1
|
Wang YL, Zhang X, Wang Q, Liu PX, Tang W, Guo R, Zhang HY, Chen ZG, Han XG, Jiang W. Rapid and visual detection of Staphylococcus aureus in milk using a recombinase polymerase amplification-lateral flow assay combined with immunomagnetic separation. J Appl Microbiol 2022; 133:3741-3754. [PMID: 36073301 DOI: 10.1111/jam.15811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/27/2022]
Abstract
AIMS The aim of this study was to develop a novel approach using lateral flow recombinase polymerase amplification (RPA-LF) combined with immunomagnetic separation (IMS) for the rapid detection of Staphylococcus aureus in milk. METHODS AND RESULTS Under optimum conditions, the average capture efficiency values (CEs) for S. aureus strains (104 CFU ml-1 ) was above 95.0% in PBST and ~80% in milk within 45 min with 0.7 mg immunomagnetic beads. The RPA-LF assay, which comprised DNA amplification via RPA at 39°C for 10 min and visualization of the amplicons through LF strips for 5 min, detected S. aureus within 15 min. The method only detected S. aureus and did not show cross-reaction with other bacteria, exhibiting a high level of specificity. Sensitivity experiments confirmed a detection limit of RPA-LF assay as low as 600 fg reaction-1 for the S. aureus genome (corresponding to approximately 36 CFU of S. aureus), which was about 16.7-fold more sensitive than that of the conventional PCR method. When RPA-LF was used in combination with IMS to detect S. aureus inoculated into artificially contaminated milk, it exhibited a detection limit of approximately 40 CFU reaction-1 . CONCLUSIONS The newly developed IMS-RPA-LF method enabled detection of S. aureus at levels as low as 40 CFU reaction-1 in milk samples without culture enrichment for an overall testing time of only 70 min. SIGNIFICANCE AND IMPACT OF THE STUDY The newly developed IMS-RPA-LF assay effectively combines sample preparation, amplification, and detection into a single platform. Because of its high sensitivity, specificity, and speed, the IMS-RPA-LF assay will have important implications for the rapid detection of S. aureus in contaminated food.
Collapse
Affiliation(s)
- Ya-Lei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xin Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Quan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Peng-Xuan Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wei Tang
- Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Guo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hai-Yang Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhao-Guo Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xian-Gan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wei Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
2
|
Jolly A, Fernández B, Stempler A, Ingratta G, Postma G, Boviez J, Lombardo D, Hajos S, Mundo SL. Antibodies from healthy or paratuberculosis infected cows have different effects on Mycobacterium avium subspecies paratuberculosis invasion in a calf ileal loop model. Vet Immunol Immunopathol 2022; 245:110381. [PMID: 35033737 DOI: 10.1016/j.vetimm.2022.110381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 12/17/2021] [Accepted: 01/08/2022] [Indexed: 10/19/2022]
Abstract
In this work, we used a calf ileal loop model to evaluate whether the preincubation of Mycobacterium avium subspecies paratuberculosis (MAP) with antibodies from healthy, MAP-positive or Lipoarabinomannan (LAM) immunized cows could affect the results of infection after 3.5 h. Bacterial load in tissue was assessed by Ziehl-Neelsen and by culture for each loop. MAP was detectable in all infected loops after 3.5 h.p.i.; although the presence of antibodies from MAP-positive cows significantly reduced bacterial load in loops as compared with antibodies from healthy donors (by Ziehl-Neelsen and culture, p-value < 0.003 and 0.0203, respectively). A possible direct effect of antibodies on MAP viability was shown to be not significant. Severity of histopathologic changes induced by MAP infection also varied according to the pretreatment: MAP induced less changes when inoculated in the presence of antibodies from MAP-positive cows as compared with antibodies from healthy donors. Overall, our results show that the presence of antibodies from MAP-positive cows reduced MAP invasion and consequent early histological changes in this ileal short-term loop model. These results may suggest a protective role of antibodies in the response against MAP at the portal of entry in cattle.
