1
|
Shan S, He J, Sun Q, Zhu K, Li Y, Reid B, Li Q, Zhao M. Dynamics of cutaneous atmospheric oxygen uptake in response to mechanical stretch revealed by optical fiber microsensor. Exp Dermatol 2023; 32:2112-2120. [PMID: 37859506 PMCID: PMC10843412 DOI: 10.1111/exd.14957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/17/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Skin expands and regenerates in response to mechanical stretch. This important homeostasis process is critical for skin biology and can be exploited to generate extra skin for reconstructive surgery. Atmospheric oxygen uptake is important in skin homeostasis. However, whether and how cutaneous atmospheric oxygen uptake changes during mechanical stretch remains unclear, and relevant research tools to quantify oxygen flux are limited. Herein, we used the scanning micro-optrode technique (SMOT), a non-invasive self-referencing optical fiber microsensor, to achieve real-time measurement of cutaneous oxygen uptake from the atmosphere. An in vivo mechanical stretch-induced skin expansion model was established, and an in vitro Flexcell Tension system was used to stretch epidermal cells. We found that oxygen influx of skin increased dramatically after stretching for 1 to 3 days and decreased to the non-stretched level after 7 days. The enhanced oxygen influx of stretched skin was associated with increased epidermal basal cell proliferation and impaired epidermal barrier. In conclusion, mechanical stretch increases cutaneous oxygen uptake with spatial-temporal characteristics, correlating with cell proliferation and barrier changes, suggesting a fundamental mechanistic role of oxygen uptake in the skin in response to mechanical stretch. Optical fiber microsensor-based oxygen uptake detection provides a non-invasive approach to understand skin homeostasis.
Collapse
Affiliation(s)
- Shengzhou Shan
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, 2921 Stockton Boulevard, Sacramento, CA 95817, USA
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Jiahao He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Qin Sun
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, 2921 Stockton Boulevard, Sacramento, CA 95817, USA
- School of Life Science, Yunnan Normal University, Yuhua District, Kunming, Yunnan 650500, China
| | - Kan Zhu
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, 2921 Stockton Boulevard, Sacramento, CA 95817, USA
- Department of Ophthalmology & Vision Science, Institute for Regenerative Cures, University of California, Davis, 1 Shields Avenue, CA 95616, USA
| | - Yuanyuan Li
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, 2921 Stockton Boulevard, Sacramento, CA 95817, USA
| | - Brian Reid
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, 2921 Stockton Boulevard, Sacramento, CA 95817, USA
- Department of Ophthalmology & Vision Science, Institute for Regenerative Cures, University of California, Davis, 1 Shields Avenue, CA 95616, USA
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Min Zhao
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, 2921 Stockton Boulevard, Sacramento, CA 95817, USA
- Department of Ophthalmology & Vision Science, Institute for Regenerative Cures, University of California, Davis, 1 Shields Avenue, CA 95616, USA
| |
Collapse
|
2
|
Yang P, Zhang S, Yan T, Li F, Zhang S. The Therapeutic Application of Stem Cells and Their Derived Exosomes in the Treatment of Radiation-Induced Skin Injury. Radiat Res 2023; 199:182-201. [PMID: 36630584 DOI: 10.1667/rade-22-00023.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 12/05/2022] [Indexed: 01/13/2023]
Abstract
Radiation-induced skin injury (RISI) is a serious concern for nuclear accidents and cancer radiotherapy, which seriously affects the quality of life of patients. This injury differs from traditional wounds due to impaired healing and the propensity to recurrence and is divided into acute and chronic phases on the basis of the injury time. Unfortunately, there are few effective therapies for preventing or mitigating this injury. Over the last few decades, various studies have focused on the effects of stem cell-based therapies to address the tissue repair and regeneration of irradiated skin. These stem cells modulate inflammation and instigate tissue repair by differentiating into specific kinds of cells or releasing paracrine factors. Stem cell-based therapies, including bone marrow-derived stem cells (BMSCs), adipose-derived stem cells (ADSCs) and stromal vascular fraction (SVF), have been reported to facilitate wound healing after radiation exposure. Moreover, stem cell-derived exosomes have recently been suggested as an effective and cell-free approach to support skin regeneration, circumventing the concerns respecting direct application of stem cells. Based on the literature on stem cell-based therapies for radiation-induced skin injury, we summarize the characteristics of different stem cells and describe their latest animal and clinical applications, as well as potential mechanisms. The promise of stem-cell based therapies against radiation-induced skin injury contribute to our response to nuclear events and smooth progress of cancer radiotherapy.
Collapse
Affiliation(s)
- Ping Yang
- Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Shuaijun Zhang
- Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Yan
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.,Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Fengsheng Li
- PLA Rocket Rorce Characteristic Medical Center, Beijing 100088, China
| | - Shuyu Zhang
- Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.,Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China.,NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621099, China
| |
Collapse
|
3
|
Mechanical Stretch Induced Skin Regeneration: Molecular and Cellular Mechanism in Skin Soft Tissue Expansion. Int J Mol Sci 2022; 23:ijms23179622. [PMID: 36077018 PMCID: PMC9455829 DOI: 10.3390/ijms23179622] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Skin soft tissue expansion is one of the most basic and commonly used techniques in plastic surgery to obtain excess skin for a variety of medical uses. However, skin soft tissue expansion is faced with many problems, such as long treatment process, poor skin quality, high retraction rate, and complications. Therefore, a deeper understanding of the mechanisms of skin soft tissue expansion is needed. The key to skin soft tissue expansion lies in the mechanical stretch applied to the skin by an inflatable expander. Mechanical stimulation activates multiple signaling pathways through cellular adhesion molecules and regulates gene expression profiles in cells. Meanwhile, various types of cells contribute to skin expansion, including keratinocytes, dermal fibroblasts, and mesenchymal stem cells, which are also regulated by mechanical stretch. This article reviews the molecular and cellular mechanisms of skin regeneration induced by mechanical stretch during skin soft tissue expansion.
