1
|
Murphy MM, Culligan EP, Murphy CP. Investigating the antimicrobial and antibiofilm properties of marine halophilic Bacillus species against ESKAPE pathogens. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70027. [PMID: 39446085 PMCID: PMC11500616 DOI: 10.1111/1758-2229.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Antimicrobial resistance (AMR), known as the "silent pandemic," is exacerbated by pathogenic bacteria's ability to form biofilms. Marine compounds hold promise for novel antibacterial drug discovery. Two isolates from preliminary saltwater environment screening demonstrated antimicrobial activity and were subsequently identified as Bacillus subtilis MTUA2 and Bacillus velezensis MTUC2. Minimum inhibitory concentrations (MICs), minimum biofilm inhibition concentrations (MBICs) and minimum biofilm eradication concentrations (MBECs) required to prevent and/or disrupt bacterial growth and biofilm formation were established for MRSA, Staphylococcus aureus, Acinetobacter baumannii and Escherichia coli. The metabolic activity within biofilms was determined by the 2,3,5-triphenyltetrazolium chloride assay. Both Bacillus species exhibited unique antimicrobial effects, reducing MRSA and S. aureus planktonic cell growth by 50% and sessile cell growth for S. aureus and E. coli by 50% and 90%, respectively. No effect was observed against A. baumannii. Significant MBIC and MBEC values were achieved, with 99% inhibition and 90% reduction in MRSA and S. aureus biofilms. Additionally, 90% and 50% inhibition was observed in E. coli and A. baumannii biofilms, respectively, with a 50% reduction in E. coli biofilm. These findings suggest that the mode of action employed by B. subtilis MTUA2 and B. velezensis MTUC2 metabolites should be further characterized and could be beneficial if used independently or in combination with other treatments.
Collapse
Affiliation(s)
- Monica M. Murphy
- Department of Biological SciencesMunster Technological UniversityCorkIreland
| | - Eamonn P. Culligan
- Department of Biological SciencesMunster Technological UniversityCorkIreland
| | - Craig P. Murphy
- Department of Biological SciencesMunster Technological UniversityCorkIreland
| |
Collapse
|
2
|
Caudal F, Roullier C, Rodrigues S, Dufour A, Artigaud S, Le Blay G, Bazire A, Petek S. Anti-Biofilm Extracts and Molecules from the Marine Environment. Mar Drugs 2024; 22:313. [PMID: 39057422 PMCID: PMC11278325 DOI: 10.3390/md22070313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Pathogenic bacteria and their biofilms are involved in many diseases and represent a major public health problem, including the development of antibiotic resistance. These biofilms are known to cause chronic infections for which conventional antibiotic treatments are often ineffective. The search for new molecules and innovative solutions to combat these pathogens and their biofilms has therefore become an urgent need. The use of molecules with anti-biofilm activity would be a potential solution to these problems. The marine world is rich in micro- and macro-organisms capable of producing secondary metabolites with original skeletons. An interest in the chemical strategies used by some of these organisms to regulate and/or protect themselves against pathogenic bacteria and their biofilms could lead to the development of bioinspired, eco-responsible solutions. Through this original review, we listed and sorted the various molecules and extracts from marine organisms that have been described in the literature as having strictly anti-biofilm activity, without bactericidal activity.
Collapse
Affiliation(s)
- Flore Caudal
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100 Lorient, France; (F.C.); (S.R.); (A.D.)
- IRD, Univ Brest, CNRS, Ifremer, LEMAR, IUEM, 29280 Plouzane, France; (S.A.); (G.L.B.)
| | - Catherine Roullier
- Institut des Substances et Organismes de la Mer, Nantes Université, ISOMER, UR 2160, 40000 Nantes, France;
| | - Sophie Rodrigues
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100 Lorient, France; (F.C.); (S.R.); (A.D.)
| | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100 Lorient, France; (F.C.); (S.R.); (A.D.)
| | - Sébastien Artigaud
- IRD, Univ Brest, CNRS, Ifremer, LEMAR, IUEM, 29280 Plouzane, France; (S.A.); (G.L.B.)
| | - Gwenaelle Le Blay
- IRD, Univ Brest, CNRS, Ifremer, LEMAR, IUEM, 29280 Plouzane, France; (S.A.); (G.L.B.)
