1
|
Subramanian R, Ponnanikajamideen M, Samuel Rajendran R, Alshehri MA, Alasmari A, Panneerselvam C, Periyasamy S. TiO 2 nanoparticles: green synthesis, characterization, and investigation of antimicrobial properties, and developmental toxicity in zebrafish ( Danio rerio) embryos. Drug Chem Toxicol 2024; 47:90-100. [PMID: 37314742 DOI: 10.1080/01480545.2023.2217697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/09/2023] [Accepted: 03/31/2023] [Indexed: 06/15/2023]
Abstract
The present study was designed to green synthesize titanium dioxide nanoparticles (G-TiO2 NPs) using Salacia reticulata leaf extract as a reducing and capping agent to assess antidiabetic, anti-inflammatory, and antibacterial effects as well as toxicity evaluation in zebrafish. Besides, zebrafish embryos were employed to study the effect of G-TiO2 NPs on embryonic development. Zebrafish embryos were treated with TiO2 as well as G-TiO2 NPs at four different concentrations, i.e., 25, 50, 100, and 200 µg/ml for 24-96-hour post-fertilization (hpf). The SEM analysis of G-TiO2 NPs confirmed that the size was in the range of 32-46 nm and characterized by EDX, X-ray diffraction (XRD), FTIR, UV-vis spectra. During 24-96-hour post-fertilization (hpf), the results showed that 25-100 µg/ml of TiO2 and G-TiO2 NP instigated developmental acute toxicity in these embryos, causing mortality, hatching delay, and malformation. TiO2 and G-TiO2 NPs exposure induced axis bent, tail bent, spinal cord curvature, yolk-sac, and pericardial edema. Exposure of larvae to the highest concentrations of 200 μg/ml TiO2 and G-TiO2 NPs caused maximum mortality at all time points and reached 70% and 50%, respectively, at 96 hpf. Besides, both TiO2 and G-TiO2 NP revealed antidiabetic and anti-inflammatory effects in vitro. In addition, G-TiO2 NPs exhibited antibacterial effects. Taken together, this study provided a valuable insight into the synthesis of TiO2 NPs using green methods and the synthesized G-TiO2 NPs possess moderate toxicity and potent antidiabetic, anti-inflammatory and antibacterial activities.
Collapse
Affiliation(s)
- Rajaduraipandian Subramanian
- Department of Chemistry, Sri Paramakalyani College, Alwarkurichi, India
- Environmental Nanobiotechnology Division, Sri Paramakalyani Centre for Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, India
| | - Mohemedibrahim Ponnanikajamideen
- Environmental Nanobiotechnology Division, Sri Paramakalyani Centre for Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, India
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Rapael Samuel Rajendran
- Environmental Nanobiotechnology Division, Sri Paramakalyani Centre for Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, India
- Biology Institute, Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | | | - Abdulrahman Alasmari
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Chellasamy Panneerselvam
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Selvendiran Periyasamy
- Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
2
|
Ahmad MA, Chaudhary S, Deng X, Cheema M, Javed R. Nano-stevia interaction: Past, present, and future. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107807. [PMID: 37311291 DOI: 10.1016/j.plaphy.2023.107807] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/27/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Nanotechnology has recently been emerged as a transformative technology that offers efficient and sustainable options for nano-bio interface. There has been a considerable interest in exploring the factors affecting elicitation mechanism and nanomaterials have been emerged as strong elicitors in medicinal plants. Stevia rebaudiana is well-known bio-sweetener and the presence of zero calorie, steviol glycosides (SGs) in the leaves of S. rebaudiana have made it a desirable crop to be cultivated on large scale to obtain its higher yield and maximal content of high quality natural sweeteners. Besides, phenolics, flavonoids, and antioxidants are abundant in stevia which contribute to its medicinal importance. Currently, scientists are trying to increase the market value of stevia by the enhancement in production of its bioactive compounds. As such, various in vitro and cell culture strategies have been adopted. In stevia agronanotechnology, nanoparticles behave as elicitors for the triggering of its secondary metabolites, specifically rebaudioside A. This review article discusses the importance of S. rebaudiana and SGs, conventional approaches that have failed to increase the desired yield and quality of stevia, modern approaches that are currently being applied to obtain utmost benefits of SGs, and future needs of advanced technologies for further exploitation of this wonder of nature.
