1
|
Foti S, Rickart AJ, Koo B, O' Sullivan E, van de Lande LS, Papaioannou A, Khonsari R, Stoyanov D, Jeelani NUO, Schievano S, Dunaway DJ, Clarkson MJ. Latent disentanglement in mesh variational autoencoders improves the diagnosis of craniofacial syndromes and aids surgical planning. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 256:108395. [PMID: 39213899 DOI: 10.1016/j.cmpb.2024.108395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 05/29/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND OBJECTIVE The use of deep learning to undertake shape analysis of the complexities of the human head holds great promise. However, there have traditionally been a number of barriers to accurate modelling, especially when operating on both a global and local level. METHODS In this work, we will discuss the application of the Swap Disentangled Variational Autoencoder (SD-VAE) with relevance to Crouzon, Apert and Muenke syndromes. The model is trained on a dataset of 3D meshes of healthy and syndromic patients which was increased in size with a novel data augmentation technique based on spectral interpolation. Thanks to its semantically meaningful and disentangled latent representation, SD-VAE is used to analyse and generate head shapes while considering the influence of different anatomical sub-units. RESULTS Although syndrome classification is performed on the entire mesh, it is also possible, for the first time, to analyse the influence of each region of the head on the syndromic phenotype. By manipulating specific parameters of the generative model, and producing procedure-specific new shapes, it is also possible to approximate the outcome of a range of craniofacial surgical procedures. CONCLUSION This work opens new avenues to advance diagnosis, aids surgical planning and allows for the objective evaluation of surgical outcomes. Our code is available at github.com/simofoti/CraniofacialSD-VAE.
Collapse
Affiliation(s)
- Simone Foti
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK; Centre For Medical Image Computing, University College London, London, UK; Imperial College London, Department of Computing, London, UK.
| | - Alexander J Rickart
- UCL Great Ormond Street Institute of Child Health and Craniofacial Unit, Great Ormond Street Hospital for Children, London, UK
| | - Bongjin Koo
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK; Centre For Medical Image Computing, University College London, London, UK; University of California, Santa Barbara, Department of Electrical & Computer Engineering, Santa Barbara, USA
| | - Eimear O' Sullivan
- UCL Great Ormond Street Institute of Child Health and Craniofacial Unit, Great Ormond Street Hospital for Children, London, UK; Imperial College London, Department of Computing, London, UK
| | - Lara S van de Lande
- Department of Oral and Maxillofacial Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Athanasios Papaioannou
- UCL Great Ormond Street Institute of Child Health and Craniofacial Unit, Great Ormond Street Hospital for Children, London, UK; Imperial College London, Department of Computing, London, UK
| | - Roman Khonsari
- Department of Maxillofacial Surgery and Plastic Surgery, Necker - Enfants Malades University Hospital, Paris, France
| | - Danail Stoyanov
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK; Centre For Medical Image Computing, University College London, London, UK
| | - N U Owase Jeelani
- UCL Great Ormond Street Institute of Child Health and Craniofacial Unit, Great Ormond Street Hospital for Children, London, UK
| | - Silvia Schievano
- UCL Great Ormond Street Institute of Child Health and Craniofacial Unit, Great Ormond Street Hospital for Children, London, UK
| | - David J Dunaway
- UCL Great Ormond Street Institute of Child Health and Craniofacial Unit, Great Ormond Street Hospital for Children, London, UK
| | - Matthew J Clarkson
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK; Centre For Medical Image Computing, University College London, London, UK
| |
Collapse
|
2
|
He KH, Bruse JL, Rodriguez-Florez N, Dunaway D, Jeelani O, Schievano S, Borghi A. Understanding the influence of surgical parameters on craniofacial surgery outcomes: a computational study. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231158. [PMID: 38577216 PMCID: PMC10987985 DOI: 10.1098/rsos.231158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 11/03/2023] [Accepted: 01/29/2024] [Indexed: 04/06/2024]