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100 Lorient, France; (F.C.); (S.R.); (A.D.)
| | - Sylvain Petek
- IRD, Univ Brest, CNRS, Ifremer, LEMAR, IUEM, 29280 Plouzane, France; (S.A.); (G.L.B.)
| |
Collapse
|
3
|
Peran JE, Salvador-Reyes LA. Modified oxylipins as inhibitors of biofilm formation in Staphylococcus epidermidis. Front Pharmacol 2024; 15:1379643. [PMID: 38846101 PMCID: PMC11153713 DOI: 10.3389/fphar.2024.1379643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/23/2024] [Indexed: 06/09/2024] Open
Abstract
New approaches to combating microbial drug resistance are being sought, with the discovery of biofilm inhibitors considered as alternative arsenal for treating infections. Natural products have been at the forefront of antimicrobial discovery and serve as inspiration for the design of new antibiotics. We probed the potency, selectivity, and mechanism of anti-biofilm activity of modified oxylipins inspired by the marine natural product turneroic acid. Structure-activity relationship (SAR) evaluation revealed the importance of the trans-epoxide moiety, regardless of the position, for inhibiting biofilm formation. trans-12,13-epoxyoctadecanoic acid (1) and trans-9,10 epoxyoctadecanoic acid (4) selectively target the early stage of biofilm formation, with no effect on planktonic cells. These compounds interrupt the formation of a protective polysaccharide barrier by significantly upregulating the ica operon's transcriptional repressor. This was corroborated by docking experiment with SarA and scanning electron micrographs showing reduced biofilm aggregates and the absence of thread-like structures of extrapolymeric substances. In silico evaluation revealed that 1 and 4 can interfere with the AgrA-mediated communication language in Staphylococci, typical to the diffusible signal factor (DSF) capacity of lipophilic chains.
Collapse
Affiliation(s)
| | - Lilibeth A. Salvador-Reyes
- Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
4
|
Deng Y, Liu Y, Li J, Wang X, He S, Yan X, Shi Y, Zhang W, Ding L. Marine natural products and their synthetic analogs as promising antibiofilm agents for antibiotics discovery and development. Eur J Med Chem 2022; 239:114513. [DOI: 10.1016/j.ejmech.2022.114513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/25/2022]
|
5
|
The Ascidian-Derived Metabolites with Antimicrobial Properties. Antibiotics (Basel) 2020; 9:antibiotics9080510. [PMID: 32823633 PMCID: PMC7460354 DOI: 10.3390/antibiotics9080510] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
Among the sub-phylum of Tunicate, ascidians represent the most abundant class of marine invertebrates, with 3000 species by heterogeneous habitat, that is, from shallow water to deep sea, already reported. The chemistry of these sessile filter-feeding organisms is an attractive reservoir of varied and peculiar bioactive compounds. Most secondary metabolites isolated from ascidians stand out for their potential as putative therapeutic agents in the treatment of several illnesses like microbial infections. In this review, we present and discuss the antibacterial activity shown by the main groups of ascidian-derived products, such as sulfur-containing compounds, meroterpenes, alkaloids, peptides, furanones, and their derivatives. Moreover, the direct evidence of a symbiotic association between marine ascidians and microorganisms shed light on the real producers of many extremely potent marine natural compounds. Hence, we also report the antibacterial potential, joined to antifungal and antiviral activity, of metabolites isolated from ascidian-associate microorganisms by culture-dependent methods.