Collapse
Affiliation(s)
- Ana Jolly
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, (0054) 115287-2155, Chorroarín 280, C1427CWO, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Bárbara Fernández
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, (0054) 115287-2155, Chorroarín 280, C1427CWO, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ana Stempler
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, (0054) 115287-2155, Chorroarín 280, C1427CWO, Buenos Aires, Argentina
| | - Giselle Ingratta
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, (0054) 115287-2155, Chorroarín 280, C1427CWO, Buenos Aires, Argentina
| | - Gabriela Postma
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Patología, 115287-2512, Av. San Martín 5285, C1417DSM, Buenos Aires, Argentina
| | - Juan Boviez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Cátedra de Histología y Embriología, (0054) 115287-2038, Chorroarín 280, C1427CWO, Buenos Aires, Argentina
| | - Daniel Lombardo
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Cátedra de Histología y Embriología, (0054) 115287-2038, Chorroarín 280, C1427CWO, Buenos Aires, Argentina
| | - Silvia Hajos
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Instituto de Estudios de la Inmunidad Humoral (IDEHU), (0054)114964-8260, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Silvia L Mundo
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, (0054) 115287-2155, Chorroarín 280, C1427CWO, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Matthews C, Cotter PD, O’ Mahony J. MAP, Johne's disease and the microbiome; current knowledge and future considerations. Anim Microbiome 2021; 3:34. [PMID: 33962690 PMCID: PMC8105914 DOI: 10.1186/s42523-021-00089-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/20/2021] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis is the causative agent of Johne's disease in ruminants. As an infectious disease that causes reduced milk yields, effects fertility and, eventually, the loss of the animal, it is a huge financial burden for associated industries. Efforts to control MAP infection and Johne's disease are complicated due to difficulties of diagnosis in the early stages of infection and challenges relating to the specificity and sensitivity of current testing methods. The methods that are available contribute to widely used test and cull strategies, vaccination programmes also in place in some countries. Next generation sequencing technologies have opened up new avenues for the discovery of novel biomarkers for disease prediction within MAP genomes and within ruminant microbiomes. Controlling Johne's disease in herds can lead to improved animal health and welfare, in turn leading to increased productivity. With current climate change bills, such as the European Green Deal, targeting livestock production systems for more sustainable practices, managing animal health is now more important than ever before. This review provides an overview of the current knowledge on genomics and detection of MAP as it pertains to Johne's disease.
Collapse
Affiliation(s)
- Chloe Matthews
- Cork Institute of Technology, Bishopstown, Co. Cork, Ireland
- Teagasc, Food Research Centre, Food Biosciences Department, Fermoy, Co. Cork, Ireland
| | - Paul D. Cotter
- Teagasc, Food Research Centre, Food Biosciences Department, Fermoy, Co. Cork, Ireland
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland
| | - Jim O’ Mahony
- Cork Institute of Technology, Bishopstown, Co. Cork, Ireland
| |
Collapse
|
4
|
Khosravi M, Nouri M, Mohammadi A, Mosavari N, Constable PD. Preparation of immunomagnetic beads coupled with a rhodamine hydrazine immunosensor for the detection of Mycobacterium avium subspecies paratuberculosis in bovine feces, milk, and colostrum. J Dairy Sci 2021; 104:6944-6960. [PMID: 33814150 DOI: 10.3168/jds.2020-18819] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 02/08/2021] [Indexed: 11/19/2022]
Abstract
The aim of this study was to develop and evaluate a method for detecting Mycobacterium avium ssp. paratuberculosis (MAP) bacteria in bovine fecal, milk, and colostrum samples using immunomagnetic beads (IMB) and a rhodamine hydrazone immunosensor. Immunomagnetic beads were prepared by using purified antibodies from hyperimmunized sera that were coupled to Fe nanoparticles with diethylene triamine pentaacetic acid (DTPA) or ethyl (dimethyl aminopropyl) carbodiimide (EDC)-N-hydroxy succinimide (NHS) as linkers. Rhodamine hydrazone particles were synthesized and coupled to IgY anti-MAP antibodies using DTPA or EDC-NHS linkers. Separation efficiency of the IMB was tested on bovine fecal, milk, and colostrum samples experimentally contaminated with MAP. The studied methods were evaluated on their ability to detect MAP and separate bacteria in complex mediums. The ELISA results indicated 95% efficacy in antibody coupling to IMB, with the DTPA-IMB method being more efficient than the EDC-NHS-IMB method. By using the DTPA-IMB method, MAP bacteria were successfully recovered from fecal, milk, and colostrum samples. The DTPA-IMB method used in combination with the rhodamine hydrazone immunosensor had a limit of detection equal to 30 and 30,000 MAP cells/mL using chromogenic and fluorescent properties, respectively. Combining the DTPA-IMB separation method with the rhodamine hydrazone immunosensor provides a fast, sensitive, and cost-beneficial method for detecting MAP in bovine feces, milk, and colostrum.