Collapse
Affiliation(s)
- Muhammad Arslan Ahmad
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Sadaf Chaudhary
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Xu Deng
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| | - Mumtaz Cheema
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland and Labrador, Corner Brook, A2H 5G4, Newfoundland, Canada
| | - Rabia Javed
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland and Labrador, Corner Brook, A2H 5G4, Newfoundland, Canada.
| |
Collapse
|
3
|
Kambale EK, Quetin-Leclercq J, Memvanga PB, Beloqui A. An Overview of Herbal-Based Antidiabetic Drug Delivery Systems: Focus on Lipid- and Inorganic-Based Nanoformulations. Pharmaceutics 2022; 14:2135. [PMID: 36297570 PMCID: PMC9610297 DOI: 10.3390/pharmaceutics14102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Diabetes is a metabolic pathology with chronic high blood glucose levels that occurs when the pancreas does not produce enough insulin or the body does not properly use the insulin it produces. Diabetes management is a puzzle and focuses on a healthy lifestyle, physical exercise, and medication. Thus far, the condition remains incurable; management just helps to control it. Its medical treatment is expensive and is to be followed for the long term, which is why people, especially from low-income countries, resort to herbal medicines. However, many active compounds isolated from plants (phytocompounds) are poorly bioavailable due to their low solubility, low permeability, or rapid elimination. To overcome these impediments and to alleviate the cost burden on disadvantaged populations, plant nanomedicines are being studied. Nanoparticulate formulations containing antidiabetic plant extracts or phytocompounds have shown promising results. We herein aimed to provide an overview of the use of lipid- and inorganic-based nanoparticulate delivery systems with plant extracts or phytocompounds for the treatment of diabetes while highlighting their advantages and limitations for clinical application. The findings from the reviewed works showed that these nanoparticulate formulations resulted in high antidiabetic activity at low doses compared to the corresponding plant extracts or phytocompounds alone. Moreover, it was shown that nanoparticulate systems address the poor bioavailability of herbal medicines, but the lack of enough preclinical and clinical pharmacokinetic and/or pharmacodynamic trials still delays their use in diabetic patients.
Collapse
Affiliation(s)
- Espoir K. Kambale
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa 012, Democratic Republic of the Congo
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Avenue Mounier 72, B1.72.03, 1200 Brussels, Belgium
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa 012, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, B.P. 212, Kinshasa 012, Democratic Republic of the Congo
| | - Ana Beloqui
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
- Walloon Excellence in Life Science and Biotechnology (WELBIO), Avenue Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
4
|
Reverse pharmacology of phytoconstituents of food and plant in the management of diabetes: Current status and perspectives. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.10.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Nouri Z, Hajialyani M, Izadi Z, Bahramsoltani R, Farzaei MH, Abdollahi M. Nanophytomedicines for the Prevention of Metabolic Syndrome: A Pharmacological and Biopharmaceutical Review. Front Bioeng Biotechnol 2020; 8:425. [PMID: 32478050 PMCID: PMC7240035 DOI: 10.3389/fbioe.2020.00425] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Metabolic syndrome includes a series of metabolic abnormalities that leads to diabetes mellitus and cardiovascular diseases. Plant extracts, due to their unique advantages like anti-inflammatory, antioxidant, and insulin sensitizing properties, are interesting therapeutic options to manage MetS; however, the poor solubility and low bioavailability of lipophilic bioactive components in the herbal extracts are two critical challenges. Nano-scale delivery systems are suitable to improve delivery of herbal extracts. This review, for the first time, focuses on nanoformulations of herbal extracts in MetS and related complications. Included studies showed that several forms of nano drug delivery systems such as nanoemulsions, solid lipid nanoparticles, nanobiocomposites, and green-synthesized silver, gold, and zinc oxide nanoparticles have been developed using herbal extracts. It was shown that the method of preparation and related parameters such as temperature and type of polymer are important factors affecting physicochemical stability and therapeutic activity of the final product. Many of these formulations could successfully decrease the lipid profile, inflammation, oxidative damage, and insulin resistance in in vitro and in vivo models of MetS-related complications. Further studies are still needed to confirm the safety and efficacy of these novel herbal formulations for clinical application.