Collapse
|
6
|
Carvalhal F, Correia-da-Silva M, Sousa E, Pinto M, Kijjoa A. SULFATION PATHWAYS: Sources and biological activities of marine sulfated steroids. J Mol Endocrinol 2018; 61:T211-T231. [PMID: 29298811 DOI: 10.1530/jme-17-0252] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 12/31/2022]
Abstract
Marine environment is rich in structurally unique molecules and can be an inspiring source of novel drugs. Currently, six marine-derived drugs are in the market with FDA approval and several more are in the clinical pipeline. Structurally diverse and complex secondary metabolites have been isolated from the marine world and these include sulfated steroids. Biological activities of nearly 150 marine sulfated steroids reported from 1978 to 2017 are compiled and described, namely antimicrobial, antitumor, cardiovascular and antifouling activities. Structure-activity relationship for each activity is discussed.
Collapse
Affiliation(s)
- Francisca Carvalhal
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| | - Marta Correia-da-Silva
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| | - Anake Kijjoa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| |
Collapse
|
7
|
Celerino de Moraes Porto IC, Chaves Cardoso de Almeida D, Vasconcelos Calheiros de Oliveira C G, Sampaio Donato TS, Moreira Nunes L, Gomes do Nascimento T, dos Santos Oliveira JM, Batista da Silva C, Barbosa dos Santos N, de Alencar e Silva Leite ML, Diniz Basílio-Júnior I, Braga Dornelas C, Barnabé Escodro P, da Silva Fonseca EJ, Umeko Kamiya R. Mechanical and aesthetics compatibility of Brazilian red propolis micellar nanocomposite as a cavity cleaning agent. Altern Ther Health Med 2018; 18:219. [PMID: 30021632 PMCID: PMC6052596 DOI: 10.1186/s12906-018-2281-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Propolis is a natural substance produced by bees and is known to have antimicrobial activity. Our aim was to evaluate the antimicrobial effect of micellar nanocomposites loaded with an ethyl acetate extract of Brazilian red propolis as a cavity cleaning agent and its influence on the color and microtensile bond strength (μTBS) of the dentin/resin interface. METHODS An ultra-performance liquid chromatography coupled with a diode array detector (UPLC-DAD) assay was used to determine the flavonoids and isoflavones present in an ethyl acetate extract of Brazilian red propolis (EARP) and micellar nanocomposites loaded with EARP (MNRP). The antimicrobial activity of EARP and MNRP was tested against Streptococcus mutans, Lactobacillus acidophilus, and Candida albicans. One of the following experimental treatments was applied to etched dentin (phosphoric acid, 15 s): 5 μL of MNRP (RP3, 0.3%; RP6, 0.6%; or RP1, 1.0% w/v), placebo, and 2% chlorhexidine digluconate. Single Bond adhesive (3 M/ESPE) was applied and a 4-mm-thick resin crown (Z350XT, 3 M/ESPE) was built up. After 24 h, the teeth were sectioned into sticks for the μTBS test and scanning electron microscopy. Spectrophotometry according to the CIE L*a*b* chromatic space was used to evaluate the color. Data were analyzed using one-way ANOVA and the Tukey test or Kruskal-Wallis test and the same test for pairwise comparisons between the means (P < 0.05). RESULTS The UPLC-DAD assay identified the flavonoids liquiritigenin, pinobanksin, pinocembrin, and isoliquiritigenin and the isoflavonoids daidzein, formononetin, and biochanin A in the EARP and micellar nanocomposites. EARP and MNRP presented antimicrobial activity against the cariogenic bacteria Streptococcus mutans and Lactobacillus acidophilus, and for Candida albicans. ΔE values varied from 2.31 to 3.67 (P = 0.457). The mean μTBS for RP1 was significantly lower than for the other groups (P < 0.001). Dentin treated with RP1 showed the shortest resin tags followed by RP6 and RP3. CONCLUSIONS The EARP and (MNRP) showed antimicrobial activity for the main agents causing dental caries (Streptococcus mutans and Lactobacillus acidophilus) and for Candida albicans. MNRP at concentrations of 0.3 and 0.6% used as a cavity cleaner do not compromise the aesthetics or μTBS of the dentin/resin interface.