Collapse
Affiliation(s)
- M Khosravi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran.
| | - M Nouri
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - A Mohammadi
- Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - N Mosavari
- Reference Laboratory for Bovine Tuberculosis, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj 3197619751, Iran
| | - P D Constable
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana-Champaign 61802
| |
Collapse
|
5
|
Karuppusamy S, Mutharia L, Kelton D, Plattner B, Mallikarjunappa S, Karrow N, Kirby G. Detection of Mycobacterium avium Subspecies paratuberculosis (MAP) Microorganisms Using Antigenic MAP Cell Envelope Proteins. Front Vet Sci 2021; 8:615029. [PMID: 33614761 PMCID: PMC7887298 DOI: 10.3389/fvets.2021.615029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/13/2021] [Indexed: 11/13/2022] Open
Abstract
Cell envelope proteins from Mycobacterium avium subspecies paratuberculosis (MAP) that are antigenically distinct from closely related mycobacterial species are potentially useful for Johne's Disease (JD) diagnosis. We evaluated the potential of ELISAs, based on six antigenically distinct recombinant MAP cell envelope proteins (SdhA, FadE25_2, FadE3_2, Mkl, DesA2, and hypothetical protein MAP1233) as well as an extract of MAP total cell envelope proteins, to detect antibodies against MAP in the sera of infected cattle. The sensitivity (Se) and specificity (Sp) of an ELISA based on MAP total cell envelope proteins, when analyzing 153 bovine serum samples, was 75 and 96%, respectively. Analysis of the same samples, using a commercial serum ELISA resulted in a Se of 56% and Sp of 99%. Results of ELISA analysis using plates coated with recombinant cell envelope proteins ranged from a highest Se of 94% and a lowest Sp of 79% for Sdh A to a lowest Se of 67% and a highest Sp of 95% for hypothetical protein MAP1233. Using polyclonal antibodies to MAP total cell envelope proteins, immunohistochemical analysis of intestinal and lymph node tissues from JD-positive cattle detected MAP organisms whereas antibodies to recombinant proteins did not. Finally, polyclonal antibodies to MAP total cell envelope protein and to recombinant SdhA, FadE25_2, and DesA2 proteins immunomagnetically separated MAP microorganisms spiked in PBS. These results suggest that antigenically distinct MAP cell envelope proteins and antibodies to these proteins may have potential to detect MAP infection in dairy cattle.
Collapse
Affiliation(s)
| | - Lucy Mutharia
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - David Kelton
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Brandon Plattner
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sanjay Mallikarjunappa
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada
| | - Niel Karrow
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada
| | - Gordon Kirby
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
6
|
Abstract
Mycobacterial infections are widely distributed in animals and cause considerable economic losses, especially in livestock animals. Bovine paratuberculosis and bovine tuberculosis, which are representative mycobacterial infections in cattle, are difficult to diagnose using current-generation diagnostics due to their relatively long incubation periods. Thus, alternative diagnostic tools are needed for the detection of mycobacterial infections in cattle. A biomarker is an indicator present in biological fluids that reflects the biological state of an individual during the progression of a specific disease. Therefore, biomarkers are considered a potential diagnostic tool for various diseases. Recently, the number of studies investigating biomarkers as tools for diagnosing mycobacterial infections has increased. In human medicine, many diagnostic biomarkers have been developed and applied in clinical practice. In veterinary medicine, however, many such developments are still in the early stages. In this review, we summarize the current progress in biomarker research related to the development of diagnostic biomarkers for mycobacterial infections in cattle.
Collapse
|
7
|
Hermida HS, Colavecchia S, Fernández B, Suhevic J, Martinez Vivot M, Mereb G, Mundo SL. Rabbit anti-deer polyclonal antibody applied to the diagnosis of Mycobacterium avium subsp. paratuberculosis in red deer (Cervus elaphus). Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2020.106184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Faruk MSA, Jung YH, Hur TY, Lee SS, Cho YI. Longitudinal Study of Mycobacterium avium Subsp. paratuberculosis Antibody Kinetics in Dairy Cattle Using Sera and Milk Throughout the Lactation Period. Vet Sci 2020; 7:vetsci7030081. [PMID: 32629919 PMCID: PMC7560089 DOI: 10.3390/vetsci7030081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/21/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease in dairy cattle populations around the world. The objective of this study was to evaluate MAP antibody kinetics in serum and milk samples throughout the lactation period in dairy cattle. The samples were collected simultaneously from eight MAP-positive and two healthy MAP-negative (control group) cows. The MAP antibody was detected by using serum and milk ELISA. The serum and milk MAP antibody titers fluctuated between the positive and negative cut-off values in this study. Specifically, cattle with low MAP antibody titer (<100) showed fluctuation between the cut-off values. Variable changes of MAP antibody titer were also observed after parturition. Between the serum and milk MAP antibody titers, there was a positive correlation (R2 = 0.5358) observed throughout the assessment period. The milk MAP ELISA test had low diagnostic performance in cows with low MAP titer due to its weak correlation (R2 = 0.0198). Finally, this study suggest that the periodic MAP ELISA test is recommended for the application of Johne's eradication program due to the fluctuating nature of MAP antibody kinetics.
