1
|
Combination Therapy of Pulsed Dye Laser With Intense Pulsed Light in Port-Wine Stain Treatment: A Prospective Side-by-Side Comparison. Dermatol Surg 2021; 47:1229-1232. [PMID: 34448759 DOI: 10.1097/dss.0000000000003114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Pulsed dye laser (PDL) treatment currently represents the mainstream choice for port-wine stain (PWS) treatment in accordance with selective photothermolysis. However, most PWS lesions cannot be removed despite several treatments. Intense pulsed light (IPL) is reportedly an effective alternative to PDL for PWS treatment. No studies have thus far been reported on the combination therapy of PDL with IPL in PWS treatment. OBJECTIVE This study evaluated the efficacy and safety of PDL with IPL for PWS treatment. METHODS A total of 33 PWS lesions underwent 3 treatment sessions. Each PWS was divided into IPL + PDL, PDL, and untreated sites. Therapeutic outcomes were evaluated by visual assessment and chromametric assessment 3 months after the final treatment. RESULTS The overall average blanching rates were 36.2% and 32.6% at the sites treated with IPL + PDL and PDL, respectively (p > .05). No permanent side effects were reported. CONCLUSION In this laser setting, although IPL + PDL is a safe and effective PWS treatment, no significant improvement in the efficacy was observed using IPL + PDL in contrast to PDL alone.
Collapse
|
2
|
Mimura H, Akita S, Fujino A, Jinnin M, Ozaki M, Osuga K, Nakaoka H, Morii E, Kuramochi A, Aoki Y, Arai Y, Aramaki N, Inoue M, Iwashina Y, Iwanaka T, Ueno S, Umezawa A, Ozeki M, Ochi J, Kinoshita Y, Kurita M, Seike S, Takakura N, Takahashi M, Tachibana T, Chuman K, Nagata S, Narushima M, Niimi Y, Nosaka S, Nozaki T, Hashimoto K, Hayashi A, Hirakawa S, Fujikawa A, Hori Y, Matsuoka K, Mori H, Yamamoto Y, Yuzuriha S, Rikihisa N, Watanabe S, Watanabe S, Kuroda T, Sugawara S, Ishikawa K, Sasaki S. Japanese clinical practice guidelines for vascular anomalies 2017. Jpn J Radiol 2020; 38:287-342. [PMID: 32207066 PMCID: PMC7150662 DOI: 10.1007/s11604-019-00885-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The objective was to prepare guidelines to perform the current optimum treatment by organizing effective and efficient treatments of hemangiomas and vascular malformations, confirming the safety, and systematizing treatment, employing evidence-based medicine (EBM) techniques and aimed at improvement of the outcomes. Clinical questions (CQs) were decided based on the important clinical issues. For document retrieval, key words for literature searches were set for each CQ and literature published from 1980 to the end of September 2014 was searched in Pubmed, Cochrane Library, and Japana Centra Revuo Medicina (JCRM). The strengths of evidence and recommendations acquired by systematic reviews were determined following the Medical Information Network Distribution System (MINDS) technique. A total of 33 CQs were used to compile recommendations and the subjects included efficacy of resection, sclerotherapy/embolization, drug therapy, laser therapy, radiotherapy, and other conservative treatment, differences in appropriate treatment due to the location of lesions and among symptoms, appropriate timing of treatment and tests, and pathological diagnosis deciding the diagnosis. Thus, the Japanese Clinical Practice Guidelines for Vascular Anomalies 2017 have been prepared as the evidence-based guidelines for the management of vascular anomalies.
