1
|
Medeiros RS, França Y, Viana E, de Azevedo LS, Guiducci R, de Lima Neto DF, da Costa AC, Luchs A. Genomic Constellation of Human Rotavirus G8 Strains in Brazil over a 13-Year Period: Detection of the Novel Bovine-like G8P[8] Strains with the DS-1-like Backbone. Viruses 2023; 15:664. [PMID: 36992373 PMCID: PMC10056101 DOI: 10.3390/v15030664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Rotavirus (RVA) G8 is frequently detected in animals, but only occasionally in humans. G8 strains, however, are frequently documented in nations in Africa. Recently, an increase in G8 detection was observed outside Africa. The aims of the study were to monitor G8 infections in the Brazilian human population between 2007 and 2020, undertake the full-genotype characterization of the four G8P[4], six G8P[6] and two G8P[8] RVA strains and conduct phylogenetic analysis in order to understand their genetic diversity and evolution. A total of 12,978 specimens were screened for RVA using ELISA, PAGE, RT-PCR and Sanger sequencing. G8 genotype represented 0.6% (15/2434) of the entirely RVA-positive samples. G8P[4] comprised 33.3% (5/15), G8P[6] 46.7% (7/15) and G8P[8] 20% (3/15). All G8 strains showed a short RNA pattern. All twelve selected G8 strains displayed a DS-1-like genetic backbone. The whole-genotype analysis on a DS-1-like backbone identified four different genotype-linage constellations. According to VP7 analysis, the Brazilian G8P[8] strains with the DS-1-like backbone strains were derived from cattle and clustered with newly DS-1-like G1/G3/G9/G8P[8] strains and G2P[4] strains. Brazilian IAL-R193/2017/G8P[8] belonged to a VP1/R2.XI lineage and were grouped with bovine-like G8P[8] strains with the DS-1-like backbone strains detected in Asia. Otherwise, the Brazilian IAL-R558/2017/G8P[8] possess a "Distinct" VP1/R2 lineage never previously described and grouped apart from any of the DS-1-like reference strains. Collectively, our findings suggest that the Brazilian bovine-like G8P[8] strains with the DS-1-like backbone strains are continuously evolving and likely reassorting with local RVA strains rather than directly relating to imports from Asia. The Brazilian G8P[6]-DS-1-like strains have been reassorted with nearby co-circulating American strains of the same DS-1 genotype constellation. However, phylogenetic analyses revealed that these strains have some genetic origin from Africa. Finally, rather than being African-born, Brazilian G8P[4]-DS-1-like strains were likely imported from Europe. None of the Brazilian G8 strains examined here exhibited signs of recent zoonotic reassortment. G8 strains continued to be found in Brazil according to their intermittent and localized pattern, thus, does not suggest that a potential emergence is taking place in the country. Our research demonstrates the diversity of G8 RVA strains in Brazil and adds to the understanding of G8P[4]/P[6]/P[8] RVA genetic diversity and evolution on a global scale.
