1
|
García-Fernández S, Rodríguez-Grande J, Siller-Ruiz M, Fraile-Valcárcel N, Lara-Plaza I, Moure Z, Pablo-Marcos D, Rodríguez-Lozano J, Suberviola B, Cundín MPR, Fariñas MC, Ocampo-Sosa A, Calvo-Montes J. Within-host transition to GES-55 during a GES-6-producing Serratia marcescens outbreak: Emergence of ceftazidime-avibactam resistance and increased susceptibility to carbapenems. Int J Antimicrob Agents 2024; 64:107257. [PMID: 38914141 DOI: 10.1016/j.ijantimicag.2024.107257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/22/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
OBJECTIVES To describe the in vivo emergence of ceftazidime-avibactam resistance in GES-type carbapenemases and to characterize an unusual outbreak of GES-6-producing Serratia marcescens during the COVID-19 pandemic in Spain. METHODS Retrospective study to describe a GES-CPSM outbreak based on whole genome sequencing and antimicrobial susceptibility testing (AST). Transferability of blaGES-carrying plasmid was assessed by conjugation experiments. RESULTS In December 2020, we identified a cluster of S. marcescens harbouring blaGES-6 involving 9 patients. Whole-genome sequence analysis revealed a clonal relationship (≤3 SNPs) between the first isolates identified in each of the evolved patients and environmental samples with GES-CPSM detection. Plasmid analysis showed that the blaGES-6 gene was located in an IncQ3-type plasmid. Triparental mating experiments using a helper plasmid demonstrated mobilization of the blaGES-6-carrying plasmid. Our results also demonstrate within-host evolution in S. marcescens isolates, leading to a transition from blaGES-6 to the new blaGES-55, caused by the P162S mutation, in a subsequent infection in one of the affected patients. In blaGES-55 we identified emergence of ceftazidime-avibactam resistance along with an increase of carbapenems susceptibility. This patient had been treated with a 14-day course of ceftazidime-avibactam. AST of the transformants bearing blaGES-6 and blaGES-55 plasmids, confirmed susceptibility variation affecting ceftazidime-avibactam and carbapenems. CONCLUSIONS We report an unusual outbreak of GES-6 whose incidence is becoming increasing. Transition from GES-6 to GES-55 may readily occur in vivo leading to ceftazidime-avibactam resistance, which brings to the fore the critical need for developing more accurate diagnosis tools for detection of GES β-lactamases and optimise the use of antimicrobials.
Collapse
Affiliation(s)
- Sergio García-Fernández
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain; Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| | - Jorge Rodríguez-Grande
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain.
| | - María Siller-Ruiz
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Nuria Fraile-Valcárcel
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Isabel Lara-Plaza
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Zaira Moure
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Daniel Pablo-Marcos
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Jesús Rodríguez-Lozano
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Borja Suberviola
- Servicio de Medicina Preventiva, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - M Paz Rodríguez Cundín
- Servicio de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - María Carmen Fariñas
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Servicio de Enfermedades Infecciosas, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Alain Ocampo-Sosa
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Calvo-Montes
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Valiatti TB, Bessa-Neto FO, Santos FF, Silva RGB, Veiga R, Cassu-Corsi D, Moura TCF, Lobato ARF, Pignatari ACC, Souza CO, Brasiliense DM, Cayô R, Gales AC. Clonal dissemination of highly virulent Serratia marcescens strains producing KPC-2 in food-producing animals. One Health 2023; 17:100591. [PMID: 37388190 PMCID: PMC10302155 DOI: 10.1016/j.onehlt.2023.100591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Serratia marcescens is a Gram-negative bacterium presenting intrinsic resistance to polymyxins that has emerged as an important human pathogen. Although previous studies reported the occurrence of multidrug-resistance (MDR) S. marcescens isolates in the nosocomial settings, herein, we described isolates of this extensively drug-resistant (XDR) species recovered from stool samples of food-producing animals in the Brazilian Amazon region. Three carbapenem-resistant S. marcescens strains were recovered from stool samples of poultry and cattle. Genetic similarity analysis showed that these strains belonged to the same clone. Whole-genome sequencing of a representative strain (SMA412) revealed a resistome composed of genes encoding resistance to β-lactams [blaKPC-2, blaSRT-2], aminoglycosides [aac(6')-Ib3, aac(6')-Ic, aph(3')-VIa], quinolones [aac(6')-Ib-cr], sulfonamides [sul2], and tetracyclines [tet(41)]. In addition, the analysis of the virulome demonstrated the presence of important genes involved in the pathogenicity of this species (lipBCD, pigP, flhC, flhD, phlA, shlA, and shlB). Our data demonstrate that food-animal production can act as reservoirs for MDR and virulent strains of S. marcescens.
