1
|
Subbarayudu S, Namasivayam SKR, Arockiaraj J. Immunomodulation in Non-traditional Therapies for Methicillin-resistant Staphylococcus aureus (MRSA) Management. Curr Microbiol 2024; 81:346. [PMID: 39240286 DOI: 10.1007/s00284-024-03875-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
The rise of methicillin-resistant Staphylococcus aureus (MRSA) poses a significant challenge in clinical settings due to its ability to evade conventional antibiotic treatments. This overview explores the potential of immunomodulatory strategies as alternative therapeutic approaches to combat MRSA infections. Traditional antibiotics are becoming less effective, necessitating innovative solutions that harness the body's immune system to enhance pathogen clearance. Recent advancements in immunotherapy, including the use of antimicrobial peptides, phage therapy, and mechanisms of immune cells, demonstrate promise in enhancing the body's ability to clear MRSA infections. However, the exact interactions between these therapies and immunomodulation are not fully understood, underscoring the need for further research. Hence, this review aims to provide a broad overview of the current understanding of non-traditional therapeutics and their impact on immune responses, which could lead to more effective MRSA treatment strategies. Additionally, combining immunomodulatory agents with existing antibiotics may improve outcomes, particularly for immunocompromised patients or those with chronic infections. As the landscape of antibiotic resistance evolves, the development of effective immunotherapeutic strategies could play a vital role in managing MRSA infections and reducing reliance on traditional antibiotics. Future research must focus on optimizing these approaches and validating their efficacy in diverse clinical populations to address the urgent need for effective MRSA management strategies.
Collapse
Affiliation(s)
- Suthi Subbarayudu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - S Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 602105, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
2
|
Dos Santos DC, de Souza Bittencout R, Arêas ID, Pena LSC, Almeida CF, de Brito Guimarães BC, Dórea RSDM, Correia TML, Júnior MNS, Morbeck LLB, Dos Santos TC, Souza CLS, de Souza SI, de Jesus Soares T, Yatsuda R, Campos GB, Marques LM. Effects of 5α-dihydrotestosterone on the modulation of monocyte/macrophage response to Staphylococcus aureus: an in vitro study. Biol Sex Differ 2023; 14:15. [PMID: 37004108 PMCID: PMC10065996 DOI: 10.1186/s13293-023-00501-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) is a pathogen responsible for a wide range of clinical manifestations and potentially fatal conditions. There is a paucity of information on the influence of androgens in the immune response to S. aureus infection. In this study, we evaluated the influence of the hormone 5α-dihydrotestosterone (DHT) on mouse peritoneal macrophages (MPMs) and human peripheral blood monocytes (HPBMs) induced by S. aureus. METHODS An in vitro model of MPMs from BALB/c sham males, orchiectomised (OQX) males, and females was used. Cells were inoculated with 10 μL of S. aureus, phage-type 80 or sterile saline (control) for 6 h. The MPMs of OQX males and females were pre-treated with 100 μL of 10-2 M DHT for 24 h before inoculation with S. aureus. The concentration of the cytokines TNF-α, IL-1α, IL-6, IL-8, and IL-10; total nitrites (NO-2); and hydrogen peroxide (H2O2) were measured in the supernatant of MPM cultures. In addition, the toll-like receptor 2 (TLR2) and nuclear factor kappa B (NF-kB) genes that are involved in immune responses were analysed. For the in vitro model of HPBMs, nine men and nine women of childbearing age were selected and HPBMs were isolated from samples of the volunteers' peripheral blood. In women, blood was collected during the periovulatory period. The HPBMs were inoculated with S. aureus for 6 h and the supernatant was collected for the analysis of cytokines TNF-α, IL-6, IL-12; and GM-CSF, NO-2, and H2O2. The HPBMs were then removed for the analysis of 84 genes involved in the host's response to bacterial infections by RT-PCR array. GraphPad was used for statistical analysis with a p value < 0.05. RESULTS Our data demonstrated that MPMs from sham males inoculated with S. aureus displayed higher concentrations of inflammatory cytokines and lower concentrations of IL-10, NO-2, and H2O2 when compared with MPMs from OQX males and females. A similar result was observed in the HPBMs of men when compared with those of women. Previous treatment with DHT in women HPBMs increased the production of pro-inflammatory cytokines and decreased the levels of IL-10, NO-2, and H2O2. The analysis of gene expression showed that DHT increased the activity of the TLR2 and NF-kB pathways in both MPMs and HPBMs. CONCLUSIONS We found that DHT acts as an inflammatory modulator in the monocyte/macrophage response induced by S. aureus and females exhibit a better immune defence response against this pathogen.