Collapse
Affiliation(s)
- Md. Shohel Al Faruk
- Department of Animal Science and Technology, Sunchon National University, Suncheon, Jeonnam 57922, Korea; (M.S.A.F.); (S.-s.L.)
| | - Young-hoon Jung
- National Institute of Animal Science, Cheonan, Chungnam 3100, Korea; (Y.-h.J.); (T.-y.H.)
| | - Tai-young Hur
- National Institute of Animal Science, Cheonan, Chungnam 3100, Korea; (Y.-h.J.); (T.-y.H.)
| | - Sang-suk Lee
- Department of Animal Science and Technology, Sunchon National University, Suncheon, Jeonnam 57922, Korea; (M.S.A.F.); (S.-s.L.)
| | - Yong-il Cho
- Department of Animal Science and Technology, Sunchon National University, Suncheon, Jeonnam 57922, Korea; (M.S.A.F.); (S.-s.L.)
- Correspondence:
| |
Collapse
|
9
|
Fernández B, Colavecchia SB, Ingratta GG, Jolly A, Stempler A, Fortuny ML, Paolicchi FA, Mundo SL. Early IgG2 in calves experimentally infected with Mycobacterium avium subsp. paratuberculosis. Vet Immunol Immunopathol 2019; 213:109886. [PMID: 31307667 DOI: 10.1016/j.vetimm.2019.109886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/06/2019] [Accepted: 06/24/2019] [Indexed: 11/25/2022]
Abstract
The diagnosis of the early stages of paratuberculosis, caused by Mycobacterium avium subsp. paratuberculosis (Map), is a cumbersome task. In this study, an experimental Map-infection model of calves was used to improve the knowledge of early antibody response and to evaluate different in-house ELISAs in the detection of subclinical paratuberculosis. Calves were challenged with Map strain IS900-RFLPA (n = 3) or Map strain IS900-RFLPC (n = 2) (Argentinean isolated strains) or mock infected (n = 3), and their specific humoral response was evaluated. The diagnostic ELISA (IgG against Map protoplasmic antigen; PPA) could not detect the infection throughout the experimental period (180 days post-infection; dpi), whereas the IgG2/PPA-ELISA was able to identify infected calves at least once during the experiment. In addition, the use of crude Map extract detected most of the infections from 60 dpi onwards. Antibodies were also characterized by immunoblot: IgG2-reactivity to antigens of molecular weight lower than 50 kDa was detected in all infected calves. The experimental Map-infection model of calves used allows the study of the early humoral immune response in paratuberculosis. The evaluation of IgG2 specific to antigens lighter than 50 kDa emerges as an interesting alternative in calves naturally infected with paratuberculosis.
Collapse
Affiliation(s)
- Bárbara Fernández
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, Av. Chorroarín 280, C1427CWO, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Av. Chorroarín 280, C1427CWO, Buenos Aires, Argentina.
| | - Silvia Beatriz Colavecchia
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, Av. Chorroarín 280, C1427CWO, Buenos Aires, Argentina.
| | - Giselle Gabriela Ingratta
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, Av. Chorroarín 280, C1427CWO, Buenos Aires, Argentina.
| | - Ana Jolly
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, Av. Chorroarín 280, C1427CWO, Buenos Aires, Argentina.
| | - Ana Stempler
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, Av. Chorroarín 280, C1427CWO, Buenos Aires, Argentina.
| | - María Laura Fortuny
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, Av. Chorroarín 280, C1427CWO, Buenos Aires, Argentina.
| | - Fernando Alberto Paolicchi
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Balcarce, Laboratorio de Bacteriología, Ruta 226, Km 73.5, Provincia de Buenos Aires, Balcarce B7620BEN, Argentina; Universidad Nacional de Mar del Plata, Facultad de Ciencias Agrarias, Departamento de Producción Animal, Mar del Plata, Ruta 226, Km 73.5, Provincia de Buenos Aires, Balcarce B7620BEN, Argentina.