Collapse
|
4
|
Tan PC, Zhou SB, Ou MY, He JZ, Zhang PQ, Zhang XJ, Xie Y, Gao YM, Zhang TY, Li QF. Mechanical stretching can modify the papillary dermis pattern and papillary fibroblast characteristics during skin regeneration. J Invest Dermatol 2022; 142:2384-2394.e8. [PMID: 35181299 DOI: 10.1016/j.jid.2021.11.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/14/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022]
Abstract
Clinical application of mechanical stretching is a reconstructive method for skin repair. Although studies have reported dermal fibroblast heterogeneity, whether stretching affects individual fibroblast subpopulations equally remains unclear. Here, we show the changes in dermal structure and papillary fibroblast (Fp) in regenerated human skin. Exhausted skin regeneration caused dermal-epidermal junction (DEJ) flattening, papillary dermis thinning, and an increase in the type III collagen (COL3)/type I collagen (COL1) ratio with upregulated hallmarks of aging. Well-regenerated skin displayed a notable increase in the Fp population. Consistent changes were observed in the rat expansion model. Moreover, we found that TGFβ1 expression was especially increased in skin showing good regeneration. Activation of the TGFβ1/Smad2/3 pathway improved exhausted skin regeneration and resulted in increased collagen content and Fp proliferation, while pharmacological inhibition of TGFβ1 action impacted well-regenerated skin. Short-term mechanical stretching that promoted skin regeneration enhanced Fp proliferation, extracellular matrix (ECM) synthesis, and increased TGFβ1 expression, leading to good regeneration. Conversely, long-term stretching induced premature Fp senescence, leading to poor regeneration. This work shows the mechanism of mechanical stretching in well skin regeneration that enhances Fp proliferation and ECM synthesis via the TGFβ1/Smad2/3 pathway, and highlights a crucial role of Fps in stretching-induced skin regeneration.
Collapse
Affiliation(s)
- Poh-Ching Tan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang-Bai Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min-Yi Ou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji-Zhou He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei-Qi Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Jie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Cell Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yun Xie
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Ming Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian-Yu Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Cell Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Qing-Feng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Liu H, Yu Z, Wang J, Zhang X, Lei L, Zhang Y, Su Y, Ma X. Effects of Botulinum Toxin A on the Blood Flow in Expanded Rat Skin. J INVEST SURG 2022; 35:1036-1043. [PMID: 35012412 DOI: 10.1080/08941939.2021.1995539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Background Poor blood supply can easily lead to expander extrusion and necrosis at the distal expanded flap. Botulinum toxin A (BTX-A) has been previously found to improve pedicled flap blood flow perfusion, but its effects on the blood supply of expanded skin remain unclear. Therefore, this study aimed to evaluate the effects of BTX-A on blood flow perfusion during and after expansion.Methods Eighteen Sprague-Dawley rats were randomly divided into a BTX-A group and a control group. BTX-A or normal saline was injected intradermally into the marked skin on the back immediately. Then expanders were implanted in the rats. One week later, inflation of the expander with normal saline was started and performed twice a week to reach an intracapsular pressure of 8 kPa. The skin blood flow was measured before each injection. After 4 weeks of expansion, the sample was harvested for histological staining to measure the diameter and density of blood vessels; meanwhile, a 2 cm× 8 cm expanded random flap was elevated and sutured in situ. Blood flow perfusion and flap survival were observed.Results Compared with the control group, the BTX-A group had more blood flow, a larger blood vessel diameter, and higher blood vessel density in the expanded skin. Additionally, the flap of the BTX-A group had good blood flow perfusion and a high proportion of flap survival area within 7 days after expanded flap transfer. Data were analyzed using an independent t-test.Conclusion Pre-surgical BTX-A treatment may increase angiogenesis and vasodilatation, with subsequent blood perfusion elevation during and after expansion, and obtain a greater proportion of survival area of the transferred expanded flap.
Collapse
Affiliation(s)
- Hengxin Liu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, NO.127 Changle West Road, Xi'an, 710032, Shaanxi Province, P. R. China
| | - Zhou Yu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, NO.127 Changle West Road, Xi'an, 710032, Shaanxi Province, P. R. China
| | - Jiayang Wang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, NO.127 Changle West Road, Xi'an, 710032, Shaanxi Province, P. R. China
| | - Xi Zhang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, NO.127 Changle West Road, Xi'an, 710032, Shaanxi Province, P. R. China
| | - Lei Lei
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, NO.127 Changle West Road, Xi'an, 710032, Shaanxi Province, P. R. China
| | - Yu Zhang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, NO.127 Changle West Road, Xi'an, 710032, Shaanxi Province, P. R. China
| | - Yingjun Su
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, NO.127 Changle West Road, Xi'an, 710032, Shaanxi Province, P. R. China
| | - Xianjie Ma
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, NO.127 Changle West Road, Xi'an, 710032, Shaanxi Province, P. R. China
| |
Collapse
|
6
|
Cheng C, Fang B, Xie Y, Zhao PJ, Huang RL, Zhou SB, Gu B, Herrler T, Liu K, Li QF. Autologous fat transfer rescues expanded skin from expansion failure: A retrospective cohort study in Asians. J Plast Reconstr Aesthet Surg 2021; 75:1094-1099. [PMID: 34903491 DOI: 10.1016/j.bjps.2021.11.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/22/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Soft tissue expansion is a common technique for the regeneration of extra skin to repair skin defects. However, some warning signs like skin thinning and telangiectasia are often found during the expansion process, which indicates the skin flaps cannot be further expanded. These signs may result in the suspension of expansion or ultimately jeopardize the final outcome. Fat grafting is used to treat these potential complications and enable the continuation of the expansion procedure in some cases. In this study, we aimed to investigate the efficiency and safety of fat grafting in this process. METHODS The study was conducted on patients from January 2012 to December 2017 with warning signs of expansion treated with fat grafting (treatment group) or pause expansion (control group). Follow-up data, such as expansion status, dermal thickness, telangiectasia, skin texture using volume assessment, B-mode ultrasound, and semiquantitative scoring, were collected. RESULTS A total of 67 expanded skin regions with warning signs were enrolled. The expansion fold increased 2.14-fold at 12 weeks after treatment compared with 0.74-fold in control (P=0.02). The semiquantitative score was significant improved at 4 weeks (9.03 ± 0.73 vs. 7.45 ± 0.55; p=0.033). Meanwhile, the skin thickness in the experimental group did not show decreasing trend even in the continued expansion process. CONCLUSIONS Autologous fat grafting represents an effective and safe method to rescue expanded skin from limited skin regeneration. This technique also represents a valuable tool to increase the chances for further expansion.
