1
|
Siemionow M, Kulahci Y, Zor F. Novel cell-based strategies for immunomodulation in vascularized composite allotransplantation. Curr Opin Organ Transplant 2023; 28:431-439. [PMID: 37800652 DOI: 10.1097/mot.0000000000001109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
PURPOSE OF REVIEW Vascularized composite allotransplantation (VCA) has become a clinical reality in the past two decades. However, its routine clinical applications are limited by the risk of acute rejection, and the side effects of the lifelong immunosuppression. Therefore, there is a need for new protocols to induce tolerance and extend VCA survival. Cell- based therapies have emerged as an attractive strategy for tolerance induction in VCA. This manuscript reviews the current strategies and applications of cell-based therapies for tolerance induction in VCA. RECENT FINDINGS Cellular therapies, including the application of bone marrow cells (BMC), mesenchymal stem cells (MSC), adipose stem cells, regulatory T cells (Treg) cells, dendritic cells and donor recipient chimeric cells (DRCC) show promising potential as a strategy to induce tolerance in VCA. Ongoing basic science research aims to provide insights into the mechanisms of action, homing, functional specialization and standardization of these cellular therapies. Additionally, translational preclinical and clinical studies are underway, showing encouraging outcomes. SUMMARY Cellular therapies hold great potential and are supported by preclinical studies and clinical trials demonstrating safety and efficacy. However, further research is needed to develop novel cell-based immunosuppressive protocol for VCA.
Collapse
Affiliation(s)
- Maria Siemionow
- Department of Orthopeadics, University of Illinois at Chicago, Chicago, Illinois
| | - Yalcin Kulahci
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Fatih Zor
- Department of Plastic Surgery, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
2
|
Kauke-Navarro M, Noel OF, Knoedler L, Knoedler S, Panayi AC, Stoegner VA, Huelsboemer L, Pomahac B. Novel Strategies in Transplantation: Genetic Engineering and Vascularized Composite Allotransplantation. J Surg Res 2023; 291:176-186. [PMID: 37429217 DOI: 10.1016/j.jss.2023.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/18/2023] [Accepted: 04/30/2023] [Indexed: 07/12/2023]
Abstract
INTRODUCTION Despite the clinical success in vascularized composite allotransplantation (VCA), systemic immunosuppression remains necessary to prevent allograft rejection. Even with potent immunosuppressive regimens (tacrolimus, mycophenolate mofetil, and steroids), most patients experience several rejection episodes, often within the same year. The risk of systemic side effects must constantly be weighed against the risk of under-immunosuppression and, thus, acute and chronic rejection. In this context, genomic editing has emerged as a potential tool to minimize the need for toxic immunosuppressive regimens and has gained attention in the fields of solid organ transplantation and xenotransplantation. This strategy may also be relevant for the future of VCA. METHODS We discuss the topic of genetic engineering and review recent developments in this field that justify investigating tools such as clustered regularly interspaced short palindromic repeats/Cas9 in the context of VCA. RESULTS We propose specific strategies for VCA based on the most recent gene expression data. This includes the well-known strategy of tolerance induction. Specifically, targeting the interaction between antigen-presenting cells and recipient-derived T cells by CD40 knockout may be effective. The novelty for VCA is a discovery that donor-derived T lymphocytes may play a special role in allograft rejection of facial transplants. We suggest targeting these cells prior to transplantation (e.g., by ex vivo perfusion of the transplant) by knocking out genes necessary for the long-term persistence of donor-derived immune cells in the allograft. CONCLUSION Despite the demonstrated feasibility of VCA in recent years, continued improvements to immunomodulatory strategies using tools like clustered regularly interspaced short palindromic repeats/Cas9 could lead to the development of approaches that mitigate the limitations associated with rejection of this life-giving procedure.