Abstract
Sagittal craniosynostosis (SC) is a congenital condition whereby the newborn skull develops abnormally owing to the premature ossification of the sagittal suture. Spring-assisted cranioplasty (SAC) is a minimally invasive surgical technique to treat SC, where metallic distractors are used to reshape the newborn's head. Although safe and effective, SAC outcomes remain uncertain owing to the limited understanding of skull-distractor interaction and the limited information provided by the analysis of single surgical cases. In this work, an SC population-averaged skull model was created and used to simulate spring insertion by means of the finite-element analysis using a previously developed modelling framework. Surgical parameters were varied to assess the effect of osteotomy and spring positioning, as well as distractor combinations, on the final skull dimensions. Simulation trends were compared with retrospective measurements from clinical imaging (X-ray and three-dimensional photogrammetry scans). It was found that the on-table post-implantation head shape change is more sensitive to spring stiffness than to the other surgical parameters. However, the overall end-of-treatment head shape is more sensitive to spring positioning and osteotomy size parameters. The results of this work suggest that SAC surgical planning should be performed in view of long-term results, rather than immediate on-table reshaping outcomes.
Collapse
Affiliation(s)
- K. H. He
- Ningbo University, Ningbo, People's Republic of China
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - J. L. Bruse
- Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
| | - N. Rodriguez-Florez
- Universidad de Navarra, TECNUN Escuela de Ingenieros, San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - D. Dunaway
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Craniofacial Unit, Great Ormond Street Hospital for Children, London, UK
| | - O. Jeelani
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Craniofacial Unit, Great Ormond Street Hospital for Children, London, UK
| | - S. Schievano
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
- Craniofacial Unit, Great Ormond Street Hospital for Children, London, UK
| | - A. Borghi
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Craniofacial Unit, Great Ormond Street Hospital for Children, London, UK
- Department of Engineering, Durham University, Durham, UK
| |
Collapse
|
3
|
Haber SE, Leikola J, Nowinski D, Fauroux B, Morisseau-Durand MP, Paternoster G, Khonsari RH, Arnaud E. Secondary Le Fort III after Early Fronto-Facial Monobloc Normalizes Sleep Apnea in Faciocraniosynostosis: A Cohort Study. J Plast Reconstr Aesthet Surg 2022; 75:2706-2718. [PMID: 35431130 DOI: 10.1016/j.bjps.2022.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 07/26/2021] [Accepted: 02/13/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND This study aims to assess the improvement of sleep apnea after secondary Le Fort III facial advancement with distraction (LF3) in faciocraniosynostosis (FCS) patients with sleep apnea who have previously undergone fronto-facial monobloc advancement (FFMBA) with distraction. METHODS Patients having undergone secondary LF3 were selected from a cohort of FCS patients with documented sleep apnea who had previously undergone fronto-facial monobloc advancement. Patient charts and polysomnographic records were reviewed. Apnea-hypopnea index (AHI) was recorded before and at least 6 months after secondary LF3. The primary outcome was normalization of AHI (less than 5/h was considered normal). Hierarchical multilevel analysis was performed to predict postoperative AHI evolution. RESULTS Seventeen patients underwent a secondary LF3, 7.0 ± 3.9 years after the primary FFMBA. The mean age was 9.6 ± 3.9 years. A total of 15 patients (88%) normalized their AHI. Two of four patients were decannulated (50%). There was a statistically significant decrease in AHI (preoperative AHI 21.5/h vs. 3.9/h postoperatively, p=0.003). Hierarchic multilevel modeling showed progressive AHI decrease postoperatively. CONCLUSION Secondary LF3 improves residual or relapsing sleep apnea in FCS patients who have previously had FFMBA.