Collapse
Affiliation(s)
- Chen Cheng
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Fang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Xie
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Pei-Juan Zhao
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ru-Lin Huang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang-Bai Zhou
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Gu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tanja Herrler
- Plastic Surgery and Burn Center, Trauma Center Murnau, Murnau, Germany
| | - Kai Liu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing-Feng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Zhang Y, Yu Z, Lei L, Song Y, Liu S, Cui J, Dong C, Ding J, Cheng X, Su Y, Ma X. Secreted PEDF modulates fibroblast collagen synthesis through M1 macrophage polarization under expanded condition. Biomed Pharmacother 2021; 142:111951. [PMID: 34333290 DOI: 10.1016/j.biopha.2021.111951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 11/19/2022] Open
Abstract
Tissue expansion is widely used to obtain new skin tissue for repairing defects in the clinical practice of plastic surgery. One major complication can be dermal thinning during expansion, which usually leads to skin rupture. Collagen synthesis can determine dermal thickness and can be influenced by macrophage polarization during expansion. The aim of the study was to test whether pigment epithelium-derived factor (PEDF) could be a modulator of collagen synthesis in fibroblasts by regulating macrophage polarization during skin expansion. Our results showed that PEDF mRNA expression was increased in expanded human and mouse epidermis. PEDF protein levels were elevated in the subcutaneous exudates of a rat skin expansion model. Increased PEDF mRNA expression was accompanied by dermal thinning during a three-week expansion protocol. Subcutaneous injection of PEDF in vivo further resulted in dermal thinning and cell number increase of M1 macrophage in the expanded skin. PEDF also promoted macrophage polarization in vitro to the M1 subtype under hypoxic conditions. PEDF did not influence collagen gene expression in fibroblasts directly, but attenuated collagen synthesis in a macrophage-mediated manner. Additionally, blockage of PEDF receptors on macrophages with inhibitors rescued collagen synthesis in fibroblasts. Our research demonstrated PEDF elevation in expanded skin leads to dermal thinning through M1 macrophage-mediated collagen synthesis inhibition in fibroblasts. Our results could form a basis for the development of novel strategies to improve skin integrity in expanded skin by using PEDF.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China
| | - Zhou Yu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China
| | - Lei Lei
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China
| | - Yajuan Song
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China
| | - Shiqiang Liu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China
| | - Jiangbo Cui
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China
| | - Chen Dong
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China
| | - Jianke Ding
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China
| | - Xiaoxi Cheng
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China
| | - Yingjun Su
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China.
| | - Xianjie Ma
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China.
| |
Collapse
|
8
|
A randomized, controlled clinical trial of autologous stromal vascular fraction cells transplantation to promote mechanical stretch-induced skin regeneration. Stem Cell Res Ther 2021; 12:243. [PMID: 33858504 PMCID: PMC8048343 DOI: 10.1186/s13287-021-02318-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The regeneration response of the skin to mechanical stretching in vivo has been explored in reconstructive surgery to repair large-scale deformities. The ability of the skin to regenerate limits the reconstructive outcome. Here, we propose an approach in which autologous stromal vascular fraction (SVF) cells and mechanical stretching are combined to overcome this limitation and promote skin regeneration. METHODS This randomized, blinded, placebo-controlled clinical trial screened 22 participants undergoing tissue expansion with exhausted regeneration. Twenty eligible participants received intradermal injections of the SVF or placebo treatments. Follow-ups were conducted at 4, 8, and 12 weeks to assess efficacy and at 2 years to assess safety. The primary endpoint was the expanded skin thickness at 12 weeks. The secondary endpoints included skin thickness at 4 and 8 weeks, the expansion index (EI), and the skin texture score at 12 weeks. RESULTS The skin thickness of the SVF group was significantly higher than that of the control group at both 8 weeks (mean difference 0.78 [95% CI - 1.43 to - 0.11]; p = 0.018) and 12 weeks (0.65 [95% CI - 1.30 to - 0.01]; p = 0.046). In the SVF group, the increase in skin thickness was significant at 4 weeks (0.49 [95% CI - 0.80 to - 0.06]; p = 0.010) to 8 weeks (0.45 [95% CI - 0.92 to 0.02]; p = 0.026) and maintained after 12 weeks, whereas that in the control group was reduced after 8 weeks (0.42 [95% CI - 0.07 to 0.91]; p = 0.037). The SVF group showed greater EI increases than the control group (0.50 [95% CI - 0.00 to 0.99]; p = 0.047). The skin texture scores in the SVF group were greater than those in the control group at 12 weeks. Histologically, SVF-treated expanded skin showed more proliferating cells and blood vessels, and the extracellular matrix volume increased. No severe adverse events occurred. CONCLUSIONS Transplantation of SVF cells can expedite the potency of mechanical stretch-induced skin regeneration and provide clinical reconstruction with plentiful tissue. TRIAL REGISTRATION This trial was registered with the Chinese Clinical Trial Registry, ChiCTR2000039317 (registered 23 October 2020-retrospectively registered).