Collapse
|
8
|
Nakamura F, Kudo N, Tomachi Y, Nakata A, Takemoto M, Ito A, Tabei H, Arai D, de Voogd N, Yoshida M, Nakao Y, Fusetani N. Halistanol sulfates I and J, new SIRT1–3 inhibitory steroid sulfates from a marine sponge of the genus Halichondria. J Antibiot (Tokyo) 2017; 71:273-278. [DOI: 10.1038/ja.2017.145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 11/09/2022]
|
9
|
Choudhary A, Naughton LM, Montánchez I, Dobson ADW, Rai DK. Current Status and Future Prospects of Marine Natural Products (MNPs) as Antimicrobials. Mar Drugs 2017; 15:md15090272. [PMID: 28846659 PMCID: PMC5618411 DOI: 10.3390/md15090272] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/12/2017] [Accepted: 08/23/2017] [Indexed: 12/31/2022] Open
Abstract
The marine environment is a rich source of chemically diverse, biologically active natural products, and serves as an invaluable resource in the ongoing search for novel antimicrobial compounds. Recent advances in extraction and isolation techniques, and in state-of-the-art technologies involved in organic synthesis and chemical structure elucidation, have accelerated the numbers of antimicrobial molecules originating from the ocean moving into clinical trials. The chemical diversity associated with these marine-derived molecules is immense, varying from simple linear peptides and fatty acids to complex alkaloids, terpenes and polyketides, etc. Such an array of structurally distinct molecules performs functionally diverse biological activities against many pathogenic bacteria and fungi, making marine-derived natural products valuable commodities, particularly in the current age of antimicrobial resistance. In this review, we have highlighted several marine-derived natural products (and their synthetic derivatives), which have gained recognition as effective antimicrobial agents over the past five years (2012–2017). These natural products have been categorized based on their chemical structures and the structure-activity mediated relationships of some of these bioactive molecules have been discussed. Finally, we have provided an insight into how genome mining efforts are likely to expedite the discovery of novel antimicrobial compounds.
Collapse
Affiliation(s)
- Alka Choudhary
- Department of Food Biosciences, Teagasc Food Research Centre Ashtown, Dublin D15 KN3K, Ireland.
| | - Lynn M Naughton
- School of Microbiology, University College Cork, Western Road, Cork City T12 YN60, Ireland.
| | - Itxaso Montánchez
- Department of Immunology, Microbiology and Parasitology, Faculty of Science, University of the Basque Country, (UPV/EHU), 48940 Leioa, Spain.
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Western Road, Cork City T12 YN60, Ireland.
| | - Dilip K Rai
- Department of Food Biosciences, Teagasc Food Research Centre Ashtown, Dublin D15 KN3K, Ireland.
| |
Collapse
|
10
|
Ben Taheur F, Kouidhi B, Fdhila K, Elabed H, Ben Slama R, Mahdouani K, Bakhrouf A, Chaieb K. Anti-bacterial and anti-biofilm activity of probiotic bacteria against oral pathogens. Microb Pathog 2016; 97:213-20. [PMID: 27317856 DOI: 10.1016/j.micpath.2016.06.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/24/2016] [Accepted: 06/14/2016] [Indexed: 01/01/2023]
Abstract
In this study, three lactic acid bacteria (LAB), isolated from barley, traditional dried meat and fermented olive were characterized and tested for their anti-bacterial and anti-biofilm activities against oral bacteria. Our results revealed that the tested LAB were γ-hemolytic and were susceptible to four antibiotics. All the strains were resistant to low pH, bile salt, pepsin and pancreatin. Furthermore, FB2 displayed a high aut-oaggregative phenotype (99.54%) while FF2 exhibited the best co-aggregation rate. Concerning the microbial adhesion to solvent, FB2 was the most hydrophobic strain (data obtained with chloroform and n-hexadecane). In addition Pediococcus pentosaceus FB2 and Lactobacillus brevis FF2 displayed a significant inhibitory effect against Streptococcus salivarius B468 (MIC = 10%). Moreover the selected strains were able to inhibit biofilm formation of Bacillus cereus ATCC14579 (MBIC50 = 28.16%) and S. salivarius B468 (MBIC50 = 42.28%). The selected LAB could be considered as candidate probiotics for further application in functional food and mainly in the prevention of oral diseases.