Collapse
Affiliation(s)
- Hidefumi Mimura
- Department of Radiology, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae, Kawasaki, Kanagawa 216-8511 Japan
| | - Sadanori Akita
- Department of Plastic Surgery, Wound Repair and Regeneration, Fukuoka University, School of Medicine, Fukuoka, Japan
| | - Akihiro Fujino
- Division of Surgery, National Center for Child Health and Development, Tokyo, Japan
| | - Masatoshi Jinnin
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan
| | - Mine Ozaki
- Department of Plastic and Reconstructive, Aesthetic Surgery, Kyorin University School of Medicine, Mitaka, Japan
| | - Keigo Osuga
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroki Nakaoka
- Department of Plastic Surgery, Ehime University Hospital, Toon, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akira Kuramochi
- Department of Dermatology, Saitama Medical University, Irumagun, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan
| | - Yasunori Arai
- Department of Radiology, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae, Kawasaki, Kanagawa 216-8511 Japan
| | - Noriko Aramaki
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masanori Inoue
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Iwashina
- Department of Plastic and Reconstructive, Aesthetic Surgery, Kyorin University School of Medicine, Mitaka, Japan
| | - Tadashi Iwanaka
- Department of Pediatric Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Shigeru Ueno
- Department of Pediatric Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Akihiro Umezawa
- Department of Reproductive Biology, Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Michio Ozeki
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Junko Ochi
- Department of Diagnostic Radiology, Tohoku University, Sendai, Japan
| | - Yoshiaki Kinoshita
- Department of Pediatric Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masakazu Kurita
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Shien Seike
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Masataka Takahashi
- Department of Reproductive Biology, Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Takao Tachibana
- Department of Dermatology, Osaka Red Cross Hospital, Osaka, Japan
| | - Kumiko Chuman
- Department of Dermatology, Kanto Central Hospital, Tokyo, Japan
| | - Shuji Nagata
- Department of Radiology, Kurume University School of Medicine, Kurume, Japan
| | - Mitsunaga Narushima
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Yasunari Niimi
- Department of Neuroendovascular Therapy, St. Luke’s International Hospital, Tokyo, Japan
| | - Shunsuke Nosaka
- Division of Radiology, National Center for Child Health and Development, Tokyo, Japan
| | - Taiki Nozaki
- Department of Radiology, St Luke’s International Hospital, Tokyo, Japan
| | - Kazuki Hashimoto
- Department of Radiology, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae, Kawasaki, Kanagawa 216-8511 Japan
| | - Ayato Hayashi
- Department of Plastic and Reconstructive Surgery, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Satoshi Hirakawa
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Atsuko Fujikawa
- Department of Radiology, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae, Kawasaki, Kanagawa 216-8511 Japan
| | - Yumiko Hori
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kentaro Matsuoka
- Department of Pathology, Dokkyo Medical University, Saitama Medical Center, Koshigaya, Japan
| | - Hideki Mori
- Department of Plastic Surgery, Ehime University Hospital, Toon, Japan
| | - Yuki Yamamoto
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan
| | - Shunsuke Yuzuriha
- Department of Plastic and Reconstructive Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoaki Rikihisa
- Department of Plastic and Reconstructive Surgery, Oyumino Central Hospital, Chiba, Japan
| | - Shoji Watanabe
- Department of Plastic and Reconstructive Surgery, Saitama Children’s Medical Center, Saitama, Japan
| | - Shinichi Watanabe
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Tatsuo Kuroda
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shunsuke Sugawara
- Department of Diagnostic Radiology, National Cancer Center Hospital, Tokyo, Japan
| | - Kosuke Ishikawa
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Sasaki
- Department of Plastic and Reconstructive Surgery, Center for Vascular Anomalies, Tonan Hospital, Sapporo, Japan
| |
Collapse
|
3
|
van Raath MI, Chohan S, Wolkerstorfer A, van der Horst CMAM, Limpens J, Huang X, Ding B, Storm G, van der Hulst RRWJ, Heger M. Clinical outcome measures and scoring systems used in prospective studies of port wine stains: A systematic review. PLoS One 2020; 15:e0235657. [PMID: 32614899 PMCID: PMC7332045 DOI: 10.1371/journal.pone.0235657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Valid and reliable outcome measures are needed to determine and compare treatment results of port wine stain (PWS) studies. Besides, uniformity in outcome measures is crucial to enable inter-study comparisons and meta-analyses. This study aimed to assess the heterogeneity in reported PWS outcome measures by mapping the (clinical) outcome measures currently used in prospective PWS studies. METHODS OVID MEDLINE, OVID Embase, and CENTRAL were searched for prospective PWS studies published from 2005 to May 2020. Interventional studies with a clinical efficacy assessment were included. Two reviewers independently evaluated methodological quality using a modified Downs and Black checklist. RESULTS In total, 85 studies comprising 3,310 patients were included in which 94 clinician/observer-reported clinical efficacy assessments had been performed using 46 different scoring systems. Eighty-one- studies employed a global assessment of PWS appearance/improvement, of which -82% was expressed as percentage improvement and categorized in 26 different scoring systems. A wide variety of other global and multi-item scoring systems was identified. As a result of outcome heterogeneity and insufficient data reporting, only 44% of studies could be directly compared. A minority of studies included patient-reported or objective outcomes. Thirteen studies of good quality were found. CONCLUSION Clinical PWS outcomes are highly heterogeneous, which hampers study comparisons and meta-analyses. Consensus-based development of a core outcome-set would benefit future research and clinical practice, especially considering the lack of high-quality trials.