Collapse
|
9
|
Deng M, Wang X, Yu Z, Cai Y, Liu W, Zhou G, Wang X, Yu Z, Li W, Zhang WJ. Cell-free fat extract promotes tissue regeneration in a tissue expansion model. Stem Cell Res Ther 2020; 11:50. [PMID: 32019588 PMCID: PMC7001260 DOI: 10.1186/s13287-020-1564-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/06/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022] Open
Abstract
Background Tissue expansion techniques play an important role in plastic surgery. How to improve the quality of the expanded skin and shorten the expansion period are still worth investigating. Our previous studies found that a cell-free fat extract (CEFFE) possessed pro-angiogenic and pro-proliferative activities. However, the role of CEFFE on tissue expansion has remained unclear. The purpose of this study was to evaluate the effect of CEFFE on tissue expansion. Methods A rat tissue expansion model was used. Animals were treated with CEFFE by subcutaneous injection. After 4 weeks of tissue expansion, the skin necrosis and retraction rates were evaluated, the thicknesses of the epidermis and dermis were determined by histological analyses, blood vessel density was measured by anti-CD31 staining, cell proliferation was assessed by proliferating cell nuclear antigen staining, and the expression of specific proteins was evaluated by western blot analyses. In addition, the effects of CEFFE on the proliferation and cell cycle of cultured HaCaT cells were evaluated in vitro. Results CEFFE treatment significantly decreased the necrosis rate and retraction of the expanded skin. The thickness of the epidermal and dermal layers was higher in CEFFE-treated compared to untreated skin. The density of blood vessels and cell proliferation in the epidermis of the expanded skin was improved by CEFFE treatment. In addition, CEFFE treatment significantly increased the expression of the vascular endothelial growth factor receptor, epidermal growth factor receptor, collagen type 1, and collagen type 3. CEFFE also increased the proliferation of HaCaT cells in culture. Conclusions CEFFE improves the quality of the expanded skin by promoting angiogenesis and cell proliferation. It could be potentially used clinically for augmenting tissue expansion.
Collapse
Affiliation(s)
- Mingwu Deng
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, 639 ZhiZaoJu Road, Shanghai, 200011, China
| | - Xiangsheng Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, 639 ZhiZaoJu Road, Shanghai, 200011, China
| | - Ziyou Yu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, 639 ZhiZaoJu Road, Shanghai, 200011, China
| | - Yizuo Cai
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, 639 ZhiZaoJu Road, Shanghai, 200011, China
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, 639 ZhiZaoJu Road, Shanghai, 200011, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, 639 ZhiZaoJu Road, Shanghai, 200011, China
| | - Xiansong Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, 639 ZhiZaoJu Road, Shanghai, 200011, China
| | - Zheyuan Yu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, 639 ZhiZaoJu Road, Shanghai, 200011, China.
| | - Wei Li
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, 639 ZhiZaoJu Road, Shanghai, 200011, China.
| | - Wen Jie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, 639 ZhiZaoJu Road, Shanghai, 200011, China.
| |
Collapse
|
10
|
Emulsified Fat Grafting Accelerates Tissue Expansion: An Experimental Study in a Rat Model. Ann Plast Surg 2019; 85:61-67. [PMID: 31855863 DOI: 10.1097/sap.0000000000002137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Tissue expansion has been applied in tissue repair and reconstruction of large soft tissue defects. Stromal vascular fraction (SVF) transplantation is a promising treatment in raising expansion efficiency. However, the clinical utilization of SVF is limited because of its conventional collagenase-based production. The aim of this study was to evaluate the effect of emulsified fat (EF), SVF obtained by using mechanical method, on accelerating tissue expansion. MATERIALS AND METHODS The microstructure of EF fragments and the proportion of mesenchymal stem cells (MSCs; CD45-/CD34+) in EF were detected. Wistar rats were divided into the following 3 groups randomly: the 1-mL EF group, the 0.5-mL EF group, and the control group. The tissue expansion was carried out twice a week to maintain the capsule pressure at 60 mm Hg. After 4 weeks, inflation volume and histological changes, which includes collagen content, cell proliferation, and capillary density, were observed to evaluate the effect of EF on tissue expansion. RESULTS Mechanical emulsification effectively destroyed the mature adipocytes in adipose tissue. The proportion of MSCs population in the EF fragments was 12.40 ± 0.86%. After expansion, the inflation volume and the levels of collagen deposition, cell proliferation, and capillary density of the expanded tissue in the 1-mL EF group were significantly higher than that in the 0.5-mL EF group and the control group (P < 0.05). However, all these regenerative indicators in the 0.5-mL EF group showed no statistical difference from the control group (P > 0.05). The thickness of epidermal and dermal layers showed no significant difference among the 3 groups (P > 0.05). CONCLUSIONS Our findings suggested that EF grafting can be used as a new alternative to increase tissue expansion efficiency.