Collapse
Affiliation(s)
- Samer E Haber
- Unité fonctionnelle de chirurgie craniofaciale, Service de Neurochirurgie Pédiatrique, Hôpital Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris; Centre de Référence Maladies Rares CRANIOST, Filière Maladies Rares TeteCou, Université de Paris; Paris, France
| | - Junnu Leikola
- Cleft Palate and Craniofacial Center, Department of Plastic Surgery, Töölö Hospital, Helsinki University Central Hospital, P.O. Box 266, FI-00029, Helsinki, Finland
| | - Daniel Nowinski
- Department of Surgical Sciences, Uppsala University, Department of Plastic and Maxillofacial Surgery, Uppsala University Hospital, Uppsala, Sweden
| | - Brigitte Fauroux
- Service de Ventilation Non-Invasive et Sommeil de l'Enfant; Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris; EA7330 VIFASOM (Vigilance Fatigue Sommeil et Santé Publique); Université Paris-Descartes, Université Sorbonne Paris Cité; Paris, France
| | - Marie-Paule Morisseau-Durand
- Service d'Otorhinolaryngologie pédiatrique, Hôpital Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris; Centre de Référence Maladies Rares MALO, Filière Maladies Rares TeteCou; Université de Paris, Université Paris Descartes; Paris, France
| | - Giovanna Paternoster
- Unité fonctionnelle de chirurgie craniofaciale, Service de Neurochirurgie Pédiatrique, Hôpital Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris; Centre de Référence Maladies Rares CRANIOST, Filière Maladies Rares TeteCou, Université de Paris; Paris, France
| | - Roman H Khonsari
- Service de chirurgie maxillofaciale et chirurgie plastique, Hôpital Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris; Centre de Référence Maladies Rares CRANIOST, Filière Maladies Rares TeteCou; Université de Paris, Université de Paris; Paris, France
| | - Eric Arnaud
- Unité fonctionnelle de chirurgie craniofaciale, Service de Neurochirurgie Pédiatrique, Hôpital Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris; Centre de Référence Maladies Rares CRANIOST, Filière Maladies Rares TeteCou, Université de Paris; Paris, France; Clinique Marcel Sembat, Ramsay Générale de Santé, 92100 Boulogne, France.
| |
Collapse
|
4
|
Duncan C, Pears N, Dai H, Smith WP, O′Higgins P. Applications of 3D photography in craniofacial surgery. J Pediatr Neurosci 2022; 17:S21-S28. [PMID: 36388007 PMCID: PMC9648652 DOI: 10.4103/jpn.jpn_48_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022] Open
Abstract
Three-dimensional (3D) photography is becoming more common in craniosynostosis practice and may be used for research, archiving, and as a planning tool. In this article, an overview of the uses of 3D photography will be given, including systems available and illustrations of how they can be used. Important innovations in 3D computer vision will also be discussed, including the potential role of statistical shape modeling and analysis as an outcomes tool with presentation of some results and a review of the literature on the topic. Potential future applications in diagnostics using machine learning will also be presented.
Collapse
|
5
|
Abstract
INTRODUCTION Geometric morphometrics (GM) is an advanced landmark-based quantitative method used to study biological shape and form. Historically, GM has been limited to non-biomedical fields such as comparative biology; however, this technique confers advantages over traditional cephalometric methods, warranting a review of current applications of GM to human craniofacial disorders. METHODS The RISmed package was used to extract metadata associated with PubMed publications referencing GM analysis techniques in craniofacial and reconstructive surgery. PubMed search terms included "geometric AND morphometric AND craniofacial;" and "geometric AND morphometric AND reconstructive surgery." Duplicate search results were eliminated. RESULTS Search yielded 139 studies between 2005 and 2020, of which 27 met inclusion criteria. Human craniofacial studies constituted 2% of all queried GM studies. Among these, cleft lip and palate were the most commonly studied craniofacial conditions (7 studies, 26%), followed by sagittal craniosynostosis (4 studies, 15%). Seventeen studies (63%) used GM to assess skeletal structures, seven studies (26%) examined both skeletal and soft tissues, and three studies (11%) analyzed soft tissues only. Eleven studies (40.1%) employed a GM approach to evaluate postoperative changes in craniofacial morphology. Two studies (7%) systematically compared GM analysis with conventional shape measurements. CONCLUSION The ability to study shape while controlling for variability in structure size and imaging technique make GM a promising tool for understanding growth patterns in complex craniofacial diseases. Furthermore, GM overcomes many limitations of traditional cephalometric techniques, and hence may claim an expanded role in the study of human craniofacial disorders in clinical and research settings.
