1
|
Lin L, Ma J, Mei Q, Cai B, Chen J, Zuo Y, Zou Q, Li J, Li Y. Elastomeric Polyurethane Foams Incorporated with Nanosized Hydroxyapatite Fillers for Plastic Reconstruction. NANOMATERIALS 2018; 8:nano8120972. [PMID: 30477270 PMCID: PMC6316613 DOI: 10.3390/nano8120972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 12/27/2022]
Abstract
Plastic surgeons have long searched for the ideal materials to use in craniomaxillofacial reconstruction. The aim of this study was to obtain a novel porous elastomer based on designed aliphatic polyurethane (PU) and nanosized hydroxyapatite (n-HA) fillers for plastic reconstruction. The physicochemical properties of the prepared composite elastomer were characterized by infrared spectroscopy (IR), X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM), thermal analysis, mechanical tests, and X-ray photoelectron spectroscopy (XPS). The results assessed by the dynamic mechanical analysis (DMA) demonstrated that the n-HA/PU compounded foams had a good elasticity, flexibility, and supporting strength. The homogenous dispersion of the n-HA fillers could be observed throughout the cross-linked PU matrix. The porous elastomer also showed a uniform pore structure and a resilience to hold against general press and tensile stress. In addition, the elastomeric foams showed no evidence of cytotoxicity and exhibited the ability to enhance cell proliferation and attachment when evaluated using rat-bone-marrow-derived mesenchymal stem cells (BMSCs). The animal experiments indicated that the porous elastomers could form a good integration with bone tissue. The presence of n-HA fillers promoted cell infiltration and tissue regeneration. The elastomeric and bioactive n-HA/PU composite foam could be a good candidate for future plastic reconstruction.
Collapse
Affiliation(s)
- Lili Lin
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| | - Jingqi Ma
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| | - Quanjing Mei
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| | - Bin Cai
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| | - Jie Chen
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| | - Qin Zou
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
2
|
Abstract
OPINION STATEMENT The task of surgical research is to improve the efficacy of available surgical therapeutic modalities, develop new ones, and balance this well with favorable functional outcome. Therefore, surgical research is composed of a translational and a clinical component. In translational surgical research, animal models are used to better understand the biology of head and neck cancers, but even more importantly, the biology of changes to the disease and the microenvironment created by surgical interventions. Animal models additionally allow for the development of image-guided surgery systems, novel strategies of intraoperative adjuvant treatment, and patient "avatars" to test innovative anticancer drug combinations. In clinical surgical research, surgical techniques are validated in clinical trials for effectiveness of tumor control and improvement of functional recovery of the patient. In conclusion, surgical research for head and neck cancer is an active field spanning across the entire breadth of basic and clinical science devoted to a better understanding of what surgery does to the disease and to the patient.
Collapse
Affiliation(s)
- Genrich Tolstonog
- Service d'Oto-rhino-laryngologie - Chirurgie cervico-faciale, Centre Hospitalier Universitaire Vaudois (CHUV), Université de Lausanne (UNIL), Rue du Bugnon 21, 1011, Lausanne, Switzerland.
| | - Christian Simon
- Service d'Oto-rhino-laryngologie - Chirurgie cervico-faciale, Centre Hospitalier Universitaire Vaudois (CHUV), Université de Lausanne (UNIL), Rue du Bugnon 21, 1011, Lausanne, Switzerland
| |
Collapse
|