Collapse
Affiliation(s)
- Roberta Salzone Medeiros
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, Brazil
| | - Yasmin França
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, Brazil
| | - Ellen Viana
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, Brazil
| | - Lais Sampaio de Azevedo
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, Brazil
| | - Raquel Guiducci
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, Brazil
| | - Daniel Ferreira de Lima Neto
- General Coordination of Public Health Laboratories, Department of Strategic Articulation in Epidemiology and Health Surveillance, Ministry of Health, Brasília 70068-900, Brazil
| | - Antonio Charlys da Costa
- Medical Parasitology Laboratory (LIM/46), São Paulo Tropical Medicine Institute, University of Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Adriana Luchs
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, Brazil
| |
Collapse
|
2
|
Silva-Sales M, Leal E, Milagres FADP, Brustulin R, Morais VDS, Marcatti R, Araújo ELL, Witkin SS, Deng X, Sabino EC, Delwart E, Luchs A, Costa ACD. Genomic constellation of human Rotavirus A strains identified in Northern Brazil: a 6-year follow-up (2010-2016). Rev Inst Med Trop Sao Paulo 2020; 62:e98. [PMID: 33331517 PMCID: PMC7748031 DOI: 10.1590/s1678-9946202062098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/27/2020] [Indexed: 02/21/2023] Open
Abstract
Surveillance of Rotavirus A (RVA) throughout the national territory is important
to establish a more complete epidemiological-molecular scenario of this virus
circulation in Brazil. The aim of the present study was to investigate the
genetic diversity of RVA strains circulating in Tocantins State (Northern
Brazil) during six years of post-vaccination follow-up (2010-2016). A total of
248 stool samples were screened by next generation sequencing and 107 (43.1%)
nearly full length RVA genome sequences were obtained; one sample was
co-infected with two RVA strains (G2/G8P[4]). Six G and P genotypes combinations
were detected: G12P[8] strains (78.6%), as well as the G3P[8] (9.3%) and G1P[8]
(0.9%) were associated with a Wa-like genogroup backbone. All G2P[4] (5.6%) and
G8P[4] (2.8%) strains, including the mixed G2/G8P[4] infection (0.9%) showed the
DS-1-like genetic background. The two G12P[4] strains (1.9%) were associated
with distinct genetic backbones: Wa-like and DS-1-like. The phylogenetic
analysis revealed the circulation of lineages G1-I, G2-IV, G3-III, G8-I and
G12-III, and P[4]-V and P[8]-III of the VP7 and VP4 genes, respectively.
Conserved clustering pattern and low genetic diversity were observed regarding
VP1-VP3 and VP6, as well as NSP1-5 segments. We identified the same RVA
circulation pattern reported in other Brazilian regions in the period of
2010-2016, suggesting that rural and low-income areas may not have a different
RVA genotypic distribution compared to other parts of the country. The unique
presentation of whole-genome data of RVA strains detected in the Tocantins State
provides a baseline for monitoring variations in the genetic composition of RVA
in this area.
Collapse
Affiliation(s)
- Marcelle Silva-Sales
- Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Laboratório de Virologia e Cultivo Celular, Goiânia, Goiás, Brazil
| | - Elcio Leal
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Belém, Pará, Brazil
| | - Flavio Augusto de Pádua Milagres
- Universidade Federal do Tocantins, Palmas, Tocantins, Brazil.,Laboratório Central de Saúde Pública do Estado de Tocantins, Palmas, Tocantins, Brazil
| | - Rafael Brustulin
- Universidade Federal do Tocantins, Palmas, Tocantins, Brazil.,Laboratório Central de Saúde Pública do Estado de Tocantins, Palmas, Tocantins, Brazil
| | - Vanessa Dos Santos Morais
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil
| | - Roberta Marcatti
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil
| | - Emerson Luiz Lima Araújo
- Ministério da Saúde, Secretaria de Vigilância em Saúde, Departamento de Articulação Estratégica de Vigilância em Saúde, Coordenação Geral de Laboratórios de Saúde Pública, Brasília, Distrito Federal, Brazil
| | - Steven S Witkin
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil.,Weill Cornell Medicine, Department of Obstetrics and Gynecology, New York, New York, USA