Collapse
Affiliation(s)
- M. Ingmar van Raath
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
- Department of Plastic, Reconstructive, and Hand Surgery, Maastricht University Medical Center, Maastricht University, Maastricht, The Netherlands
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Sandeep Chohan
- Department of Dermatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Albert Wolkerstorfer
- Department of Dermatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Chantal M. A. M. van der Horst
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Jacqueline Limpens
- Medical Library, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Xuan Huang
- Department of Plastic, Reconstructive, and Hand Surgery, Maastricht University Medical Center, Maastricht University, Maastricht, The Netherlands
| | - Baoyue Ding
- Department of Plastic, Reconstructive, and Hand Surgery, Maastricht University Medical Center, Maastricht University, Maastricht, The Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - René R. W. J. van der Hulst
- Department of Plastic, Reconstructive, and Hand Surgery, Maastricht University Medical Center, Maastricht University, Maastricht, The Netherlands
| | - Michal Heger
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
Mimura H, Akita S, Fujino A, Jinnin M, Ozaki M, Osuga K, Nakaoka H, Morii E, Kuramochi A, Aoki Y, Arai Y, Aramaki N, Inoue M, Iwashina Y, Iwanaka T, Ueno S, Umezawa A, Ozeki M, Ochi J, Kinoshita Y, Kurita M, Seike S, Takakura N, Takahashi M, Tachibana T, Chuman K, Nagata S, Narushima M, Niimi Y, Nosaka S, Nozaki T, Hashimoto K, Hayashi A, Hirakawa S, Fujikawa A, Hori Y, Matsuoka K, Mori H, Yamamoto Y, Yuzuriha S, Rikihisa N, Watanabe S, Watanabe S, Kuroda T, Sugawara S, Ishikawa K, Sasaki S. Japanese Clinical Practice Guidelines for Vascular Anomalies 2017. J Dermatol 2020; 47:e138-e183. [PMID: 32200557 PMCID: PMC7317503 DOI: 10.1111/1346-8138.15189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/19/2023]
Abstract
The objective was to prepare guidelines to perform the current optimum treatment by organizing effective and efficient treatments of hemangiomas and vascular malformations, confirming the safety and systematizing treatment, employing evidence‐based medicine techniques and aimed at improvement of the outcomes. Clinical questions (CQ) were decided based on the important clinical issues. For document retrieval, key words for published work searches were set for each CQ, and work published from 1980 to the end of September 2014 was searched in PubMed, Cochrane Library and Japana Centra Revuo Medicina databases. The strengths of evidence and recommendations acquired by systematic reviews were determined following the Medical Information Network Distribution System technique. A total of 33 CQ were used to compile recommendations and the subjects included efficacy of resection, sclerotherapy/embolization, drug therapy, laser therapy, radiotherapy and other conservative treatment, differences in appropriate treatment due to the location of lesions and among symptoms, appropriate timing of treatment and tests, and pathological diagnosis deciding the diagnosis. Thus, the Japanese Clinical Practice Guidelines for Vascular Anomalies 2017 have been prepared as the evidence‐based guidelines for the management of vascular anomalies.
Collapse
Affiliation(s)
- Hidefumi Mimura
- Department of Radiology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Sadanori Akita
- Department of Plastic Surgery, Wound Repair and Regeneration, Fukuoka University, School of Medicine, Fukuoka, Japan
| | - Akihiro Fujino
- Division of Surgery, National Center for Child Health and Development, Tokyo, Japan
| | - Masatoshi Jinnin
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan
| | - Mine Ozaki
- Department of Plastic, Reconstructive and Aesthetic Surgery, Kyorin University School of Medicine, Mitaka, Japan
| | - Keigo Osuga
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroki Nakaoka
- Department of Plastic Surgery, Ehime University Hospital, Toon, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akira Kuramochi
- Department of Dermatology, Saitama Medical University, Iruma-gun, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan
| | - Yasunori Arai
- Department of Radiology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Noriko Aramaki
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masanori Inoue
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Iwashina
- Department of Plastic, Reconstructive and Aesthetic Surgery, Kyorin University School of Medicine, Mitaka, Japan
| | - Tadashi Iwanaka
- Department of Pediatric Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Shigeru Ueno
- Department of Pediatric Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Akihiro Umezawa
- Department of Reproductive Biology, Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Michio Ozeki
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Junko Ochi
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshiaki Kinoshita
- Department of Pediatric Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masakazu Kurita
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Shien Seike
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Masataka Takahashi
- Department of Reproductive Biology, Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Takao Tachibana
- Department of Dermatology, Osaka Red Cross Hospital, Osaka, Japan
| | - Kumiko Chuman
- Department of Dermatology, Kanto Central Hospital, Tokyo, Japan
| | - Shuji Nagata
- Department of Radiology, Kurume University School of Medicine, Kurume, Japan
| | - Mitsunaga Narushima
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Yasunari Niimi
- Department of Neuroendovascular Therapy, St. Luke's International Hospital, Tokyo, Japan
| | - Shunsuke Nosaka
- Division of Radiology, National Center for Child Health and Development, Tokyo, Japan
| | - Taiki Nozaki
- Department of Radiology, St. Luke's International Hospital, Tokyo, Japan
| | - Kazuki Hashimoto
- Department of Radiology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Ayato Hayashi
- Department of Plastic and Reconstructive Surgery, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Satoshi Hirakawa
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Atsuko Fujikawa
- Department of Radiology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yumiko Hori