| | - Silvia Leonor Mundo
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, Av. Chorroarín 280, C1427CWO, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Av. Chorroarín 280, C1427CWO, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Visual and Rapid Detection of Klebsiella pneumoniae by Magnetic Immunocapture-Loop-Mediated Isothermal Amplification Assay. Jundishapur J Microbiol 2019. [DOI: 10.5812/jjm.90016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
11
|
‘Nano-immuno test’ for the detection of live Mycobacterium avium subspecies paratuberculosis bacilli in the milk samples using magnetic nano-particles and chromogen. Vet Res Commun 2018; 42:183-194. [DOI: 10.1007/s11259-018-9721-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/02/2018] [Indexed: 12/21/2022]
|
12
|
Espeschit IF, Schwarz DGG, Faria ACS, Souza MCC, Paolicchi FA, Juste RA, Carvalho IA, Moreira MAS. Paratuberculosis in Latin America: a systematic review. Trop Anim Health Prod 2017; 49:1557-1576. [PMID: 28884331 DOI: 10.1007/s11250-017-1385-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/17/2017] [Indexed: 11/30/2022]
Abstract
Latin America is the definition of the American group, where languages of Latin origin are spoken, including countries in South, Central, and North America. Paratuberculosis is a gastrointestinal contagious chronic disease that affects ruminants, whose etiological agent is the bacilli Mycobacterium avium subsp. paratuberculosis (MAP). Paratuberculosis is characterized by intermittent diarrhea, decreased milk production, dehydration, and progressive weight loss and is possibly involved in Crohn's disease, a human intestinal disease. MAP is resistant to environmental factors, pasteurization, and water disinfection, which coupled with the subclinical-clinical nature of the disease, and makes paratuberculosis a relevant socioeconomic and public health issue, justifying the descriptive review of research on the disease carried out in Latin American countries. A survey of articles, published until September 2016, on the Scopus database, PubMed, Agris, and Science Direct, about detection of the agent and the disease in Latin America, without restrictions to the date of the research was performed. The keywords were as follows: "paratuberculosis," "Mycobacterium avium subsp. paratuberculosis," "cattle," "milk," "wildlife," "goat," "ovine," "dairy," and the name of each country in English. Studies found from nine of the 20 Latin America countries, 31 related to Brazil, 17 to Argentina, 14 to Chile, eight to Colombia, six to Mexico, two to Peru, two to Venezuela, and one to Panama and to Bolivia, each. The agent was detected in cattle, goats, sheep, domesticated water buffalo, and wild animals. Microbiological culture, PCR, and ELISA were the frequent techniques. The small number of studies may result in overestimation or underestimation of the real scenario.
Collapse
Affiliation(s)
- I F Espeschit
- Laboratory of Bacterial Diseases; Sector of Preventive Veterinary Medicine and Public Health, Universidade Federal de Viçosa, PH Rolfs Avenue, University campus, Viçosa, MG, 36570-900, Brazil
| | - D G G Schwarz
- Laboratory of Bacterial Diseases; Sector of Preventive Veterinary Medicine and Public Health, Universidade Federal de Viçosa, PH Rolfs Avenue, University campus, Viçosa, MG, 36570-900, Brazil
| | - A C S Faria
- Laboratory of Bacterial Diseases; Sector of Preventive Veterinary Medicine and Public Health, Universidade Federal de Viçosa, PH Rolfs Avenue, University campus, Viçosa, MG, 36570-900, Brazil
| | - M C C Souza
- Laboratory of Bacterial Diseases; Sector of Preventive Veterinary Medicine and Public Health, Universidade Federal de Viçosa, PH Rolfs Avenue, University campus, Viçosa, MG, 36570-900, Brazil
| | - F A Paolicchi
- Instituto Nacional de Tecnologı́a Agropecuaria, Balcarce, Mar del Plata National University, Mar del Plata, Argentina
| | - R A Juste
- SERIDA, Ctra. Oviedo sn, 33300, Villaviciosa, Asturias, Spain
| | - I A Carvalho
- Pathology Department; Veterinary School, Universidade Estadual do Maranhão, Campus São Luís, São Luís, Brazil
| | - M A S Moreira
- Laboratory of Bacterial Diseases; Sector of Preventive Veterinary Medicine and Public Health, Universidade Federal de Viçosa, PH Rolfs Avenue, University campus, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
13
|
Bolaños CAD, Paula CLD, Guerra ST, Franco MMJ, Ribeiro MG. Diagnosis of mycobacteria in bovine milk: an overview. Rev Inst Med Trop Sao Paulo 2017; 59:e40. [PMID: 28591268 PMCID: PMC5466425 DOI: 10.1590/s1678-9946201759040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 02/22/2017] [Indexed: 11/22/2022] Open