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, California, USA.,University of California San Francisco, Department of Laboratory Medicine, San Francisco, California, USA
| | - Ester Cerdeira Sabino
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil
| | - Eric Delwart
- Vitalant Research Institute, San Francisco, California, USA.,University of California San Francisco, Department of Laboratory Medicine, San Francisco, California, USA
| | - Adriana Luchs
- Instituto Adolfo Lutz, Centro de Virologia, Núcleo de Doenças Entéricas, São Paulo, São Paulo, Brazil
| | - Antonio Charlys da Costa
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Mwangi PN, Mogotsi MT, Seheri ML, Mphahlele MJ, Peenze I, Esona MD, Kumwenda B, Steele AD, Kirkwood CD, Ndze VN, Dennis FE, Jere KC, Nyaga MM. Whole Genome In-Silico Analysis of South African G1P[8] Rotavirus Strains Before and After Vaccine Introduction Over A Period of 14 Years. Vaccines (Basel) 2020; 8:E609. [PMID: 33066615 PMCID: PMC7712154 DOI: 10.3390/vaccines8040609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/03/2022] Open
Abstract
Rotavirus G1P[8] strains account for more than half of the group A rotavirus (RVA) infections in children under five years of age, globally. A total of 103 stool samples previously characterized as G1P[8] and collected seven years before and seven years after introducing the Rotarix® vaccine in South Africa were processed for whole-genome sequencing. All the strains analyzed had a Wa-like constellation (G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1). South African pre- and post-vaccine G1 strains were clustered in G1 lineage-I and II while the majority (84.2%) of the P[8] strains were grouped in P[8] lineage-III. Several amino acid sites across ten gene segments with the exception of VP7 were under positive selective pressure. Except for the N147D substitution in the antigenic site of eight post-vaccine G1 strains when compared to both Rotarix® and pre-vaccine strains, most of the amino acid substitutions in the antigenic regions of post-vaccine G1P[8] strains were already present during the pre-vaccine period. Therefore, Rotarix® did not appear to have an impact on the amino acid differences in the antigenic regions of South African post-vaccine G1P[8] strains. However, continued whole-genome surveillance of RVA strains to decipher genetic changes in the post-vaccine period remains imperative.
Collapse
Affiliation(s)
- Peter N. Mwangi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (P.N.M.); (M.T.M.)
| | - Milton T. Mogotsi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (P.N.M.); (M.T.M.)
| | - Mapaseka L. Seheri
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa 0204, South Africa; (M.L.S.); (M.J.M.); (I.P.); (M.D.E.)
| | - M. Jeffrey Mphahlele
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa 0204, South Africa; (M.L.S.); (M.J.M.); (I.P.); (M.D.E.)
- South African Medical Research Council, Pretoria 0001, South Africa
| | - Ina Peenze
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa 0204, South Africa; (M.L.S.); (M.J.M.); (I.P.); (M.D.E.)
| | - Mathew D. Esona
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa 0204, South Africa; (M.L.S.); (M.J.M.); (I.P.); (M.D.E.)
| | - Benjamin Kumwenda
- College of Medicine, Department of Biomedical Sciences, Faculty of Biomedical Sciences and Health Professions, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi;
| | - A. Duncan Steele
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, P.O. Box 23350, Seattle, WA 98109, USA; (A.D.S.); (C.D.K.)
| | - Carl D. Kirkwood
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, P.O. Box 23350, Seattle, WA 98109, USA; (A.D.S.); (C.D.K.)
| | - Valantine N. Ndze
- Faculty of Health Sciences, University of Buea, P.O. Box 63, Buea, Cameroon;
| | - Francis E. Dennis
- Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG581, Legon, Ghana;
| | - Khuzwayo C. Jere
- Center for Global Vaccine Research, Institute of Infection, Liverpool L697BE, UK;
- Veterinary and Ecological Sciences, University of Liverpool, Liverpool L697BE, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Program, Department of Medical Laboratory Sciences, College of Medicine, University of Malawi, Blantyre 312225, Malawi
| | - Martin M. Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (P.N.M.); (M.T.M.)