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kentaro Matsuoka
- Department of Pathology, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Hideki Mori
- Department of Plastic Surgery, Ehime University Hospital, Toon, Japan
| | - Yuki Yamamoto
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan
| | - Shunsuke Yuzuriha
- Department of Plastic and Reconstructive Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoaki Rikihisa
- Department of Plastic and Reconstructive Surgery, Oyumino Central Hospital, Chiba, Japan
| | - Shoji Watanabe
- Department of Plastic and Reconstructive Surgery, Saitama Children's Medical Center, Saitama, Japan
| | - Shinichi Watanabe
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Tatsuo Kuroda
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shunsuke Sugawara
- Department of Diagnostic Radiology, National Cancer Center Hospital, Tokyo, Japan
| | - Kosuke Ishikawa
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Sasaki
- Department of Plastic and Reconstructive Surgery, Center for Vascular Anomalies, Tonan Hospital, Sapporo, Japan
| |
Collapse
|
5
|
Mimura H, Akita S, Fujino A, Jinnin M, Ozaki M, Osuga K, Nakaoka H, Morii E, Kuramochi A, Aoki Y, Arai Y, Aramaki N, Inoue M, Iwashina Y, Iwanaka T, Ueno S, Umezawa A, Ozeki M, Ochi J, Kinoshita Y, Kurita M, Seike S, Takakura N, Takahashi M, Tachibana T, Chuman K, Nagata S, Narushima M, Niimi Y, Nosaka S, Nozaki T, Hashimoto K, Hayashi A, Hirakawa S, Fujikawa A, Hori Y, Matsuoka K, Mori H, Yamamoto Y, Yuzuriha S, Rikihisa N, Watanabe S, Watanabe S, Kuroda T, Sugawara S, Ishikawa K, Sasaki S. Japanese clinical practice guidelines for vascular anomalies 2017. Pediatr Int 2020; 62:257-304. [PMID: 32202048 PMCID: PMC7232443 DOI: 10.1111/ped.14077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/19/2023]
Abstract
The objective was to prepare guidelines to perform the current optimum treatment by organizing effective and efficient treatments of hemangiomas and vascular malformations, confirming the safety, and systematizing treatment, employing evidence-based medicine (EBM) techniques and aimed at improvement of the outcomes. Clinical questions (CQs) were decided based on the important clinical issues. For document retrieval, key words for literature searches were set for each CQ and literature published from 1980 to the end of September 2014 was searched in Pubmed, Cochrane Library, and Japana Centra Revuo Medicina (JCRM). The strengths of evidence and recommendations acquired by systematic reviews were determined following the Medical Information Network Distribution System (MINDS) technique. A total of 33 CQs were used to compile recommendations and the subjects included efficacy of resection, sclerotherapy/embolization, drug therapy, laser therapy, radiotherapy, and other conservative treatment, differences in appropriate treatment due to the location of lesions and among symptoms, appropriate timing of treatment and tests, and pathological diagnosis deciding the diagnosis. Thus, the Japanese Clinical Practice Guidelines for Vascular Anomalies 2017 have been prepared as the evidence-based guidelines for the management of vascular anomalies.
Collapse
Affiliation(s)
- Hidefumi Mimura
- Department of Radiology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Sadanori Akita
- Department of Plastic Surgery, Wound Repair and Regeneration, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Akihiro Fujino
- Division of Surgery, National Center for Child Health and Development, Tokyo, Japan
| | - Masatoshi Jinnin
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan
| | - Mine Ozaki
- Department of Plastic and Reconstructive, Aesthetic Surgery, Kyorin University School of Medicine, Mitaka, Japan
| | - Keigo Osuga
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroki Nakaoka
- Department of Plastic Surgery, Ehime University Hospital, Toon, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akira Kuramochi
- Department of Dermatology, Saitama Medical University, Irumagun, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan
| | - Yasunori Arai
- Department of Radiology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Noriko Aramaki
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masanori Inoue
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Iwashina
- Department of Plastic and Reconstructive, Aesthetic Surgery, Kyorin University School of Medicine, Mitaka, Japan
| | - Tadashi Iwanaka
- Department of Pediatric Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Shigeru Ueno
- Department of Pediatric Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Akihiro Umezawa
- Department of Reproductive Biology, Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Michio Ozeki
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Junko Ochi
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshiaki Kinoshita
- Department of Department of Pediatric Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masakazu Kurita
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Shien Seike
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Masataka Takahashi
- Department of Reproductive Biology, Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Takao Tachibana
- Department of Dermatology, Osaka Red Cross Hospital, Osaka, Japan
| | - Kumiko Chuman
- Department of Dermatology, Kanto Central Hospital, Tokyo, Japan
| | - Shuji Nagata
- Department of Radiology, Kurume University School of Medicine, Kurume, Japan
| | - Mitsunaga Narushima
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Yasunari Niimi
- Department of Neuroendovascular Therapy, St Luke's International Hospital, Tokyo, Japan
| | - Shunsuke Nosaka
- Division of Radiology, National Center for Child Health and Development, Tokyo, Japan
| | - Taiki Nozaki
- Department of Radiology, St Luke's International Hospital, Tokyo, Japan
| | - Kazuki Hashimoto
- Department of Radiology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Ayato Hayashi
- Department of Plastic and Reconstructive Surgery, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Satoshi Hirakawa
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Atsuko Fujikawa
- Department of Radiology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Yumiko Hori
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kentaro Matsuoka
- Department of Pathology, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Hideki Mori