Collapse
Affiliation(s)
- Déborah Cruz Dos Santos
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Rafaela de Souza Bittencout
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Iago Dórea Arêas
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Larissa Silva C Pena
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Carolline Florentino Almeida
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Bruna Carolina de Brito Guimarães
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Rafael Santos Dantas Miranda Dórea
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Thiago Macêdo Lopes Correia
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | | | - Lorena Lôbo Brito Morbeck
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Talita Costa Dos Santos
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Clarissa Leal S Souza
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | | | - Telma de Jesus Soares
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Regiane Yatsuda
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Guilherme Barreto Campos
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
- University of Santa Cruz (UESC), Campus Soane Nazaré de Andrade, Ilhéus, Brazil
| | - Lucas Miranda Marques
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil.
- University of Santa Cruz (UESC), Campus Soane Nazaré de Andrade, Ilhéus, Brazil.
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Fischer V, Haffner-Luntzer M. Interaction between bone and immune cells: Implications for postmenopausal osteoporosis. Semin Cell Dev Biol 2021; 123:14-21. [PMID: 34024716 DOI: 10.1016/j.semcdb.2021.05.014] [Citation(s) in RCA: 276] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Postmenopausal osteoporosis is a systemic disease characterized by the loss of bone mass and increased bone fracture risk largely resulting from significantly reduced levels of the hormone estrogen after menopause. Besides the direct negative effects of estrogen-deficiency on bone, indirect effects of altered immune status in postmenopausal women might contribute to ongoing bone destruction, as postmenopausal women often display a chronic low-grade inflammatory phenotype with altered cytokine expression and immune cell profile. In this context, it was previously shown that various immune cells interact with osteoblasts and osteoclasts either via direct cell-cell contact, or more likely via paracrine mechanisms. For example, specific subtypes of T lymphocytes express TNFα, which was shown to increase osteoblast apoptosis and to indirectly stimulate osteoclastogenesis via B cell-produced receptor-activator of NF-κB ligand (RANKL), thereby triggering bone loss during postmenopausal osteoporosis. Th17 cells release interleukin-17 (IL-17), which directs mesenchymal stem cell differentiation towards the osteogenic lineage, but also indirectly increases osteoclast differentiation. B lymphocytes are a major regulator of osteoclast formation via granulocyte colony-stimulating factor secretion and the RANKL/osteoprotegerin system under estrogen-deficient conditions. Macrophages might act differently on bone cells dependent on their polarization profile and their secreted paracrine factors, which might have implications for the development of postmenopausal osteoporosis, because macrophage polarization is altered during disease progression. Likewise, neutrophils play an important role during bone homeostasis, but their over-activation under estrogen-deficient conditions contributes to osteoblast apoptosis via the release of reactive oxygen species and increased osteoclastogenesis via RANKL signaling. Furthermore, mast cells might be involved in the development of postmenopausal osteoporosis, because they store high levels of osteoclastic mediators, including IL-6 and RANKL, in their granules and their numbers are greatly increased in osteoporotic bone. Additionally, bone fracture healing is altered under estrogen-deficient conditions with the increased presence of pro-inflammatory cytokines, including IL-6 and Midkine, which might contribute to healing disturbances. Consequently, in addition to the direct negative influence of estrogen-deficiency on bone, immune cell alterations contribute to the pathogenesis of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Verena Fischer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14, 89081 Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14, 89081 Ulm, Germany.
| |
Collapse
|