1
|
Trivedi AH, Wang VZ, McClain EJ, Vyas PS, Swink IR, Snell ED, Cheng BC, DeMeo PJ. The Categorization of Perinatal Derivatives for Orthopedic Applications. Biomedicines 2024; 12:1544. [PMID: 39062117 PMCID: PMC11274709 DOI: 10.3390/biomedicines12071544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Musculoskeletal (MSK) pathology encompasses an array of conditions that can cause anything from mild discomfort to permanent injury. Their prevalence and impact on disability have sparked interest in more effective treatments, particularly within orthopedics. As a result, the human placenta has come into focus within regenerative medicine as a perinatal derivative (PnD). These biologics are sourced from components of the placenta, each possessing a unique composition of collagens, proteins, and factors believed to aid in healing and regeneration. This review aims to explore the current literature on PnD biologics and their potential benefits for treating various MSK pathologies. We delve into different types of PnDs and their healing effects on muscles, tendons, bones, cartilage, ligaments, and nerves. Our discussions highlight the crucial role of immune modulation in the healing process for each condition. PnDs have been observed to influence the balance between anti- and pro-inflammatory factors and, in some cases, act as biologic scaffolds for tissue growth. Additionally, we assess the range of PnDs available, while also addressing gaps in our understanding, particularly regarding biologic processing methods. Although certain PnD biologics have varying levels of support in orthopedic literature, further clinical investigations are necessary to fully evaluate their impact on human patients.
Collapse
Affiliation(s)
- Amol H. Trivedi
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
- Drexel University College of Medicine, Drexel University, University City Campus, Philadelphia, PA 19104, USA
| | - Vicki Z. Wang
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Edward J. McClain
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Praveer S. Vyas
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Isaac R. Swink
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Edward D. Snell
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Boyle C. Cheng
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Patrick J. DeMeo
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| |
Collapse
|
2
|
Khalaf R, Duarte Bateman D, Reyes J, Najafali D, Rampazzo A, Bassiri Gharb B. Systematic review of pathologic markers in skin ischemia with and without reperfusion injury in microsurgical reconstruction: Biomarker alterations precede histological structure changes. Microsurgery 2024; 44:e31141. [PMID: 38361264 DOI: 10.1002/micr.31141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 11/05/2023] [Accepted: 12/27/2023] [Indexed: 02/17/2024]
Abstract
BACKGROUND Ischemia and ischemia-reperfusion injury contribute to partial or complete flap necrosis. Traditionally, skin histology has been used to evaluate morphological and structural changes, however histology does not detect early changes. We hypothesize that morphological and structural skin changes in response to ischemia and IRI occur late, and modification of gene and protein expression are the earliest changes in ischemia and IRI. METHODS A systematic review was performed in accordance with PRISMA guidelines. Studies reporting skin histology or gene/protein expression changes following ischemia with or without reperfusion injury published between 2002 and 2022 were included. The primary outcomes were descriptive and semi-quantitative histological structural changes, leukocyte infiltration, edema, vessel density; secondary outcomes were quantitative gene and protein expression intensity (PCR and western blot). Model type, experimental intervention, ischemia method and duration, reperfusion duration, biopsy location and time point were collected. RESULTS One hundred and one articles were included. Hematoxylin and eosin (H&E) showed inflammatory infiltration in early responses (12-24 h), with structural modifications (3-14 days) and neovascularization (5-14 days) as delayed responses. Immunohistochemistry (IHC) identified angiogenesis (CD31, CD34), apoptosis (TUNEL, caspase-3, Bax/Bcl-2), and protein localization (NF-κB). Gene (PCR) and protein expression (western blot) detected inflammation and apoptosis; endoplasmic reticulum stress/oxidative stress and hypoxia; and neovascularization. The most common markers were TNF-α, IL-6 and IL-1β (inflammation), caspase-3 (apoptosis), VEGF (neovascularization), and HIF-1α (hypoxia). CONCLUSION There is no consensus or standard for reporting skin injury during ischemia and IRI. H&E histology is most frequently performed but is primarily descriptive and lacks sensitivity for early skin injury. Immunohistochemistry and gene/protein expression reveal immediate and quantitative cellular responses to skin ischemia and IRI. Future research is needed towards a universally-accepted skin injury scoring system.