- Department of Plastic Surgery, Ehime University Hospital, Toon, Japan
| | - Yuki Yamamoto
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan
| | - Shunsuke Yuzuriha
- Department of Plastic and Reconstructive Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoaki Rikihisa
- Department of Plastic and Reconstructive Surgery, Oyumino Central Hospital, Chiba, Japan
| | - Shoji Watanabe
- Department of Plastic and Reconstructive Surgery, Saitama Children's Medical Center, Saitama, Japan
| | - Shinichi Watanabe
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Tatsuo Kuroda
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shunsuke Sugawara
- Department of Diagnostic Radiology, National Cancer Center Hospital, Tokyo, Japan
| | - Kosuke Ishikawa
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Sasaki
- Department of Plastic and Reconstructive Surgery, Center for Vascular Anomalies, Tonan Hospital, Sapporo, Japan
| |
Collapse
|
6
|
van Raath M, Chohan S, Wolkerstorfer A, van der Horst C, Storm G, Heger M. Port wine stain treatment outcomes have not improved over the past three decades. J Eur Acad Dermatol Venereol 2019; 33:1369-1377. [PMID: 30908756 PMCID: PMC6618082 DOI: 10.1111/jdv.15599] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/07/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Since the early '80s, the pulsed dye laser has been the standard treatment tool for non-invasive port wine stain (PWS) removal. In the last three decades, a considerable amount of research has been conducted to improve clinical outcomes, given that a fraction of PWS patients proved recalcitrant to laser treatment. Whether this research actually led to increased therapeutic efficacy has not been systematically investigated. OBJECTIVE To analyse therapeutic efficacy in PWS patients globally from 1986 to date. METHODS PubMed was searched for all available PWS trials. Studies with a quartile percentage improvement scale were included, analysed and plotted chronologically. Treatment and patient characteristics were extracted. A mean clearance per study was calculated and plotted. A 5-study simple moving average was co-plotted to portray the trend in mean clearance over time. The data were separately analysed for multiple treatment sessions in previously untreated patients. RESULTS Sixty-five studies were included (24.3% of eligible studies) comprising 6207 PWS patients. Of all patients, 21% achieved 75-100% clearance. Although a few studies reported remarkably good outcomes in a subset of carefully selected patients, there was no upward trend over time in mean clearance. CONCLUSION The efficacy of PWS therapy has not improved in the past decades, despite numerous technical innovations and pharmacological interventions. With an unwavering patient demand for better outcomes, the need for development and implementation of novel therapeutic strategies to clear all PWS is as valid today as it was 30 years ago.
Collapse
Affiliation(s)
- M.I. van Raath
- Department of PharmaceuticsCollege of MedicineJiaxing UniversityJiaxingChina
- Department of Experimental SurgeryAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - S. Chohan
- Department of Experimental SurgeryAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - A. Wolkerstorfer
- Department of DermatologyAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - C.M.A.M. van der Horst
- Department of Plastic, Reconstructive, and Hand SurgeryAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - G. Storm
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtthe Netherlands
- Department of Controlled Drug DeliveryMIRA Institute for Biomedical Technology and Technical MedicineUniversity of TwenteEnschedethe Netherlands
| | - M. Heger
- Department of PharmaceuticsCollege of MedicineJiaxing UniversityJiaxingChina
- Department of Experimental SurgeryAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtthe Netherlands
| |
Collapse
|
7
|
Lee JW, Chung HY. Capillary Malformations (Portwine Stains) of the Head and Neck. Otolaryngol Clin North Am 2018; 51:197-211. [DOI: 10.1016/j.otc.2017.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Grillo E, Rita Travassos A, Boixeda P, Cuevas A, Pérez B, Paoli J, Jaén P. Histochemical Evaluation of the Vessel Wall Destruction and Selectivity After Treatment with Intense Pulsed Light in Capillary Malformations. ACTAS DERMO-SIFILIOGRAFICAS 2016. [DOI: 10.1016/j.adengl.2015.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
9
|
Grillo E, Rita Travassos A, Boixeda P, Cuevas A, Pérez B, Paoli J, Jaén P. Histochemical Evaluation of the Vessel Wall Destruction and Selectivity After Treatment with Intense Pulsed Light in Capillary Malformations. ACTAS DERMO-SIFILIOGRAFICAS 2015; 107:215-23. [PMID: 26744242 DOI: 10.1016/j.ad.2015.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/09/2015] [Accepted: 10/18/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Among the different approaches for improving the effectiveness in the treatment of Capillary Malformations type Port Wine Stain (CM type PWS) are the intense pulsed light sources. There are few clinical studies prove useful in the treatment of CM. Furthermore, no studies have been published yet demonstrating the histological effects of IPL in CM. OBJECTIVES To assess the histological effects of pulsed light in capillary malformations type port wine stain. We wanted to compare epidermal, dermal and vessel wall damage after treatment with different combinations of IPL parameters. MATERIAL AND METHODS Fifty-five post-treatment biopsies were performed in 15 consenting patients with CM and stained with nitroblue-tetrazolium chloride (NBTC). Patients had not been treated previously. RESULTS Fifteen patients with CM, with a median age of 39 years-old were enrolled in this study. In this series, the patients with the most severe epidermal damage were those with a darker phototype. Pink CM were especially resistant to treatment, even using high fluences, short pulse durations and stacking pulses. Longer intra- and interpulse delays were effective in purple CM, achieving adequate vessel destruction. CONCLUSIONS IPL devices provide a vast amount of treatment possibilities and further studies are necessary to optimize therapeutic approaches to CM. In this study we have observed the histological effects of different pulses on the MC type PWS.