Collapse
|
11
|
Fang B, Liu Y, Zheng D, Shan S, Wang C, Gao Y, Wang J, Xie Y, Zhang Y, Li Q. The effects of mechanical stretch on the biological characteristics of human adipose-derived stem cells. J Cell Mol Med 2019; 23:4244-4255. [PMID: 31020802 PMCID: PMC6533502 DOI: 10.1111/jcmm.14314] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/17/2019] [Accepted: 03/14/2019] [Indexed: 01/21/2023] Open
Abstract
Adipose‐derived stem cells (ADSCs) are a subset of mesenchymal stem cells (MSCs), which have promised a vast therapeutic potential in tissue regeneration. Recent studies have demonstrated that combining stem cells with mechanical stretch may strengthen the efficacy of regenerative therapies. However, the exact influences of mechanical stretch on MSCs still remain inconclusive. In this study, human ADSCs (hADSCs) were applied cyclic stretch stimulation under an in vitro stretching model for designated duration. We found that mechanical stretch significantly promoted the proliferation, adhesion and migration of hADSCs, suppressing cellular apoptosis and increasing the production of pro‐healing cytokines. For differentiation of hADSCs, mechanical stretch inhibited adipogenesis, but enhanced osteogenesis. Long‐term stretch could promote ageing of hADSCs, but did not alter the cell size and typical immunophenotypic characteristics. Furthermore, we revealed that PI3K/AKT and MAPK pathways might participate in the effects of mechanical stretch on the biological characteristics of hADSCs. Taken together, mechanical stretch is an effective strategy for enhancing stem cell behaviour and regulating stem cell fate. The synergy between hADSCs and mechanical stretch would most likely facilitate tissue regeneration and promote the development of stem cell therapy.
Collapse
Affiliation(s)
- Bin Fang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanjun Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danning Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuandong Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Department of Otorhinolaryngology and Head & Neck Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Xie
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Hemodynamic Assessment with SPY-Indocyanine Green Angiography in Expansion Period. J Craniofac Surg 2018; 29:578-583. [DOI: 10.1097/scs.0000000000004282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
13
|
Gettler BC, Zakhari JS, Gandhi PS, Williams SK. Formation of Adipose Stromal Vascular Fraction Cell-Laden Spheroids Using a Three-Dimensional Bioprinter and Superhydrophobic Surfaces. Tissue Eng Part C Methods 2017; 23:516-524. [PMID: 28665236 DOI: 10.1089/ten.tec.2017.0056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The therapeutic infusion of adipose-derived stromal vascular fraction (SVF) cells for the treatment of multiple diseases, has progressed to numerous human clinical trials; however, the often poor retention of the cells following implantation remains a common drawback of direct cell injection. One solution to cellular retention at the injection site has been the use of biogels to encapsulate cells within a microenvironment before and upon implantation. The current study utilized three-dimensional bioprinting technology to evaluate the ability to form SVF cell-laden spheroids with collagen I as a gel-forming biomatrix. A superhydrophobic surface was created to maintain the bioprinted structures in a spheroid shape. A hydrophilic disc was printed onto the hydrophobic surface to immobilize the spheroids during the gelation process. Conditions for the automated rapid formation of SVF cell-laden spheroids were explored, including time/pressure relationships for spheroid extrusion during bioprinting. The formed spheroids maintain SVF viability in both static culture and dynamic spinner culture. Spheroids also undergo a time-dependent contraction with the retention of angiogenic sprout phenotype over the 14-day culture period. The use of a biphilic surface exhibiting both superhydrophobicity to maintain the spheroid shape and a hydrophilicity to immobilize the spheroid during gel formation produces SVF cell-laden spheroids that can be immediately transplanted for therapeutic applications.
Collapse
Affiliation(s)
- Brian C Gettler
- Cardiovascular Innovation Institute, University of Louisville , Louisville, Kentucky
| | - Joseph S Zakhari
- Cardiovascular Innovation Institute, University of Louisville , Louisville, Kentucky
| | - Piyani S Gandhi
- Cardiovascular Innovation Institute, University of Louisville , Louisville, Kentucky
| | - Stuart K Williams
- Cardiovascular Innovation Institute, University of Louisville , Louisville, Kentucky
| |
Collapse
|
14
|
Darinskas A, Paskevicius M, Apanavicius G, Vilkevicius G, Labanauskas L, Ichim TE, Rimdeika R. Stromal vascular fraction cells for the treatment of critical limb ischemia: a pilot study. J Transl Med 2017; 15:143. [PMID: 28629476 PMCID: PMC5477131 DOI: 10.1186/s12967-017-1243-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/13/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Cell-based therapy is being explored as an alternative treatment option for critical limb ischemia (CLI), a disease associated with high amputation and mortality rates and poor quality of life. However, therapeutic potential of uncultured adipose-derived stromal vascular fraction (SVF) cells has not been evaluated as a possible treatment. In this pilot study, we investigated the efficacy of multiple injections of autologous uncultured adipose-derived SVF cells to treat patients with CLI. METHODS This study included 15 patients, from 35 to 77 years old, with rest pain and ulceration. SVF cells were injected once or twice in the ischemic limb along the arteries. Digital subtraction angiography was performed before and after cell therapy. The clinical follow up was carried out for the subsequent 12 months after the beginning of the treatment. RESULTS Multiple intramuscular SVF cell injections caused no complications during the follow-up period. Clinical improvement occurred in 86.7% of patients. Two patients required major amputation, and the amputation sites healed completely. The rest of patients achieved a complete ulcer healing, pain relief, improved ankle-brachial pressure index and claudication walking distance, and had ameliorated their quality of life. Digital subtraction angiography performed before and after SVF cell therapy showed formation of numerous vascular collateral networks across affected arteries. CONCLUSION Results of this pilot study demonstrate that the multiple intramuscular SVF cell injections stimulate regeneration of injured tissue and are effective alternative to achieve therapeutic angiogenesis in CLI patients who are not eligible for conventional treatment. Trial registration number at ISRCTN registry, ISRCTN13001382. Retrospectively registered at 26/04/2017.