Collapse
Affiliation(s)
- Martin Kauke-Navarro
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Division of Plastic and Reconstructive Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, Connecticut
| | - Olivier F Noel
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, Connecticut
| | - Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Samuel Knoedler
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Adriana C Panayi
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Viola A Stoegner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, Connecticut; Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
| | - Lioba Huelsboemer
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, Connecticut; Institute of Musculoskeletal Medicine, University Hospital Muenster, Münster, Germany
| | - Bohdan Pomahac
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
3
|
Ott LC, Cuenca AG. Innate immune cellular therapeutics in transplantation. FRONTIERS IN TRANSPLANTATION 2023; 2:1067512. [PMID: 37994308 PMCID: PMC10664839 DOI: 10.3389/frtra.2023.1067512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Successful organ transplantation provides an opportunity to extend the lives of patients with end-stage organ failure. Selectively suppressing the donor-specific alloimmune response, however, remains challenging without the continuous use of non-specific immunosuppressive medications, which have multiple adverse effects including elevated risks of infection, chronic kidney injury, cardiovascular disease, and cancer. Efforts to promote allograft tolerance have focused on manipulating the adaptive immune response, but long-term allograft survival rates remain disappointing. In recent years, the innate immune system has become an attractive therapeutic target for the prevention and treatment of transplant organ rejection. Indeed, contemporary studies demonstrate that innate immune cells participate in both the initial alloimmune response and chronic allograft rejection and undergo non-permanent functional reprogramming in a phenomenon termed "trained immunity." Several types of innate immune cells are currently under investigation as potential therapeutics in transplantation, including myeloid-derived suppressor cells, dendritic cells, regulatory macrophages, natural killer cells, and innate lymphoid cells. In this review, we discuss the features and functions of these cell types, with a focus on their role in the alloimmune response. We examine their potential application as therapeutics to prevent or treat allograft rejection, as well as challenges in their clinical translation and future directions for investigation.
Collapse
Affiliation(s)
- Leah C Ott
- Department of General Surgery, Boston Children's Hospital, Boston, MA, United States
| | - Alex G Cuenca
- Department of General Surgery, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
4
|
Anggelia MR, Cheng HY, Lai PC, Hsieh YH, Lin CH, Lin CH. Cell Therapy in Vascularized Composite Allotransplantation. Biomed J 2022; 45:454-464. [PMID: 35042019 PMCID: PMC9422067 DOI: 10.1016/j.bj.2022.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/02/2021] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
Allograft rejection is one of the obstacles in achieving a successful vascularized composite allotransplantation (VCA). Treatments of graft rejection with lifelong immunosuppression (IS) subject the recipients to a lifelong risk of cancer development and opportunistic infections. Cell therapy has recently emerged as a promising strategy to modulate the immune system, minimize immunosuppressant drug dosages, and induce allograft tolerance. In this review, the recent works regarding the use of cell therapy to improve allograft outcomes are discussed. The current data supports the safety of cell therapy. The suitable type of cell therapy in allotransplantation is clinically dependent. Bone marrow cell therapy is more suitable for the induction phase, while other cell therapies are more feasible in either the induction or maintenance phase, or for salvage of allograft rejection. Immune cell therapy focuses on modulating the immune response, whereas stem cells may have an additional role in promoting structural regenerations, such as nerve regeneration. Source, frequency, dosage, and route of cell therapy delivery are also dependent on the specific need in the clinical setting.
Collapse
Affiliation(s)
- Madonna Rica Anggelia
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hui-Yun Cheng
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ping-Chin Lai
- The Kidney Institute and Division of Nephrology, China Medical University Hospital, Taichung, Taiwan
| | - Yun-Huan Hsieh
- Department of Plastic and Reconstructive Surgery, Epworth Eastern Hospital, Victoria, Australia
| | - Chih-Hung Lin
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Hung Lin
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
5
|
A systematic review of immunomodulatory strategies used in skin-containing preclinical vascularized composite allotransplant models. J Plast Reconstr Aesthet Surg 2021; 75:586-604. [PMID: 34895853 DOI: 10.1016/j.bjps.2021.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 06/13/2021] [Accepted: 11/03/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Acute rejection remains a vexing problem in vascularized composite allotransplantation (VCA). Available immunosuppressive regimens are successful at minimizing alloimmune response and allowing VCA in humans. However, repeated rejection episodes are common, and systemic side effects of the current standard regimen (Tacrolimus, MMF, Prednisone) are dose limiting. Novel immunomodulatory approaches to improve allograft acceptance and minimize systemic toxicity are continuously explored in preclinical models. We aimed to systematically summarize past and current approaches to help guide future research in this complex field. METHODS We conducted a systematic review of manuscripts listed in the MEDLINE and PubMed databases. For inclusion, articles had to primarily investigate the effect of a therapeutic approach on prolonging the survival of a skin-containing preclinical VCA model. Non-VCA studies, human trials, anatomical and feasibility studies, and articles written in a language other than English were excluded. We followed the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. RESULTS The search retrieved 980 articles of which 112 articles were ultimately included. The majority of investigations used a rat model. An orthotopic hind limb VCA model was used in 53% of the studies. Cell and drug-based approaches were investigated 58 and 52 times, respectively. We provide a comprehensive review of immunomodulatory strategies used in VCA preclinical research over a timeframe of 44 years. CONCLUSION We identify a transition from anatomically non-specific to anatomical models mimicking clinical needs. As limb transplants have been most frequently performed, preclinical research focused on using the hind limb model. We also identify a transition from drug-based suppression therapies to cell-based immunomodulation strategies.