Collapse
Affiliation(s)
- E Grillo
- Department of Dermatology, Hospital Ramón y Cajal, Madrid, Spain.
| | - A Rita Travassos
- Clínica Universitária de Dermatologia, Hospital de Santa Maria-Centro Hospital Norte, Lisboa, Portugal
| | - P Boixeda
- Department of Dermatology, Hospital Ramón y Cajal, Madrid, Spain
| | - A Cuevas
- Department of Pathology, Hospital Ramón y Cajal, Madrid, Spain
| | - B Pérez
- Department of Dermatology, Hospital Ramón y Cajal, Madrid, Spain
| | - J Paoli
- Department of Dermatology, Hospital Ramón y Cajal, Madrid, Spain
| | - P Jaén
- Department of Dermatology, Hospital Ramón y Cajal, Madrid, Spain
| |
Collapse
|
10
|
Moy WJ, Yakel JD, Osorio OC, Salvador J, Hayakawa C, Kelly KM, Choi B. Targeted narrowband intense pulsed light on cutaneous vasculature. Lasers Surg Med 2015; 47:651-7. [PMID: 26227344 DOI: 10.1002/lsm.22393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2015] [Indexed: 11/05/2022]
Abstract
BACKGROUND AND OBJECTIVES Laser based therapies are the standard treatment protocol for port wine stain in the United States, but complete removal is infrequently achieved. Intense pulsed light (IPL) offers a broadband light spectrum approach as a viable treatment alternative. Previous studies suggest that IPL can be more effective in treatment of port wine stain by utilizing multiple wavelengths to selectively target different peaks in oxy- and deoxy-hemoglobin. Our study objectives were to (i) determine a characteristic radiant exposure able to achieve persistent vascular shutdown with narrowband IPL irradiation, (ii) determine the degree to which narrowband IPL irradiation can achieve persistent vascular shutdown, and (iii) compare the effectiveness of narrowband IPL radiation to single wavelength pulsed dye laser (PDL) irradiation in achieving persistent vascular shutdown. STUDY DESIGN/MATERIALS AND METHODS We utlized either single pulse or double, stacked pulses in narrowband IPL experiments, with the IPL operating over a 500-600 nm wavelength range on the rodent dorsal window chamber model. We compared the results from our narrowband IPL experiments to acquired PDL data from a previous study and determined that narrowband IPL treatments can also produce persistent vascular shutdown. We ran Monte Carlo simulations to investigate the relationship between absorbed energy, wavelength, and penetration depth. RESULTS For single and double pulse narrowband IPL irradiation we observed (i) little to no change in blood flow, resulting in no persistent vascular shutdown, (ii) marked acute disruption in blood flow and vascular structure, followed by partial to full recovery of blood flow, also resulting in no persistent vascular shutdown, and (iii) immediate changes in blood flow and vascular structure, resulting in prolonged and complete vascular shutdown. Monte Carlo modeling resulted in a 53.2% and 69.0% higher absorbed energy distribution in the top half and the total simulated vessel when comparing the composite narrowband IPL to the 595 nm (PDL), respectively. CONCLUSIONS Our data collectively demonstrate the potential to achieve removal of vascular lesions using a 500-600 nm range. Additionally, the narrowband IPL was tuned to optimize a specific wavelength range that can be used to treat PWS, whereas the PDL can only operate at one discrete wavelength.
Collapse
Affiliation(s)
- Wesley J Moy
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, California.,Department of Biomedical Engineering, University of California, Irvine, California
| | - Joshua D Yakel
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, California
| | - O Cecilia Osorio
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, California
| | - Jocelynda Salvador
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, California
| | - Carole Hayakawa
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, California.,Department of Chemical Engineering and Materials Science, University of California, Irvine, California
| | - Kristen M Kelly
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, California.,Department of Dermatology, University of California, Irvine, California.,Department of Surgery, University of California, Irvine, California
| | - Bernard Choi
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, California.,Department of Biomedical Engineering, University of California, Irvine, California.,Department of Surgery, University of California, Irvine, California.,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, California
| |
Collapse
|
11
|
Wat H, Wu DC, Rao J, Goldman MP. Application of Intense Pulsed Light in the Treatment of Dermatologic Disease: A Systematic Review. Dermatol Surg 2014; 40:359-77. [DOI: 10.1111/dsu.12424] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Savas JA, Ledon JA, Franca K, Chacon A, Nouri K. Pulsed dye laser-resistant port-wine stains: mechanisms of resistance and implications for treatment. Br J Dermatol 2013; 168:941-53. [PMID: 23290045 DOI: 10.1111/bjd.12204] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Port-wine stains (PWS) are among the most common congenital vascular malformations. Unlike capillary haemangiomas, these lesions do not involute spontaneously but rather become progressively more disfiguring as the patient ages. While benign in nature, the cosmetic deformity and attendant psychological and emotional distress prompt the majority of those afflicted to seek treatment. The pulsed dye laser (PDL) has long been considered the treatment of choice for these vascular lesions; however, very few patients achieve total clearance with PDL therapy and a significant number of lesions fail to respond at all. In order to address these recalcitrant cases, the mechanisms that contribute to treatment resistance must be understood and novel laser and light therapies must be employed. This review will address what is currently known about lesion-specific characteristics of PDL-resistant PWS as well as discuss current and future treatment options.