Collapse
Affiliation(s)
- Tiago Barcelos Valiatti
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
| | - Francisco Ozório Bessa-Neto
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
- Universidade Federal de São Paulo (UNIFESP), Laboratório de Imunologia e Bacteriologia (LIB), Setor de Biologia Molecular, Microbiologia e Imunologia, Departamento de Ciências Biológicas (DCB), Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Diadema, SP, Brazil
| | - Fernanda Fernandes Santos
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
| | - Ramon Giovanni Brandão Silva
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
- Universidade Federal de São Paulo (UNIFESP), Laboratório de Imunologia e Bacteriologia (LIB), Setor de Biologia Molecular, Microbiologia e Imunologia, Departamento de Ciências Biológicas (DCB), Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Diadema, SP, Brazil
| | - Ruanita Veiga
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
| | - Dandara Cassu-Corsi
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
| | - Tuane Carolina Ferreira Moura
- Seção de Bacteriologia e Micologia, Instituto Evandro Chagas (IEC), Secretaria de Ciência, Tecnologia, Inovação e Insumos Estratégicos em Saúde (SCTIE), Ministério da Saúde, Ananindeua, PA, Brazil
| | - Amalia Raiana Fonseca Lobato
- Seção de Bacteriologia e Micologia, Instituto Evandro Chagas (IEC), Secretaria de Ciência, Tecnologia, Inovação e Insumos Estratégicos em Saúde (SCTIE), Ministério da Saúde, Ananindeua, PA, Brazil
| | - Antonio Carlos Campos Pignatari
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
- Universidade Federal de São Paulo (UNIFESP), Laboratório Especial de Microbiologia Clínica (LEMC), Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
| | - Cintya Oliveira Souza
- Seção de Bacteriologia e Micologia, Instituto Evandro Chagas (IEC), Secretaria de Ciência, Tecnologia, Inovação e Insumos Estratégicos em Saúde (SCTIE), Ministério da Saúde, Ananindeua, PA, Brazil
| | - Danielle Murici Brasiliense
- Seção de Bacteriologia e Micologia, Instituto Evandro Chagas (IEC), Secretaria de Ciência, Tecnologia, Inovação e Insumos Estratégicos em Saúde (SCTIE), Ministério da Saúde, Ananindeua, PA, Brazil
| | - Rodrigo Cayô
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
- Universidade Federal de São Paulo (UNIFESP), Laboratório de Imunologia e Bacteriologia (LIB), Setor de Biologia Molecular, Microbiologia e Imunologia, Departamento de Ciências Biológicas (DCB), Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Diadema, SP, Brazil
| | - Ana Cristina Gales
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
- Universidade Federal de São Paulo (UNIFESP), Laboratório Especial de Microbiologia Clínica (LEMC), Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
| | | |
Collapse
|
3
|
Liu X, Zou D, Wang C, Zhang X, Pei D, Liu W, Li Y. Evaluation of loop-mediated isothermal amplification assays for rapid detection of blaKPC producing Serratia spp. in clinical specimens: A prospective diagnostic accuracy study. Exp Ther Med 2021; 21:308. [PMID: 33717251 PMCID: PMC7885079 DOI: 10.3892/etm.2021.9739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/10/2020] [Indexed: 11/12/2022] Open
Abstract
The prevalence of carbapenem-resistant Serratia spp. is increasing owing to the propagation of β lactamase Klebsiella pneumoniae carbapenemase (blaKPC) and it has become one of the major global health concerns. As effective therapies for such resistant pathogens are limited, there is a great need for the rapid and sensitive characterization of the pathogen. In the present study, a loop-mediated isothermal amplification (LAMP) method for the rapid detection of Serratia spp. with blaKPC in pure cultures and clinical specimens was developed. A calcein indicator and real-time turbidity recording system were used to assess the LAMP reaction. The LAMP assay was compared with conventional PCR and real-time PCR kits for the target pathogen. The desired amplification was achieved using selected primers and detection was possible using both the calcein indicator method and the real-time turbity recording system at 65˚C for 60 min. The sensitivity of the detection system for blaKPC-producing Serratia spp. reached a detection limit of 3.92 pg/µl DNA, which was 10 times more sensitive than conventional PCR. Specificity testing indicated that the primers were highly specific. Compared with conventional culture methods and real-time PCR, the LAMP assay was more sensitive, easier for laboratory staff to master and less influenced by the clinical specimen matrix. In conclusion, a LAMP assay for blaKPC-producing Serratia spp. that permitted rapid, sensitive and economical detection for this pathogen was successfully developed. Comparisons with alternative methods indicated that the LAMP assay was more feasible in a clinical setting.