Collapse
Affiliation(s)
- Adas Darinskas
- Laboratory of Immunology, National Cancer Institute, Santariskiu Str. 1, 08660 Vilnius, Lithuania
| | - Mindaugas Paskevicius
- Department of Vascular Surgery, Vilnius City Clinical Hospital, Antakalnio Str. 57, 10207 Vilnius, Lithuania
| | - Gintaras Apanavicius
- Department of Vascular Surgery, Vilnius City Clinical Hospital, Antakalnio Str. 57, 10207 Vilnius, Lithuania
| | - Gintaris Vilkevicius
- Northway Medical and Surgical Center, S.Zukausko Str. 19, 08234 Vilnius, Lithuania
- Clinics of Cardiovascular Diseases, Vilnius University, Santariskiu Str. 2, 08661 Vilnius, Lithuania
| | - Liutauras Labanauskas
- Department of Plastic and Reconstructive Surgery, Lithuanian University of Health Sciences, Medical Academy, University Clinics of Kaunas, Eiveniu Str. 2, 50009 Kaunas, Lithuania
| | | | - Rytis Rimdeika
- Department of Plastic and Reconstructive Surgery, Lithuanian University of Health Sciences, Medical Academy, University Clinics of Kaunas, Eiveniu Str. 2, 50009 Kaunas, Lithuania
| |
Collapse
|
15
|
Zhou SB, Zhang GY, Xie Y, Zan T, Gan YK, Yao CA, Chiang CA, Wang J, Liu K, Li H, Zhou J, Yang M, Gu B, Xie F, Pu LQ, Magee WP, Li QF. Autologous Stem Cell Transplantation Promotes Mechanical Stretch Induced Skin Regeneration: A Randomized Phase I/II Clinical Trial. EBioMedicine 2016; 13:356-364. [PMID: 27876353 PMCID: PMC5264315 DOI: 10.1016/j.ebiom.2016.09.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/25/2016] [Accepted: 09/30/2016] [Indexed: 01/11/2023] Open
Abstract
Background Mechanical stretch, in term of skin expansion, can induce effective but limited in vivo skin regeneration for complex skin defect reconstruction. We propose a strategy to obtain regenerated skin by combining autologous stem cell transplantation with mechanical stretch. Methods This randomized, blinded placebo-controlled trial enrolled 38 adult patients undergoing skin expansion presenting with signs of exhausted regenerative capacity. Patients randomly received autologous bone marrow mononuclear cell (MNC) or placebo injections intradermally. Follow-up examinations were at 4, 8 weeks and 2 years. The primary endpoint was the volume achieved in relation to the designed size of the expander (expansion index, EI). Secondary endpoints were surface area, thickness and texture of expanded skin. This trial is registered with ClinicalTrial.gov, NCT01209611. Findings The MNC group had a significantly higher EI at 4 weeks (mean difference 0.59 [95% CI, 0.03–1.16]; p = 0.039) and 8 weeks (1.05 [95% CI, 0.45–1.66]; p = 0.001) versus controls. At 8 weeks, the MNC group had significantly thicker skin (epidermis: p < 0.001, dermis: p < 0.001) and higher subjective scores for skin quality/texture (24.8 [95% CI, 17.6–32.1]; p < 0.001). The MNC group had more skin surface area (70.34 cm2 [95% CI, 39.75–100.92]; p < 0.001). Patients in the MNC group gained up to the quadrupled surface area of expanded skin compared to pre-expansion at the end of expansion. No severe adverse events occurred. Interpretation Intradermal transplantation of autologous stem cells represents a safe and effective strategy to promote in vivo mechanical stretch induced skin regeneration, which can provide complex skin defect reconstruction with plentiful of tissue. This study shows that intradermally transplanted MNCs in mechanical stretched skin is a safe and feasible clinical application. Intradermally transplantation of MNCs can overcome the regenerative limitations of skin. The strategy of combining stem cell and microenvironment can provide significant amounts tissue for surgical reconstruction.
Though stem cells are proved to participate in tissue regeneration, there is seldom clinical research combining stem cell and in vivo mechanotransduction to provoke skin regeneration. In this study, we introduce autologous bone marrow stem cells to mechanical stretch induced skin regeneration. The results showed that the potential of autologous stem cells in promoting skin regeneration. The application of stem cell assisted skin expansion can overcome the regenerative limitations of skin to provide significant amounts tissue for surgical reconstruction. The integration of stem cells and mechanical stretch stimuli will engender further advances in in vivo tissue regeneration.