Collapse
Affiliation(s)
- J A Savas
- Department of Dermatology and Cutaneous Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA.
| | | | | | | | | |
Collapse
|
13
|
Lister T, Wright PA, Chappell PH. A new Monte Carlo program for simulating light transport through Port Wine Stain skin. Lasers Med Sci 2013; 29:1017-28. [PMID: 24142045 DOI: 10.1007/s10103-013-1443-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/16/2013] [Indexed: 11/29/2022]
Abstract
A new Monte Carlo program is presented for simulating light transport through clinically normal skin and skin containing Port Wine Stain (PWS) vessels. The program consists of an eight-layer mathematical skin model constructed from optical coefficients described previously. A simulation including diffuse illumination at the surface and subsequent light transport through the model is carried out using a radiative transfer theory ray-tracing technique. Total reflectance values over 39 wavelengths are scored by the addition of simulated light returning to the surface within a specified region and surface reflections (calculated using Fresnel's equations). These reflectance values are compared to measurements from individual participants, and characteristics of the model are adjusted until adequate agreement is produced between simulated and measured skin reflectance curves. The absorption and scattering coefficients of the epidermis are adjusted through changes in the simulated concentrations and mean diameters of epidermal melanosomes to reproduce non-lesional skin colour. Pseudo-cylindrical horizontal vessels are added to the skin model, and their simulated mean depths, diameters and number densities are adjusted to reproduce measured PWS skin colour. Accurate reproductions of colour measurement data are produced by the program, resulting in realistic predictions of melanin and PWS blood vessel parameters. Using a modest personal computer, the simulation currently requires an average of five and a half days to complete.
Collapse
Affiliation(s)
- T Lister
- Wessex Specialist Laser Centre, Salisbury District Hospital, Salisbury, UK,
| | | | | |
Collapse
|
14
|
[Therapeutic tools for port-wine stains]. Ann Dermatol Venereol 2013; 140:226-33; quiz 225, 234. [PMID: 23466161 DOI: 10.1016/j.annder.2012.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/14/2012] [Accepted: 12/13/2012] [Indexed: 11/24/2022]
|
15
|
Wang B, Wu Y, Zhu X, Xu XG, Xu TH, Chen HD, Li YH. Treatment of neck port-wine stain with intense pulsed light in Chinese population. J COSMET LASER THER 2013; 15:85-90. [DOI: 10.3109/14764172.2012.748204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
França K, Chacon A, Ledon J, Savas J, Izakovic J, Nouri K. Lasers for cutaneous congenital vascular lesions: a comprehensive overview and update. Lasers Med Sci 2012; 28:1197-204. [DOI: 10.1007/s10103-012-1220-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/15/2012] [Indexed: 12/20/2022]
|
17
|
Murray A, Moore T, Richards H, Ennis H, Griffiths C, Herrick A. Pilot study of intense pulsed light for the treatment of systemic sclerosis-related telangiectases. Br J Dermatol 2012; 167:563-9. [DOI: 10.1111/j.1365-2133.2012.11019.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Chen JK, Ghasri P, Aguilar G, van Drooge AM, Wolkerstorfer A, Kelly KM, Heger M. An overview of clinical and experimental treatment modalities for port wine stains. J Am Acad Dermatol 2012; 67:289-304. [PMID: 22305042 DOI: 10.1016/j.jaad.2011.11.938] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/15/2011] [Accepted: 11/10/2011] [Indexed: 01/03/2023]
Abstract
Port wine stains (PWS) are the most common vascular malformation of the skin, occurring in 0.3% to 0.5% of the population. Noninvasive laser irradiation with flashlamp-pumped pulsed dye lasers (selective photothermolysis) currently comprises the gold standard treatment of PWS; however, the majority of PWS fail to clear completely after selective photothermolysis. In this review, the clinically used PWS treatment modalities (pulsed dye lasers, alexandrite lasers, neodymium:yttrium-aluminum-garnet lasers, and intense pulsed light) and techniques (combination approaches, multiple passes, and epidermal cooling) are discussed. Retrospective analysis of clinical studies published between 1990 and 2011 was performed to determine therapeutic efficacies for each clinically used modality/technique. In addition, factors that have resulted in the high degree of therapeutic recalcitrance are identified, and emerging experimental treatment strategies are addressed, including the use of photodynamic therapy, immunomodulators, angiogenesis inhibitors, hypobaric pressure, and site-specific pharmaco-laser therapy.