Collapse
|
6
|
Zhang F, Zhang J, Cao P, Sun Z, Wang W. The characteristics of regulatory macrophages and their roles in transplantation. Int Immunopharmacol 2021; 91:107322. [PMID: 33418238 DOI: 10.1016/j.intimp.2020.107322] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/25/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022]
Abstract
Regulatory macrophages (Mregs) are a subtype of macrophages that are involved in regulating immune responses and inhibiting activated T lymphocyte proliferation. With advances in our basic understanding of Mregs and the revelation of their biological characteristics, Mregs have become a focus of research. In addition to promoting malignant tumor progression, Mregs also play an immunosuppressive role in inflammatory diseases and transplantation. Recent studies have shown that Mregs are closely associated with the induction of transplantation immune tolerance. Immune regulatory cell treatment as an adjunct immunosuppressive therapy offers new insights into the mechanism by which transplantation immune tolerance is established. The application of Mreg-based cellular immunotherapy has shown promise in clinical solid organ transplantation. Here, we provide a comprehensive overview of Mreg morphology, phenotype, induction and negative immunoregulatory function and discuss the role of Mregs in different transplantation models as well as their potential application value in clinical organ transplantation.
Collapse
Affiliation(s)
- Feilong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| | - Jiandong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Peng Cao
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Zejia Sun
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
7
|
Radu CA, Kiefer J, Gebhard MM, Bigdeli AK, Schmidt VJ, Germann G, Lehnhardt M, Terness P, Kneser U, Kremer T. Local administration of Mitomycin-C-Treated peripheral blood mononuclear cells (PBMCs) prolongs allograft survival in vascularized composite allotransplantation. Microsurgery 2015; 36:417-425. [DOI: 10.1002/micr.30003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 08/15/2015] [Accepted: 10/23/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Christian Andreas Radu
- Department of Hand- Plastic- and Reconstructive Surgery; Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery-University of Heidelberg, Heidelberg; Germany
| | - Jurij Kiefer
- Department of Hand- Plastic- and Reconstructive Surgery; Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery-University of Heidelberg, Heidelberg; Germany
| | - Martha Maria Gebhard
- Department of Experimental Surgery; University of Heidelberg, Heidelberg; Germany
| | - Amir Khosrow Bigdeli
- Department of Hand- Plastic- and Reconstructive Surgery; Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery-University of Heidelberg, Heidelberg; Germany
| | - Volker Jürgen Schmidt
- Department of Hand- Plastic- and Reconstructive Surgery; Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery-University of Heidelberg, Heidelberg; Germany
| | - Guenter Germann
- Department of Hand- Plastic- and Reconstructive Surgery, Clinic for Plastic and Reconstructive Surgery; Aesthetic and Preventive Medicine at Heidelberg University Hospital; Ethianum Heidelberg Germany
| | - Marcus Lehnhardt
- Department of Plastic Surgery; Burn Center, Sarcoma Reference Center, BG-University Hospital Bergmannsheil; Bochum Germany
| | - Peter Terness
- Department of Transplant Immunology; Institute for Immunology, University of Heidelberg, Heidelberg; Germany
| | - Ulrich Kneser
- Department of Hand- Plastic- and Reconstructive Surgery; Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery-University of Heidelberg, Heidelberg; Germany
| | - Thomas Kremer
- Department of Hand- Plastic- and Reconstructive Surgery; Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery-University of Heidelberg, Heidelberg; Germany
| |
Collapse
|
8
|
Fryer M, Grahammer J, Khalifian S, Furtmüller GJ, Lee WPA, Raimondi G, Brandacher G. Exploring cell-based tolerance strategies for hand and face transplantation. Expert Rev Clin Immunol 2015; 11:1189-204. [DOI: 10.1586/1744666x.2015.1078729] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Facial transplantation surgery. Arch Plast Surg 2014; 41:174-80. [PMID: 24665428 PMCID: PMC3961617 DOI: 10.5999/aps.2014.41.2.174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 12/26/2013] [Accepted: 12/26/2013] [Indexed: 12/03/2022] Open
|