Collapse
|
6
|
Lefort II distraction with zygomatic repositioning versus Lefort III distraction: A comparison of surgical outcomes and complications. J Craniomaxillofac Surg 2021; 49:905-913. [PMID: 33965326 DOI: 10.1016/j.jcms.2021.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 02/07/2021] [Accepted: 03/11/2021] [Indexed: 11/23/2022] Open
Abstract
The aim of the study was to determine if the additional surgical complexity of Lefort II distraction with zygomatic repositioning (LF2ZR) results in increased complications compared to Lefort III distraction (LF3). A retrospective review was performed of all LF3 and LF2ZR advancements performed by the senior author over 15 years. Demographic, operative, postoperative, and cephalometric data were collected from initial procedure through greater than 1 year postoperatively. Univariate and multivariate analyses were performed to compare procedures. 19 LF2ZR and 39 LF3 in 53 patients met inclusion criteria. Diagnoses differed between procedures, with more Crouzon Syndrome in LF3 and more Apert Syndrome in LF2ZR. Complication rate was 7/19 for LF2ZR and 12/39 for LF3 with no severe morbidity or mortality, and no difference between procedures (p = 0.56). The types of complications encountered differed between procedures. LF2ZR had a significantly longer operative time (506 ± 18 vs. 358 ± 24 min, p<0.001). However, a greater number of LF2ZR patients underwent concomitant procedures (15/19 vs. 13/39, p<0.001). Multivariate analysis revealed that Apert Syndrome and reoperative midface advancement were the most significant predictors of increased blood loss. LF2ZR has an equivalent complication rate to LF3. Therefore, it is our treatment of choice for cases requiring differential sagittal and vertical distraction of the central midface.
Collapse
|
7
|
Modelling growth curves of the normal infant's mandible: 3D measurements using computed tomography. Clin Oral Investig 2021; 25:6365-6375. [PMID: 33864148 PMCID: PMC8531114 DOI: 10.1007/s00784-021-03937-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/31/2021] [Indexed: 11/04/2022]
Abstract
Objectives Data on normal mandibular development in the infant is lacking though essential to understand normal growth patterns and to discriminate abnormal growth. The aim of this study was to provide normal linear measurements of the mandible using computed tomography performed in infants from 0 to 2 years of age. Material and methods 3D voxel software was used to calculate mandibular body length, mandibular ramus length, bicondylar width, bigonial width and the gonial angle. Intra- and inter-rater reliability was assessed for these measurements. They were found to be sufficient for all distances; intra-class correlation coefficients were all above 0.9. Regression analysis for growth modelling was performed. Results In this multi-centre retrospective study, 109 CT scans were found eligible that were performed for various reasons (e.g. trauma, craniosynostosis, craniofacial abscesses). Craniosynostosis patients had larger mandibular measurements compared to non-craniosynostosis patients and were therefore excluded. Fifty-one CT scans were analysed. Conclusions Analysis showed that the mandible increases more in size vertically (the mandibular ramus) than horizontally (the mandibular body). Most of the mandibular growth occurs in the first 6 months. Clinical relevance These growth models provide insight into normal mandibular development in the first 2 years of life. This reference data facilitates discrimination between normal and abnormal mandibular growth. Supplementary Information The online version contains supplementary material available at 10.1007/s00784-021-03937-1.