| |
Collapse
|
4
|
Genotype constellation of a rotavirus A field strain with an uncommon G8P[11] genotype combination in a rotavirus-vaccinated dairy cattle herd. Arch Virol 2020; 165:1855-1861. [PMID: 32472289 DOI: 10.1007/s00705-020-04675-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/22/2020] [Indexed: 01/14/2023]
Abstract
In this report we describe the genotype constellation of a bovine rotavirus A (RVA) strain with an uncommon G8P[11] genotype combination. The RVA/Cow-wt/BRA/Y136/2017/G8P[11] strain was classified as G8-P[11]-I2-R5-C2-M2-A3-N2-T9-E2-H3. Phylogenetic analysis based on the VP7 gene showed that the Y136 strain and a human G8P[1] strain comprise a putative new (VII) lineage for the G8 genotype. In addition, two other genotypes, R5 (VP1) and T9 (NSP3), were identified in the constellation of Y136 that are rarely found in RVA strains of bovine origin. The immunological pressure caused by regular vaccination of cows might be responsible for the selection of heterologous RVA strains.
Collapse
|
5
|
Santos F, Sousa Junior E, Guerra S, Lobo P, Penha Junior E, Lima A, Vinente C, Chagas E, Justino M, Linhares A, Matthijnssens J, Soares L, Mascarenhas J. G1P[8] Rotavirus in children with severe diarrhea in the post-vaccine introduction era in Brazil: Evidence of reassortments and structural modifications of the antigenic VP7 and VP4 regions. INFECTION GENETICS AND EVOLUTION 2019; 69:255-266. [DOI: 10.1016/j.meegid.2019.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 12/17/2022]
|
6
|
de Barros BDCV, Chagas EN, Bezerra LW, Ribeiro LG, Duarte Júnior JWB, Pereira D, da Penha Junior ET, Silva JR, Bezerra DAM, Bandeira RS, Pinheiro HHC, Guerra SDFDS, Guimarães RJDPSE, Mascarenhas JDP. Rotavirus A in wild and domestic animals from areas with environmental degradation in the Brazilian Amazon. PLoS One 2018; 13:e0209005. [PMID: 30562373 PMCID: PMC6298726 DOI: 10.1371/journal.pone.0209005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 11/28/2018] [Indexed: 12/28/2022] Open
Abstract
Acute gastroenteritis is one of the main causes of mortality in humans and young animals. Domestic and mainly wild animals such as bats, small rodents and birds are highly diversified animals in relation to their habitats and ecological niches and are widely distributed geographically in environments of forest fragmentation in some areas of the Amazon, being considered important sources for viruses that affect humans and other animals. Due to the anthropical activities, these animals changed their natural habitat and adapted to urbanized environments, thus representing risks to human and animal health. Although the knowledge of the global diversity of enteric viruses is scarce, there are reports demonstrating the detection of rotavirus in domestic animals and animals of productive systems, such as bovines and pigs. The present study investigated the prevalence of Rotavirus A in 648 fecal samples of different animal species from the northeastern mesoregion of the state of Pará, Brazil, which is characterized as an urbanized area with forest fragments. The fecal specimens were collected from October 2014 to April 2016 and subjected to a Qualitative Real-Time Polymerase Chain Reaction (RT-qPCR), using the NSP3 gene as a target. It was observed that 27.5% (178/648) of the samples presented positive results for RVA, with 178 samples distributed in birds (23.6%), canines (21.35%), chiropterans (17.98%), bovines (14.6%), horses (8.43%), small rodents (6.74%), pigs (3.93%) and felines (3.37%), demonstrating the circulation of RVA in domestic animals and suggesting that such proximity could cause transmissions between different species and the occurrence of rearrangements in the genome of RVA as already described in the literature, associated to the traces of environmental degradation in the studied areas.