Collapse
Affiliation(s)
- Jennifer K Chen
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, California, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Klein A, Bäumler W, Landthaler M, Babilas P. Laser and IPL treatment of port-wine stains: therapy options, limitations, and practical aspects. Lasers Med Sci 2011; 26:845-59. [DOI: 10.1007/s10103-011-0903-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
|
20
|
|
21
|
Babilas P, Schreml S, Eames T, Hohenleutner U, Szeimies RM, Landthaler M. Split-face comparison of intense pulsed light with short- and long-pulsed dye lasers for the treatment of port-wine stains. Lasers Surg Med 2010; 42:720-7. [DOI: 10.1002/lsm.20964] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Dong X, Yu Q, Ding J, Lin J. Treatment of facial port-wine stains with a new intense pulsed light source in Chinese patients. J COSMET LASER THER 2010; 12:183-7. [DOI: 10.3109/14764172.2010.502458] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Babilas P, Schreml S, Szeimies RM, Landthaler M. Intense pulsed light (IPL): a review. Lasers Surg Med 2010; 42:93-104. [PMID: 20166155 DOI: 10.1002/lsm.20877] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Intense pulsed light (IPL) devices use flashlamps and bandpass filters to emit polychromatic incoherent high-intensity pulsed light of determined wavelength spectrum, fluence, and pulse duration. Similar to lasers, the basic principle of IPL devices is a more or less selective thermal damage of the target. The combination of prescribed wavelengths, fluences, pulse durations, and pulse intervals facilitates the treatment of a wide spectrum of skin conditions. OBJECTIVE To summarize the physics of IPL, to provide guidance for the practical use of IPL devices, and to discuss the current literature on IPL in the treatment of unwanted hair growth, vascular lesions, pigmented lesions, acne vulgaris, and photodamaged skin and as a light source for PDT and skin rejuvenation. METHODS A systematic search of several electronic databases, including Medline and PubMed and the authors experience on intense pulsed light. RESULTS Numerous trials show the effectiveness and compatibility of IPL devices. CONCLUSION Most comparative trials attest IPLs similar effectiveness to lasers (level of evidence: 2b to 4, depending on the indication). However, large controlled and blinded comparative trials with an extended follow-up period are necessary.
Collapse
Affiliation(s)
- Philipp Babilas
- Department of Dermatology, University Hospital Regensburg, 93042 Regensburg, Germany.
| | | | | | | |
Collapse
|
24
|
Babilas P. Light-assisted therapy in dermatology: The use of intense pulsed light (IPL). ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.mla.2010.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
|
26
|
Faurschou A, Togsverd-Bo K, Zachariae C, Haedersdal M. Pulsed dye laser vs. intense pulsed light for port-wine stains: a randomized side-by-side trial with blinded response evaluation. Br J Dermatol 2009; 160:359-64. [DOI: 10.1111/j.1365-2133.2008.08993.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Drosner M, Ellwanger J, Schöttle K, Stockmeier M, Gatty F, Hellbrügge G, Christiansen K. Comparison of intense pulsed light (IPL) and pulsed dye laser (PDL) in port-wine stain treatment. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.mla.2008.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
McGill DJ, MacLaren W, Mackay IR. A direct comparison of pulsed dye, alexandrite, KTP and Nd:YAG lasers and IPL in patients with previously treated capillary malformations. Lasers Surg Med 2008; 40:390-8. [DOI: 10.1002/lsm.20638] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Özdemir M, Engin B, Mevlitoǧlu İ. Treatment of facial port-wine stains with intense pulsed light: a prospective study. J Cosmet Dermatol 2008; 7:127-31. [DOI: 10.1111/j.1473-2165.2008.00375.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Özdemir M, Engin B. Pyogenic granuloma following treatment of a port-wine stain with intense pulsed ligt. J Cosmet Dermatol 2007; 6:270-1. [DOI: 10.1111/j.1473-2165.2007.00346.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Landthaler M, Hohenleutner U. Laser therapy of vascular lesions. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2006; 22:324-32. [PMID: 17100741 DOI: 10.1111/j.1600-0781.2006.00254.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since the first construction of a laser by Maiman in 1960 and the first clinical application of a laser in the therapy of skin lesions by Leon Goldman, laser therapy has become an important therapeutic modality in dermatology. Various lasers can be used for the treatment of different vascular and non-vascular lesions. According to our results, vascular lesions constitute the most important indication for laser therapy in dermatology.
Collapse
Affiliation(s)
- M Landthaler
- Department of Dermatology, University Clinic Regensburg, Regensburg, Germany.
| | | |
Collapse
|
32
|
|