Collapse
Affiliation(s)
- Zeinab Nouri
- Students Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marziyeh Hajialyani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Ahmad MA, Yuesuo Y, Ao Q, Adeel M, Hui ZY, Javed R. Appraisal of Comparative Therapeutic Potential of Undoped and Nitrogen-Doped Titanium Dioxide Nanoparticles. Molecules 2019; 24:E3916. [PMID: 31671678 PMCID: PMC6864622 DOI: 10.3390/molecules24213916] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/24/2019] [Accepted: 10/27/2019] [Indexed: 12/12/2022] Open
Abstract
Nitrogen-doped and undoped titanium dioxide nanoparticles were successfully fabricated by simple chemical method and characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray (EDX), and transmission electron microscopy (TEM) techniques. The reduction in crystalline size of TiO2 nanoparticles (from 20-25 nm to 10-15 nm) was observed by TEM after doping with N. Antibacterial, antifungal, antioxidant, antidiabetic, protein kinase inhibition and cytotoxic properties were assessed in vitro to compare the therapeutic potential of both kinds of TiO2 nanoparticles. All biological activities depicted significant enhancement as a result of addition of N as doping agent to TiO2 nanoparticles. Klebsiella pneumoniae has been illuminated to be the most susceptible bacterial strain out of various Gram-positive and Gram-negative isolates of bacteria used in this study. Good fungicidal activity has been revealed against Aspergillus flavus. 38.2% of antidiabetic activity and 80% of cytotoxicity has been elucidated by N-doped TiO2 nanoparticles towards alpha-amylase enzyme and Artemia salina (brine shrimps), respectively. Moreover, notable protein kinase inhibition against Streptomyces and antioxidant effect including reducing power and % inhibition of DPPH has been demonstrated. This investigation unveils the more effective nature of N-doped TiO2 nanoparticles in comparison to undoped TiO2 nanoparticles indicated by various biological tests. Hence, N-doped TiO2 nanoparticles have more potential to be employed in biomedicine for the cure of numerous infections.
Collapse
Affiliation(s)
- Muhammad Arslan Ahmad
- Department of Tissue Engineering, China Medical University, Shenyang 110122, China.
- Key Lab of Eco-restoration of Regional Contaminated Environment, Shenyang University, Ministry of Education, Shenyang 11044, China.
| | - Yang Yuesuo
- Key Lab of Eco-restoration of Regional Contaminated Environment, Shenyang University, Ministry of Education, Shenyang 11044, China.
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang 110122, China.
| | - Muhammad Adeel
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Zhang Yan Hui
- Department of Tissue Engineering, China Medical University, Shenyang 110122, China.
| | - Rabia Javed
- Department of Tissue Engineering, China Medical University, Shenyang 110122, China.
| |
Collapse
|
7
|
Baskaran XR, Vigila AVG, Rajan K, Zhang S, Liao W. Free Radical Scavenging and Some Pharmaceutical Utilities of Nanoparticles in the Recent Scenario. Curr Pharm Des 2019; 25:2677-2693. [PMID: 31333102 DOI: 10.2174/1381612825666190716110330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/03/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nanopharmaceuticals have rapidly emerged as a means to cure several diseases. There are numerous reports describing the development and application of nanopharmaceuticals. Here, we discussed nanoparticle synthesis and the mechanisms to scavenge free radicals. We also discuss their major properties and list several commercially available nanomedicines. RESULTS Reactive oxygen and hydrogen species are formed during normal metabolism, and excessive reactive species can damage proteins, lipids, and DNA and cause disease. Plant- and microbe-based nanoparticles, which can protect tissues from free radical damage, have recently gained research momentum because they are inexpensive and safe. CONCLUSION Synthetic and biocompatible nanoparticles exhibit antioxidant, antidiabetic, anti-inflammatory, and anticancer properties, which can be used to treat several diseases. Further studies are needed to investigate their sizes, dose-dependent activities, and mechanisms of action.