Collapse
Affiliation(s)
- Fadia Ben Taheur
- Laboratory of Analysis, Treatment and Valorization of Environmental Polluants and Products, Faculty of Pharmacy, Monastir University, Tunisia
| | - Bochra Kouidhi
- College of Applied Medical Sciences, Medical Laboratory Department, Yanbu el Bahr, Taibah University, Al Madinah Al Monawarah, Saudi Arabia
| | - Kais Fdhila
- Laboratory of Analysis, Treatment and Valorization of Environmental Polluants and Products, Faculty of Pharmacy, Monastir University, Tunisia
| | - Hamouda Elabed
- Laboratory of Analysis, Treatment and Valorization of Environmental Polluants and Products, Faculty of Pharmacy, Monastir University, Tunisia
| | - Rihab Ben Slama
- Laboratory of Analysis, Treatment and Valorization of Environmental Polluants and Products, Faculty of Pharmacy, Monastir University, Tunisia
| | - Kacem Mahdouani
- Laboratory of Analysis, Treatment and Valorization of Environmental Polluants and Products, Faculty of Pharmacy, Monastir University, Tunisia
| | - Amina Bakhrouf
- Laboratory of Analysis, Treatment and Valorization of Environmental Polluants and Products, Faculty of Pharmacy, Monastir University, Tunisia
| | - Kamel Chaieb
- College of Sciences, Yanbu el Bahr, Taibah University, Al Madinah Al Monawarah, Saudi Arabia.
| |
Collapse
|
11
|
Sintim HO, Gürsoy UK. Biofilms as "Connectors" for Oral and Systems Medicine: A New Opportunity for Biomarkers, Molecular Targets, and Bacterial Eradication. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 20:3-11. [PMID: 26583256 PMCID: PMC4739346 DOI: 10.1089/omi.2015.0146] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oral health and systems medicine are intimately related but have remained, sadly, as isolated knowledge communities for decades. Are there veritable connector knowledge domains that can usefully link them together on the critical path to biomarker research and “one health”? In this context, it is noteworthy that bacteria form surface-attached communities on most biological surfaces, including the oral cavity. Biofilm-forming bacteria contribute to periodontal diseases and recent evidences point to roles of these bacteria in systemic diseases as well, with cardiovascular diseases, obesity, and cancer as notable examples. Interestingly, the combined mass of microorganisms such as bacteria are so large that when we combine all plants and animals on earth, the total biomass of bacteria is still bigger. They literally do colonize everywhere, not only soil and water but our skin, digestive tract, and even oral cavity are colonized by bacteria. Hence efforts to delineate biofilm formation mechanisms of oral bacteria and microorganisms and the development of small molecules to inhibit biofilm formation in the oral cavity is very timely for both diagnostics and therapeutics. Research on biofilms can benefit both oral and systems medicine. Here, we examine, review, and synthesize new knowledge on the current understanding of oral biofilm formation, the small molecule targets that can inhibit biofilm formation in the mouth. We suggest new directions for both oral and systems medicine, using various omics technologies such as SILAC and RNAseq, that could yield deeper insights, biomarkers, and molecular targets to design small molecules that selectively aim at eradication of pathogenic oral bacteria. Ultimately, devising new ways to control and eradicate bacteria in biofilms will open up novel diagnostic and therapeutic avenues for oral and systemic diseases alike.
Collapse
Affiliation(s)
- Herman O Sintim
- 1 Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland.,2 Department of Chemistry, Purdue University , West Lafayette, Indiana
| | - Ulvi Kahraman Gürsoy
- 3 Department of Periodontology, Institute of Dentistry, University of Turku , Turku, Finland
| |
Collapse
|