Collapse
Affiliation(s)
- Shuang-Bai Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Guo-You Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yun Xie
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yao-Kai Gan
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Caroline A Yao
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Cheng-An Chiang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jing Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Hua Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jia Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Mei Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Bin Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Feng Xie
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lee Q Pu
- Department of Plastic and Reconstructive Surgery, University of California Davis Medical Center, Sacramento, CA, United States
| | - William P Magee
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Qing-Feng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
16
|
Transplantation of an LGR6+ Epithelial Stem Cell–Enriched Scaffold for Repair of Full-Thickness Soft-Tissue Defects. Plast Reconstr Surg 2016; 137:495-507. [DOI: 10.1097/01.prs.0000475761.09451.00] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Kuo YR, Wang CT, Cheng JT, Kao GS, Chiang YC, Wang CJ. Adipose-Derived Stem Cells Accelerate Diabetic Wound Healing through the Induction of Autocrine and Paracrine Effects. Cell Transplant 2016; 25:71-81. [DOI: 10.3727/096368915x687921] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cell-based therapy is an attractive approach for the treatment of chronic nonhealing wounds. This study investigated whether adipose-derived stem cells (ASCs) can accelerate diabetic wound healing and traffic in the engraftment of ASCs. Dorsal full-thickness skin wound defects (6 × 5 cm) were created in a streptozotocin (STZ)-induced diabetes rodent model. Group I served as a nondiabetic normal control, group II served as a diabetic control without ASCs, and group III included rats that were injected subcutaneously in the wound margin twice with nondiabetic ASCs (1 × 107 ASCs/dose). The wound healing was assessed clinically. Histological examination and immunohistochemical analyses of periwound tissue were performed. Green fluorescence protein (GFP)+-ASCs were used to examine the engraftment of these cells after injection. XenoLight DiR-labeled ASCs were implanted to detect migration ability using an IVIS imaging system. Results revealed that complete wound healing time statistically decreased in the ASC-treated group compared to the controls (p < 0.001). Histological examination revealed the ASC-treated group showed a significant reduction in the proinflammatory reaction, with significantly increased levels of EGF, VEGF, rPH, and Ki-67 expression compared to the controls. The populations of GFP+-ASCs in circulating blood significantly increased after ASC injection compared to those of controls. Immunofluorescence staining showed GFP+-ASCs significantly accumulated in the subdermal layer of the wound margin and increased angiogenesis via vWF and VEGF expression after injection. IVIS analysis revealed ASCs could exist and home into the periwound area up to 8 weeks postimplantation. In conclusion, ASCs significantly enhanced diabetic wound healing, engrafted into the local wound tissue, and implanted into circulating blood. ASC treatment stimulated neoangiogenesis and increased tissue regeneration through paracrine and autocrine mechanisms.
Collapse
Affiliation(s)
- Yur-Ren Kuo
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chun-Ting Wang
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiin-Tsuey Cheng
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Gour-Shenq Kao
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yuan-Cheng Chiang
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Jen Wang
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
18
|
Amato B, Compagna R, Amato M, Butrico L, Fugetto F, Chibireva MD, Barbetta A, Cannistrà M, de Franciscis S, Serra R. The role of adult tissue-derived stem cells in chronic leg ulcers: a systematic review focused on tissue regeneration medicine. Int Wound J 2015; 13:1289-1298. [PMID: 26399452 DOI: 10.1111/iwj.12499] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/10/2015] [Accepted: 08/16/2015] [Indexed: 12/12/2022] Open
Abstract
Wound healing is an articulated process that can be impaired in different steps in chronic wounds. Chronic leg ulcers are a special type of non-healing wounds that represent an important cause of morbidity and public cost in western countries. Because of their common recurrence after conventional managements and increasing prevalence due to an ageing population, newer approaches are needed. Over the last decade, the research has been focused on innovative treatment strategies, including stem-cell-based therapies. After the initial interest in embryonic pluripotent cells, several different types of adult stem cells have been studied because of ethical issues. Specific types of adult stem cells have shown a high potentiality in tissue healing, in both in vitro and in vivo studies. Aim of this review is to clearly report the newest insights on tissue regeneration medicine, with particular regard for chronic leg ulcers.
Collapse
Affiliation(s)
- Bruno Amato
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology, Headquarters, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Rita Compagna
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology, Headquarters, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Maurizio Amato
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Lucia Butrico
- Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
| | - Francesco Fugetto
- School of Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Mariia D Chibireva
- School of Medicine, Kazan State Medical University, Kazan, Tatarstan Republic, Russian Federation
| | - Andrea Barbetta
- Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
| | - Marco Cannistrà
- Department of Surgery, Annunziata Hospital of Cosenza, Cosenza, Italy
| | - Stefano de Franciscis
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology, Headquarters, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
| | - Raffaele Serra
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology, Headquarters, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
19
|
|
20
|
Characterization of adipose tissue-derived stromal vascular fraction for clinical application to cartilage regeneration. In Vitro Cell Dev Biol Anim 2014; 51:142-50. [PMID: 25361717 DOI: 10.1007/s11626-014-9814-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 08/21/2014] [Indexed: 01/10/2023]
Abstract
Bone marrow concentration (BMC) is the most recognized procedure to prepare mesenchymal stem cells for cartilage regeneration. However, bone marrow aspiration is highly invasive and results in low stem cell numbers. Recently, adipose tissue-derived stromal vascular fraction (AT-SVF) was studied as an alternate source of stem cells for cartilage regeneration. However, AT-SVF is not fully characterized in terms of functional equivalence to BMC. Therefore, in this study, we characterized AT-SVF and assessed its suitability as a one-step surgical procedure for cartilage regeneration, as an alternative to BMC. AT-SVF contained approximately sixfold less nucleated cells than BMC. However, adherent cells in AT-SVF were fourfold greater than BMC. Additionally, the colony-forming unit frequency of AT-SVF was higher than that of BMC, at 0.5 and 0.01%, respectively. The mesenchymal stem cell (MSC) population (CD45-CD31-CD90+CD105+) was 4.28% in AT-SVF and 0.42% in BMC, and the adipose-derived stromal cell (ASC) population (CD34+CD31-CD146-) was 32% in AT-SVF and 0.16% in BMC. In vitro chondrogenesis demonstrated that micromass was not formed in BMC, whereas it was clearly formed in AT-SVF. Taken together, uncultured AT-SVF could be used in one-step surgery for cartilage regeneration as a substitute for BMC.