Collapse
Affiliation(s)
- Xavier-Ravi Baskaran
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510 275, China.,Shenzhen Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518 004, China
| | - Antony-Varuvel G Vigila
- Department of Zoology, St. Xavier's College, Palayamkottai 627 002, Tamil Nadu, India.,Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627 012, Tamil Nadu, India
| | - Kilimas Rajan
- Department of Botany, St. Joseph's College, Tiruchirappalli 620 002, Tamil Nadu, India
| | - Shouzhou Zhang
- Shenzhen Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518 004, China
| | - Wenbo Liao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510 275, China
| |
Collapse
|
8
|
Mohsen AM. Nanotechnology Advanced Strategies for the Management of Diabetes Mellitus. Curr Drug Targets 2019; 20:995-1007. [DOI: 10.2174/1389450120666190307101642] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/19/2019] [Accepted: 02/22/2019] [Indexed: 12/11/2022]
Abstract
Background:Medications currently available for the management of diabetes mellitus are inconvenient and have some limitations. Thus, investigations for novel approaches are needed to deliver and target antidiabetics safely to the site of action.Objective:The present review emphasizes the limitations of conventional antidiabetics and provides the recent progresses of nanotechnology in the treatment of diabetes mellitus with a special highlight on the novel nanocarriers methodologies employed as antidiabetic drug delivery systems.Methods:The potential nanocarriers employed for the treatment of diabetes comprise liposomes, niosomes, self-nanoemulsifying drug delivery systems, polymeric nanoparticles, gold nanoparticles, dendrimers and micelles. Herbal nanomedicine has also emerged to be a promising way for adequate delivery of herbal compounds. Other nanotechnology approaches involve the usage of oral insulin, inhalable insulin, artificial pancreas, and nanopump.Results:Nanocarriers have proved to lead a successful delivery of antidiabetic medications, aiming at drug targeting for enhanced efficacy and safety.Conclusion:These innovative generations of drug delivery systems have important benefits over conventionally existing ones. The future of nanotechnology in the management of diabetes is still open with several prospects and will be of pronounced significance.
Collapse
Affiliation(s)
- Amira Mohamed Mohsen
- Pharmaceutical Technology Department, National Research Centre, Dokki 12622, Giza, Egypt
| |
Collapse
|
9
|
Ahmad J, Khan I, Johnson SK, Alam I, Din ZU. Effect of Incorporating Stevia and Moringa in Cookies on Postprandial Glycemia, Appetite, Palatability, and Gastrointestinal Well-Being. J Am Coll Nutr 2017; 37:133-139. [PMID: 29272206 DOI: 10.1080/07315724.2017.1372821] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Medicinal plants including stevia and moringa constitute an important source of health-beneficial bioactive components, and hence their intake may beneficially modulate biomarkers of chronic diseases. OBJECTIVE The objective of the present study was to investigate the effect of incorporating stevia and moringa leaf powder in cookies on postprandial glycemia, appetite, palatability, and gastrointestinal well-being in humans. METHOD In a randomized crossover design, 20 healthy subjects consumed 3 isocaloric test foods (each providing 50 g available carbohydrates) of control cookies (CC) made from 100% wheat flour, cookies containing stevia leaf powder (SC, 3% w/w), and cookies containing moringa leaf powder (MC, 5% w/w) as breakfast. Blood glucose and subjective appetite were measured at fasting and at 15, 30, 45, 60, 90, and 120 min after the consumption of the cookies. Palatability and gastrointestinal well-being were measured using standard questionnaires. RESULTS Compared to CC, MC resulted in a significant decrease in postprandial blood glucose concentration at 30 and 45 min (p = 0.002 and p = 0.003, respectively) and showed a tendency (p = 0.077) for lower blood glucose incremental area under the curve (iAUC). Subjects were significantly less hungry after SC and MC intake (p = 0.035 and p = 0.041, respectively) compared to CC. All the cookies were liked by the subjects without any reported gastrointestinal discomfort. CONCLUSION The results showed that compared to CC, MC improved postprandial glycemia and reduced hunger, while SC reduced hunger only. Future studies are now warranted to explore the mechanisms responsible for these observed effects.
Collapse
Affiliation(s)
- Jamil Ahmad
- a Department of Human Nutrition , The University of Agriculture Peshawar , Peshawar , Pakistan
| | - Imran Khan
- a Department of Human Nutrition , The University of Agriculture Peshawar , Peshawar , Pakistan
| | - Stuart K Johnson
- b School of Public Health, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University , Perth , Western Australia , Australia
| | - Iftikhar Alam
- c Department of Human Nutrition and Dietetics , Bacha Khan University , Charsadda , Pakistan
| | - Zia Ud Din
- a Department of Human Nutrition , The University of Agriculture Peshawar , Peshawar , Pakistan
| |
Collapse
|