Collapse
Affiliation(s)
- Xinwei Liu
- Department of Clinical Laboratory, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan 450002, P.R. China
| | - Dayang Zou
- Institute for Disease Prevention and Control, People's Liberation Army, Beijing 100071, P.R. China
| | - Chunxia Wang
- Department of Clinical Laboratory, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan 450002, P.R. China
| | - Xiaoqian Zhang
- Department of Clinical Laboratory, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan 450002, P.R. China
| | - Dongxu Pei
- Department of Clinical Laboratory, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan 450002, P.R. China
| | - Wei Liu
- Institute for Disease Prevention and Control, People's Liberation Army, Beijing 100071, P.R. China
| | - Yongwei Li
- Department of Clinical Laboratory, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan 450002, P.R. China
| |
Collapse
|
4
|
Oliveira ÉMD, Beltrão EMB, Scavuzzi AML, Barros JF, Lopes ACS. High plasmid variability, and the presence of IncFIB, IncQ, IncA/C, IncHI1B, and IncL/M in clinical isolates of Klebsiella pneumoniae with bla KPC and bla NDM from patients at a public hospital in Brazil. Rev Soc Bras Med Trop 2020; 53:e20200397. [PMID: 33111914 PMCID: PMC7580274 DOI: 10.1590/0037-8682-0397-2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Antibiotic resistance in carbapenemase-producing Klebsiella
pneumoniae is acquired and disseminated mainly by plasmids.
Therefore, we aimed to investigate the occurrence of carbapenemase genes,
analyze the genetic diversity by ERIC-PCR, and examine the most common
plasmid incompatibility groups (Incs) in clinical isolates of K.
pneumoniae from colonization and infection in patients from a
hospital in Brazil. METHODS Twenty-seven isolates of carbapenem-resistant K. pneumoniae
were selected and screened for the presence of carbapenemase genes and Incs
by PCR, followed by amplicon sequencing. RESULTS The blaKPC and blaNDM genes were detected in 24 (88.8 %) and 16 (59.2 %) of the
isolates, respectively. Thirteen isolates (48.1 %) were positive for both
genes. The IncFIB (92.6 %) and IncQ (88.8 %) were the most frequent
plasmids, followed by IncA/C, IncHI1B, and IncL/M, indicating that plasmid
variability existed in these isolates. To our knowledge, this is the first
report of IncHI1B in Brazil. We found eight isolates with clonal
relationship distributed in different sectors of the hospital. CONCLUSIONS The accumulation of resistance determinants, the variability of plasmid
Incs, and the clonal dissemination detected in K.
pneumoniae isolates demonstrate their potential for infection,
colonization, and the dissemination of different resistance genes and
plasmids.
Collapse
Affiliation(s)
- Érica Maria de Oliveira
- Universidade Federal de Pernambuco, Centro de Ciências Médicas, Área de Medicina Tropical, Recife, PE, Brasil
| | | | | | | | - Ana Catarina Souza Lopes
- Universidade Federal de Pernambuco, Centro de Ciências Médicas, Área de Medicina Tropical, Recife, PE, Brasil
| |
Collapse
|