Collapse
|
21
|
Tanshinon IIA injection accelerates tissue expansion by reducing the formation of the fibrous capsule. PLoS One 2014; 9:e105756. [PMID: 25157742 PMCID: PMC4144912 DOI: 10.1371/journal.pone.0105756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 07/28/2014] [Indexed: 11/19/2022] Open
Abstract
The tissue expansion technique has been applied to obtain new skin tissue to repair large defects in clinical practice. The implantation of tissue expander could initiate a host response to foreign body (FBR), which leads to fibrotic encapsulation around the expander and prolongs the period of tissue expansion. Tanshinon IIA (Tan IIA) has been shown to have anti-inflammation and immunoregulation effect. The rat tissue expansion model was used in this study to observe whether Tan IIA injection systematically could inhibit the FBR to reduce fibrous capsule formation and accelerate the process of tissue expansion. Forty-eight rats were randomly divided into the Tan IIA group and control group with 24 rats in each group. The expansion was conducted twice a week to maintain a capsule pressure of 60 mmHg. The expansion volume and expanded area were measured. The expanded tissue in the two groups was harvested, and histological staining was performed; proinflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) and transforming growth factor-β (TGF-β) were examined. The expansion volume and the expanded area in the Tan IIA group were greater than that of the control group. The thickness of the fibrous capsule in the Tan IIA group was reduced with no influence on the normal skin regeneration. Decreased infiltration of macrophages, lower level of TNF-α, IL-6, IL-1β and TGF-β, less proliferating myofibroblasts and enhanced neovascularization were observed in the Tan IIA group. Our findings indicated that the Tan IIA injection reduced the formation of the fibrous capsule and accelerated the process of tissue expansion by inhibiting the FBR.
Collapse
|
22
|
Li L, Pan S, Ni B, Lin Y. Improvement in autologous human fat transplant survival with SVF plus VEGF-PLA nano-sustained release microspheres. Cell Biol Int 2014; 38:962-70. [PMID: 24740717 DOI: 10.1002/cbin.10284] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/20/2014] [Indexed: 11/11/2022]
Abstract
Early neovascularization is important for autologous fat transplant survival. SVF cells are ideal seed cells. Both vascular endothelial growth factor (VEGF) and SVF cells can promote neovascularization. However, the half-life (about 50 min) of VEGF is too short to sustain an adequate local concentration. We have investigated whether VEGF-polylactic acid (PLA) nano-sustained release microspheres plus SVF cells can improve neovascularization and survival of transplanted fat tissues. SVF cells were harvested and constructed VEGF-PLA nano-sustained release microspheres in vitro. Human fat tissues was mixed with SVF cells plus VEGF-PLA, SVF cells alone or Dulbecco's modified Eagle's medium as the control. These three mixtures were injected into random sites in 18 nude mice. Two months later, the transplants were weighed and examined histologically; and capillaries were counted to quantify neovascularization. Hematoxylin-eosin (HE) and anti-VEGF stains were applied to reveal cell infiltration. The mean wet weight of fat in the SVF plus VEGF-PLA, SVF alone, and control transplants were 0.18 ± 0.013 g, 0.16 ± 0.015 g, and 0.071 ± 0.12 g, respectively; the differences between groups were statistically significant. More vessels were present in the SVF plus VEGF-PLA transplants than in the other two types. Transplants mixed with SVF cells also had an acceptable density of capillaries. Histological analysis revealed that both the SVF plus VEGF-PLA and SVF alone transplants, but not the control transplants, were composed of adipose tissue, and had less fat necrosis and less fibrosis than control specimens. SVF plus VEGF-PLA transplants had significantly greater capillary density and VEGF expression than the other two transplant groups. Thus transplanted fat tissue survival and quality can be enhanced by the addition of VEGF-PLA nano-sustained release microspheres plus SVF cells.
Collapse
Affiliation(s)
- Liqun Li
- First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai Direct, Wenzhou City, Zhejiang Province, People's Republic of China
| | | | | | | |
Collapse
|
23
|
Sheng L, Yu Q, Xie F, Li Q. Foreign body response induced by tissue expander implantation. Mol Med Rep 2013; 9:872-6. [PMID: 24378398 DOI: 10.3892/mmr.2013.1881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 12/12/2013] [Indexed: 11/06/2022] Open
Abstract
The foreign body response (FBR) is described as the host's response to implanted biomaterials, which involves a complex cascade of immune modulators. The dynamic changes of immune cells, inflammatory cytokines and the formation of a fibrous capsule remain to be elucidated. In the present study, a model of subcutaneous implantation of a tissue expander was used. The results revealed that macrophages, the main immune cells in FBR, infiltrated into the expanded tissue and located at the tissue‑material interface from day 1‑90. Following the decrease of the number of macrophages, collagen deposited and fibroblasts transformed into myofibroblasts at the tissue‑material interface, leading to the formation of a fibrous capsule from day 14. The persistent existing macrophages led to a high expression of proinflammatory cytokines, including tumor necrosis factor‑α and interleukin‑1β, both of which initiated the NK-κB and JNK inflammatory pathways, mediating the FBR to tissue expander implantation.
Collapse
Affiliation(s)
- Lingling Sheng
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, P.R. China
| | - Qingxiong Yu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, P.R. China
| | - Feng Xie
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, P.R. China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
24
|
Stem cell therapy for lower extremity diabetic ulcers: where do we stand? BIOMED RESEARCH INTERNATIONAL 2013; 2013:462179. [PMID: 23586040 PMCID: PMC3613085 DOI: 10.1155/2013/462179] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/03/2013] [Accepted: 02/04/2013] [Indexed: 12/17/2022]
Abstract
The impairment of wound healing in diabetic patients is an important clinical problem affecting millions of patients worldwide. Various clinical and basic science studies show that stem cell therapy, as a regenerative medical therapy, can be a good solution. In this paper, we begin with an introduction of the cellular mechanism of the diabetic ulcer. We will then discuss the advantages and limitations of various stem cell therapies that have been under extensive recent study.
Collapse
|