Collapse
Affiliation(s)
- Ryan Khalaf
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Jose Reyes
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Daniel Najafali
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Antonio Rampazzo
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | | |
Collapse
|
3
|
Fitriani N, Wilar G, Narsa AC, Mohammed AFA, Wathoni N. Application of Amniotic Membrane in Skin Regeneration. Pharmaceutics 2023; 15:pharmaceutics15030748. [PMID: 36986608 PMCID: PMC10053812 DOI: 10.3390/pharmaceutics15030748] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
Amniotic membrane (AM) is an avascular structure composed of three different layers, which contain collagen, extracellular matrix, and biologically active cells (stem cells). Collagen, a naturally occurring matrix polymer, provides the structural matrix/strength of the amniotic membrane. Tissue remodeling is regulated by growth factors, cytokines, chemokines, and other regulatory molecules produced by endogenous cells within AM. Therefore, AM is considered an attractive skin-regenerating agent. This review discusses the application of AM in skin regeneration, including its preparation for application to the skin and its mechanisms of therapeutic healing in the skin. This review involved collecting research articles that have been published in several databases, including Google Scholar, PubMed, Science Direct, and Scopus. The search was conducted by using the keywords ‘amniotic membrane skin’, ‘amniotic membrane wound healing’, ‘amniotic membrane burn’, ‘amniotic membrane urethral defects’, ‘amniotic membrane junctional epidermolysis bullosa’, and ‘amniotic membrane calciphylaxis’. Ultimately, 87 articles are discussed in this review. Overall, AM has various activities that help in the regeneration and repair of damaged skin.
Collapse
Affiliation(s)
- Nurul Fitriani
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Pharmaceutical Research and Development Laboratory of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Angga Cipta Narsa
- Pharmaceutical Research and Development Laboratory of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia
| | - Ahmed F. A. Mohammed
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Correspondence: ; Tel.: +62-22-842-888-888
| |
Collapse
|
4
|
Üstün GG, Öztürk S, Koçer U. Standardization of the Rat Dorsal Random Pattern (McFarlane) Flap Model and Evaluation of the Pharmacological Agents Aiming to Salvage Partial Flap Necrosis: A Systematic Review and a Meta-analysis. Ann Plast Surg 2021; 87:e145-e152. [PMID: 34818287 DOI: 10.1097/sap.0000000000002919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Partial flap necrosis is a common complication after surgery. McFarlane flap model has been used for assessment of various agents' effects on random flap survival. The aim of this study was to review the methodology of studies using this flap model and reveal the most successful agents. MATERIALS AND METHODS PubMed, Scopus, and Web of Science databases were screened for words "McFarlane flap," "flap survival," and ("flap" and "rat") by using time limits between 1965 and 2019. A total of 71 original articles were reviewed. Dimensions and base (cranial/caudal) of the flap, treatment protocol, follow-up period, and survival rates were extracted. Modified survival rates were calculated. Coefficients of variation of cranial/caudally based control group flaps and most commonly used flap models were calculated to assess interstudy variability. RESULTS A total of 165 different treatment regimens were studied. One-hundred twelve regimens (67.9%) were found to increase flap survival. Most common flap dimensions were 9 cm × 3 cm, followed by 10 cm × 3 cm, 8 cm × 2 cm and 6 cm × 2 cm. Studies using caudally based flaps showed less interstudy variability, but survival rates were similar. Pentoxifylline, sildenafil, chlorpromazine, phenoxybenzamine, and phentolamine were reported to be successful in multiple studies. CONCLUSIONS There are numerous agents found to be effective for treatment of partial flap necrosis, but further clinical research is needed. To overcome standardization problems, use of commonly used flap dimensions with a caudal base and interpretation of results after 7 days of follow-up seems appropriate.
Collapse
Affiliation(s)
- Galip Gencay Üstün
- From the Department of Plastic Reconstructive and Aesthetic Surgery, Ankara Training and Research Hospital, Ankara, Turkey
| | | | | |
Collapse
|
5
|
Faramarzi M, Kaboodkhani R, Roosta S, Azarpira N, Shishegar M, Bahranifard H. Application of amniotic membrane for covering mastoid cavity in canal wall down mastoidectomy. Laryngoscope 2019; 129:1453-1457. [DOI: 10.1002/lary.27638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Mohammad Faramarzi
- Otolaryngology Research Center, Department of OtolaryngologyShiraz University of Medical Sciences Shiraz Iran
| | - Reza Kaboodkhani
- Otolaryngology Research Center, Department of OtolaryngologyShiraz University of Medical Sciences Shiraz Iran
| | - Sareh Roosta
- Otolaryngology Research Center, Department of OtolaryngologyShiraz University of Medical Sciences Shiraz Iran
| | - Negar Azarpira
- Transplant Research CentreShiraz University of Medical Sciences Shiraz Iran
| | - Mahmood Shishegar
- Otolaryngology Research Center, Department of OtolaryngologyShiraz University of Medical Sciences Shiraz Iran
| | - Hajar Bahranifard
- Otolaryngology Research Center, Department of OtolaryngologyShiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
6
|
Koushaei S, Samandari MH, Razavi SM, Khoshzaban A, Adibi S, Varedi P. Histological Comparison of New Bone Formation Using Amnion Membrane Graft Versus Resorbable Collagen Membrane: An Animal Study. J ORAL IMPLANTOL 2018; 44:335-340. [PMID: 29608393 DOI: 10.1563/aaid-joi-d-16-00120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this article was to evaluate the bone induction effects of an amnion membrane-protected graft compared with a collagen membrane-protected graft in the repair of tibial bony defects in dogs. This study was performed using the tibial bone of dogs. After the removal of periosteum, similar holes were made with a 16-mm trephine drill (38 holes in total). For the study group, 10 holes were covered by absorbable collagen and 16 holes by amniotic membrane. In the control group, 12 holes were made and covered by the overlying soft tissue. Tibial bones were exposed after 6 and 12 weeks, and the samples were harvested and histologically processed. New bone formation was evaluated by histomorphometric study. Four Iranian mixed dogs older than 1.5 years were included in this study. The new bone formation was less in the control group when compared with the collagen group ( P = .863). The collagen group showed less bone formation than the amnion group ( P = .194), but this difference was not significant. However, bone formation in the amnion group was significantly more than in the control group ( P = .050). Using the amniotic membrane appears to accelerate bone formation in guided bone regeneration. However, further studies should investigate its clinical impact on bone healing.