Collapse
Affiliation(s)
| | | | | | | | | | - Diego Pereira
- Amazon Metropolitan University Center, Belém, Pará, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Oni OO, Owoade AA, Adeyefa CAO. Design and evaluation of primer pairs for efficient detection of avian rotavirus. Trop Anim Health Prod 2017; 50:267-273. [PMID: 28963616 DOI: 10.1007/s11250-017-1425-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 09/20/2017] [Indexed: 10/18/2022]
Abstract
The use of molecular methods for rotavirus characterisation provides increased sensitivity for typing and allows the identification of putative reassortant strains. Reagents and methods for genotyping the virus need constant modification because of the reassortant nature of the virus. This study was aimed at designing and evaluating new oligonucleotide degenerate primer pairs that provide increased sensitivity and specificity for detecting avian rotavirus. Gene-specific primer pairs were designed by analysing different rotavirus strains isolated during the last decade by downloading them from the GenBank. The alignments were generated using clustal analysis from the BioEdit program. Degenerate nucleotides were included due to the reassortant nature of rotavirus. The consensus sequences were aligned using the BioEdit program and then treated with the Fast PCR software to derive the primers. The derived primer sequences were submitted for a BLAST search to ensure alignment was exclusive to the desired target genes. The designed primers had specific bands and were efficient in detecting rotavirus in faecal samples than previously published primers. Thus, a successful surveillance of rotaviruses requires that primer pairs be updated regularly in order to detect the emergence of novel or "unusual types", which have occurred by genetic drift causing nucleotide changes at the primer binding sites that result in typing failures. We recommend the use of the proposed primers in molecular surveillance studies for efficient detection of avian rotavirus.
Collapse
Affiliation(s)
- Oluwole Oyetunde Oni
- Department of Veterinary Medicine and Surgery, Federal University of Agriculture, P.M.B. 2240, Abeokuta, Ogun State, Nigeria.
| | | | | |
Collapse
|
8
|
Bwogi J, Jere KC, Karamagi C, Byarugaba DK, Namuwulya P, Baliraine FN, Desselberger U, Iturriza-Gomara M. Whole genome analysis of selected human and animal rotaviruses identified in Uganda from 2012 to 2014 reveals complex genome reassortment events between human, bovine, caprine and porcine strains. PLoS One 2017. [PMID: 28640820 PMCID: PMC5480867 DOI: 10.1371/journal.pone.0178855] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rotaviruses of species A (RVA) are a common cause of diarrhoea in children and the young of various other mammals and birds worldwide. To investigate possible interspecies transmission of RVAs, whole genomes of 18 human and 6 domestic animal RVA strains identified in Uganda between 2012 and 2014 were sequenced using the Illumina HiSeq platform. The backbone of the human RVA strains had either a Wa- or a DS-1-like genetic constellation. One human strain was a Wa-like mono-reassortant containing a DS-1-like VP2 gene of possible animal origin. All eleven genes of one bovine RVA strain were closely related to those of human RVAs. One caprine strain had a mixed genotype backbone, suggesting that it emerged from multiple reassortment events involving different host species. The porcine RVA strains had mixed genotype backbones with possible multiple reassortant events with strains of human and bovine origin.Overall, whole genome characterisation of rotaviruses found in domestic animals in Uganda strongly suggested the presence of human-to animal RVA transmission, with concomitant circulation of multi-reassortant strains potentially derived from complex interspecies transmission events. However, whole genome data from the human RVA strains causing moderate and severe diarrhoea in under-fives in Uganda indicated that they were primarily transmitted from person-to-person.
Collapse
Affiliation(s)
- Josephine Bwogi
- EPI laboratory, Uganda Virus Research Institute, Entebbe, Uganda
- Department of Paediatrics and Child Health, College of Health Sciences, Makerere University, Kampala, Uganda
- * E-mail:
| | - Khuzwayo C. Jere
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme / Department of Medical Laboratory Sciences, University of Malawi, College of Medicine, Blantyre, Malawi
| | - Charles Karamagi
- Department of Paediatrics and Child Health, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Denis K. Byarugaba
- Department of Microbiology, College of Veterinary Medicine and Biosecurity, Makerere University, Kampala, Uganda
| | - Prossy Namuwulya
- EPI laboratory, Uganda Virus Research Institute, Entebbe, Uganda
| | - Frederick N. Baliraine
- Department of Biology and Kinesiology, LeTourneau University, Longview, Texas, United States of America
| | | | - Miren Iturriza-Gomara
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|