández-Martínez
- Laboratorio de Química Medicinal y Farmacología, Centro de Investigación en Biología de la Reproducción, Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Calle Dr. Eliseo Ramírez Ulloa no. 400, Col. Doctores, Pachuca Hidalgo 42090, Mexico;
| | - María Araceli Ortíz-Rodríguez
- Facultad de Nutrición, Universidad Autónoma del Estado de Morelos, Iztaccíhuatl 100 Col. Los Volcanes, Cuernavaca 62350, Mexico;
| | - María Fernanda Martínez-Salazar
- Facultad de Ciencias del Deporte, Facultad de Farmacia Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001 Col. Chamilpa, Cuernavaca 62209, Mexico;
| | - Reyna Cristina Jiménez-Sánchez
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico; (A.S.J.-O.); (S.J.-V.); (R.C.J.-S.); (O.R.F.-C.); (J.A.-R.)
| | - Olga Rocío Flores-Chávez
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico; (A.S.J.-O.); (S.J.-V.); (R.C.J.-S.); (O.R.F.-C.); (J.A.-R.)
| | - Esther Ramírez-Moreno
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico;
| | - José Arias-Rico
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico; (A.S.J.-O.); (S.J.-V.); (R.C.J.-S.); (O.R.F.-C.); (J.A.-R.)
| | - Felipe Arteaga-García
- Coordinación de Enseñanza e Investigación, Hospital del Niño DIF Hidalgo, Carretera México-Pachuca km 82, Pachuca de Soto 42080, Mexico;
| | - Diego Estrada-Luna
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico; (A.S.J.-O.); (S.J.-V.); (R.C.J.-S.); (O.R.F.-C.); (J.A.-R.)
| |
Collapse
|
4
|
Hepatotoxicity of Contemporary Antiretroviral Drugs: A Review and Evaluation of Published Clinical Data. Cells 2021; 10:cells10051263. [PMID: 34065305 PMCID: PMC8160846 DOI: 10.3390/cells10051263] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
Contemporary antiretroviral agents afford enhanced potency and safety for patients living with HIV. Newer antiretroviral drugs are often better tolerated than those initially approved in the early stages of the HIV epidemic. While the safety profile has improved, adverse drug reactions still occur. We have segregated the antiretroviral agents used in contemporary practice into class groupings based on their mechanism of antiviral activity (non-nucleoside reverse transcriptase inhibitors, nucleoside reverse transcriptase inhibitors, integrase inhibitors, protease inhibitors, and entry inhibitors) while providing a review and discussion of the hepatoxicity seen in the most relevant clinical literature published to date. Clinical literature for individual agents is discussed and agent comparisons afforded within each group in tabular format. Our review will provide a summative overview of the incidence and medications associated with hepatic adverse reactions linked to the use of contemporary antiretroviral drugs.
Collapse
|
5
|
Marin RC, Behl T, Negrut N, Bungau S. Management of Antiretroviral Therapy with Boosted Protease Inhibitors-Darunavir/Ritonavir or Darunavir/Cobicistat. Biomedicines 2021; 9:biomedicines9030313. [PMID: 33803812 PMCID: PMC8003312 DOI: 10.3390/biomedicines9030313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022] Open
Abstract
A major challenge in the management of antiretroviral therapy (ART) is to improve the patient's adherence, reducing the burden caused by the high number of drugs that compose the treatment regimens for human immunodeficiency virus positive (HIV+) patients. Selection of the most appropriate treatment regimen is responsible for therapeutic success and aims to reduce viremia, increase the immune system response capacity, and reduce the incidence rate and intensity of adverse reactions. In general, protease inhibitor (PI) is one of the pillars of regimens, and darunavir (DRV), in particular, is frequently recommended, along with low doses of enzyme inhibitors as cobicistat (COBI) or ritonavir (RTV), by the international guidelines. The potential of clinically significant drug interactions in patients taking COBI or RTV is high due to the potent inhibitory effect on cytochrome CYP 450, which attracts significant changes in the pharmacokinetics of PIs. Regardless of the patient or type of virus, the combined regimens of DRV/COBI or DRV/RTV are available to clinicians, proving their effectiveness, with a major impact on HIV mortality/morbidity. This study presents current information on the pharmacokinetics, pharmacology, drug interactions, and adverse reactions of DRV; it not only compares the bioavailability, pharmacokinetic parameters, immunological and virological responses, but also the efficacy, advantages, and therapeutic disadvantages of DRV/COBI or DRV/RTV combinations.
Collapse
Affiliation(s)
- Ruxandra-Cristina Marin
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Nicoleta Negrut
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Correspondence: ; Tel.: +40-726-776-588
| |
Collapse
|
6
|
Plasma nucleotide reverse transcriptase inhibitor concentration and their associations with liver and renal parameters in people living with HIV. AIDS 2020; 34:790-793. [PMID: 32167992 DOI: 10.1097/qad.0000000000002479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
: Associations between markers of liver and renal dysfunction and nucleotide reverse transcriptase inhibitor plasma exposure are ill-defined. As part of a large cohort study (Pharmacokinetic and Clinical Observations in People over Fifty), we analysed associations between alanine aminotransferase and estimated glomerular filtration rate results in people living with HIV on tenofovir disoproxil fumarate, emtricitabine, abacavir and lamivudine. While we found no associations between nucleotide reverse transcriptase inhibitor concentrations and alanine aminotransferase, lower estimated glomerular filtration rate values were associated with greater tenofovir, emtricitabine and lamivudine exposure, whereas abacavir showed no associations.
Collapse
|
7
|
Probable hepatotoxicity with dolutegravir: report of two cases and review of the literature. AIDS 2019; 33:1261-1263. [PMID: 31045944 DOI: 10.1097/qad.0000000000002191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
8
|
Severe cholestatic hepatitis related to abacavir/lamivudine/dolutegravir antiretroviral treatment in a HIV-1 infected subject. AIDS 2018; 32:1727-1729. [PMID: 30001246 DOI: 10.1097/qad.0000000000001890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Christensen ES, Jain R, Roxby AC. Abacavir/Dolutegravir/Lamivudine (Triumeq)-Induced Liver Toxicity in a Human Immunodeficiency Virus-Infected Patient. Open Forum Infect Dis 2017; 4:ofx122. [PMID: 28748198 PMCID: PMC5522577 DOI: 10.1093/ofid/ofx122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/09/2017] [Indexed: 11/13/2022] Open
Abstract
Drug-induced liver injury related to Triumeq (abacavir/lamivudine/dolutegravir) has not been reported in clinical trials. We report a case of hepatotoxicity related to Triumeq exposure in a human immunodeficiency virus-infected patient. Clinicians should remain aware of the risk for acute and late-onset hepatitis with these agents. Close monitoring is recommended.
Collapse
Affiliation(s)
| | | | - Alison C Roxby
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle
| |
Collapse
|