Abstract
Tuberculosis remains as the world's biggest threat. In 2014, human tuberculosis ranked as a major infectious disease by the first time, overcoming HIV death rates. Bovine tuberculosis is a chronic disease of global distribution that affects animals and can be transmitted to humans by the consumption of raw milk, representing a serious public health concern. Despite the efforts of different countries to control and eradicate bovine tuberculosis, the high negative economic impact on meat and milk production chains remains, given the decreased production efficiency (approximately 25%), the high number of condemned carcasses, and increased animal culling rates. This scenario has motivated the establishment of official programs based on regulations and diagnostic procedures. Although Mycobacterium tuberculosis and Mycobacterium bovis are the major pathogenic species to humans and bovines, respectively, nontuberculous mycobacteria within the Mycobacterium genus have become increasingly important in recent decades due to human infections, including the ones that occur in immunocompetent people. Diagnosis of mycobacteria can be performed by microbiological culture from tissue samples (lymph nodes, lungs) and secretions (sputum, milk). In general, these pathogens demand special nutrient requirements for isolation/growth, and the use of selective and rich culture media. Indeed, within these genera, mycobacteria are classified as either fast- or slow-growth microorganisms. Regarding the latter ones, incubation times can vary from 45 to 90 days. Although microbiological culture is still considered the gold standard method for diagnosis, molecular approaches have been increasingly used. We describe here an overview of the diagnosis of Mycobacterium species in bovine milk.
Collapse
Affiliation(s)
- Carmen Alicia Daza Bolaños
- UNESP - Universidade Estadual Paulista Julio de Mesquita Filho, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Higiene Veterinária e Saúde Pública, Botucatu, São Paulo, Brazil
| | - Carolina Lechinski de Paula
- UNESP - Universidade Estadual Paulista Julio de Mesquita Filho, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Higiene Veterinária e Saúde Pública, Botucatu, São Paulo, Brazil
| | - Simony Trevizan Guerra
- UNESP - Universidade Estadual Paulista Julio de Mesquita Filho, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Higiene Veterinária e Saúde Pública, Botucatu, São Paulo, Brazil
| | - Marília Masello Junqueira Franco
- UNESP - Universidade Estadual Paulista Julio de Mesquita Filho, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Higiene Veterinária e Saúde Pública, Botucatu, São Paulo, Brazil
| | - Márcio Garcia Ribeiro
- UNESP - Universidade Estadual Paulista Julio de Mesquita Filho, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Higiene Veterinária e Saúde Pública, Botucatu, São Paulo, Brazil
| |
Collapse
|
14
|
Magnetic Separation Methods for the Detection of Mycobacterium avium subsp. paratuberculosis in Various Types of Matrices: A Review. BIOMED RESEARCH INTERNATIONAL 2017. [PMID: 28642876 PMCID: PMC5469987 DOI: 10.1155/2017/5869854] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The main reasons to improve the detection of Mycobacterium avium subsp. paratuberculosis (MAP) are animal health and monitoring of MAP entering the food chain via meat, milk, and/or dairy products. Different approaches can be used for the detection of MAP, but the use of magnetic separation especially in conjunction with PCR as an end-point detection method has risen in past years. However, the extraction of DNA which is a crucial step prior to PCR detection can be complicated due to the presence of inhibitory substances. Magnetic separation methods involving either antibodies or peptides represent a powerful tool for selective separation of target bacteria from other nontarget microorganisms and inhibitory sample components. These methods enable the concentration of pathogens present in the initial matrix into smaller volume and facilitate the isolation of sufficient quantities of pure DNA. The purpose of this review was to summarize the methods based on the magnetic separation approach that are currently available for the detection of MAP in a broad range of matrices.
Collapse
|
15
|
Mycobacterium avium subsp. paratuberculosis – An Overview of the Publications from 2011 to 2016. CURRENT CLINICAL MICROBIOLOGY REPORTS 2017. [DOI: 10.1007/s40588-017-0054-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|