Collapse
Affiliation(s)
- Soheil Koushaei
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Hassan Samandari
- 2 Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sayed Mohammad Razavi
- 3 Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahad Khoshzaban
- 4 Iranian Tissue Bank Research and Preparation Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Payam Varedi
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
7
|
|
8
|
The effects of cryopreservation on angiogenesis modulation activity of human amniotic membrane. Cryobiology 2015; 71:413-8. [DOI: 10.1016/j.cryobiol.2015.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 02/03/2023]
|
9
|
The effect of autologous endothelial progenitor cell transplantation combined with extracorporeal shock-wave therapy on ischemic skin flaps in rats. Cytotherapy 2014; 16:1098-109. [PMID: 24831842 DOI: 10.1016/j.jcyt.2014.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 11/19/2022]
|
10
|
The clinical applications of human amnion in plastic surgery. J Plast Reconstr Aesthet Surg 2014; 67:662-75. [PMID: 24560801 DOI: 10.1016/j.bjps.2014.01.031] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 12/14/2013] [Accepted: 01/23/2014] [Indexed: 12/14/2022]
Abstract
Since the early 1900s, human amnion has been applied to a wide variety of clinical scenarios including burns, chronic ulcers, dural defects, intra-abdominal adhesions, peritoneal reconstruction, genital reconstruction, hip arthroplasty, tendon repair, nerve repair, microvascular reconstruction, corneal repair, intra-oral reconstruction and reconstruction of the nasal lining and tympanic membrane. Amnion epithelial and mesenchymal cells have been shown to contain a variety of regulatory mediators that result in the promotion of cellular proliferation, differentiation and epithelialisation and the inhibition of fibrosis, immune rejection, inflammation and bacterial invasion. The full repertoire of biological factors that these cells synthesise, store and release and the mechanisms by which these factors exert their beneficial effects are only now being fully appreciated. Although many commercially available biological and synthetic alternatives to amnion exist, ethical, religious, and financial constraints may limit the widespread utilisation of these products. Amnion is widely available, economical and is easy to manipulate, process and store. Although many clinical applications are of historical interest only, amnion offers an alternative source of multi-potent or pluripotent stem cells and therefore may yet have a great deal to offer the plastic surgery and regenerative medicine community. It is the purpose of this article to review the clinical applications of human amnion relevant to plastic surgery.
Collapse
|
11
|
Kesting MR, Wolff KD, Nobis CP, Rohleder NH. Amniotic membrane in oral and maxillofacial surgery. Oral Maxillofac Surg 2012; 18:153-64. [PMID: 23242942 DOI: 10.1007/s10006-012-0382-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 11/30/2012] [Indexed: 12/13/2022]
Abstract
PURPOSE Following its renaissance in ophthalmology during the 1990s, preserved human amniotic membrane (HAM) has become an attractive biomaterial for all surgical disciplines. This article reviews the current and potential use of HAM in oral and maxillofacial surgery, its postulated properties and common preservation techniques. METHODS Literature was identified by an electronic search of PubMed in July 2012; this was supplemented from the reference lists of the consulted papers. RESULTS HAM has been used in the field of oral and maxillofacial surgery from 1969 onwards because of its immunological preference and its pain-reducing, antimicrobial, mechanical and side-dependent adhesive or anti-adhesive properties. The effects of HAM on dermal and mucosal re-epithelialisation have been highlighted. Typically, HAM is applied after being banked in a glycerol-preserved, DMSO-preserved or freeze-dried and irradiated state. Whereas the use of HAM in flap surgery and in intra-oral and extra-oral lining is reported frequently, novel HAM applications in post-traumatic orbital surgery and temporomandibular joint surgery have been added since 2010. Tissue engineering with HAM is a fast-expanding field with a high variety of future options. CONCLUSIONS Preserved HAM is considered to be a safe and sufficient biomaterial in all fields of oral and maxillofacial wound healing. Recently published novel indications for HAM application lack a high level of evidence and need to be studied further.
Collapse
Affiliation(s)
- Marco Rainer Kesting
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Str. 22, 81675, Munich, Germany,
| | | | | | | |
Collapse
|