Collapse
|
8
|
Improvement of Periorbital Appearance in Apert Syndrome After Subcranial Le Fort III With Bipartition and Distraction. J Craniofac Surg 2020; 31:711-715. [DOI: 10.1097/scs.0000000000006233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
9
|
Knoops PGM, Papaioannou A, Borghi A, Breakey RWF, Wilson AT, Jeelani O, Zafeiriou S, Steinbacher D, Padwa BL, Dunaway DJ, Schievano S. A machine learning framework for automated diagnosis and computer-assisted planning in plastic and reconstructive surgery. Sci Rep 2019; 9:13597. [PMID: 31537815 PMCID: PMC6753131 DOI: 10.1038/s41598-019-49506-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
Current computational tools for planning and simulation in plastic and reconstructive surgery lack sufficient precision and are time-consuming, thus resulting in limited adoption. Although computer-assisted surgical planning systems help to improve clinical outcomes, shorten operation time and reduce cost, they are often too complex and require extensive manual input, which ultimately limits their use in doctor-patient communication and clinical decision making. Here, we present the first large-scale clinical 3D morphable model, a machine-learning-based framework involving supervised learning for diagnostics, risk stratification, and treatment simulation. The model, trained and validated with 4,261 faces of healthy volunteers and orthognathic (jaw) surgery patients, diagnoses patients with 95.5% sensitivity and 95.2% specificity, and simulates surgical outcomes with a mean accuracy of 1.1 ± 0.3 mm. We demonstrate how this model could fully-automatically aid diagnosis and provide patient-specific treatment plans from a 3D scan alone, to help efficient clinical decision making and improve clinical understanding of face shape as a marker for primary and secondary surgery.
Collapse
Affiliation(s)
- Paul G M Knoops
- UCL Great Ormond Street Institute of Child Health, London, UK
- Craniofacial Unit, Great Ormond Street Hospital for Children, London, UK
- Department of Plastic and Oral Surgery, Boston Children's Hospital & Harvard School of Dental Medicine, Boston, MA, USA
| | - Athanasios Papaioannou
- UCL Great Ormond Street Institute of Child Health, London, UK
- Craniofacial Unit, Great Ormond Street Hospital for Children, London, UK
- Department of Computing, Imperial College London, London, UK
| | - Alessandro Borghi
- UCL Great Ormond Street Institute of Child Health, London, UK
- Craniofacial Unit, Great Ormond Street Hospital for Children, London, UK
| | - Richard W F Breakey
- UCL Great Ormond Street Institute of Child Health, London, UK
- Craniofacial Unit, Great Ormond Street Hospital for Children, London, UK
| | - Alexander T Wilson
- Department of Plastic and Reconstructive Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Owase Jeelani
- UCL Great Ormond Street Institute of Child Health, London, UK
- Craniofacial Unit, Great Ormond Street Hospital for Children, London, UK
| | | | - Derek Steinbacher
- Department of Plastic and Reconstructive Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Bonnie L Padwa
- Department of Plastic and Oral Surgery, Boston Children's Hospital & Harvard School of Dental Medicine, Boston, MA, USA
| | - David J Dunaway
- UCL Great Ormond Street Institute of Child Health, London, UK
- Craniofacial Unit, Great Ormond Street Hospital for Children, London, UK
| | - Silvia Schievano
- UCL Great Ormond Street Institute of Child Health, London, UK.
- Craniofacial Unit, Great Ormond Street Hospital for Children, London, UK.
| |
Collapse
|
10
|
Classification of Subtypes of Apert Syndrome, Based on the Type of Vault Suture Synostosis. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2019; 7:e2158. [PMID: 31044122 PMCID: PMC6467634 DOI: 10.1097/gox.0000000000002158] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/05/2018] [Indexed: 11/25/2022]
Abstract
Supplemental Digital Content is available in the text. Background: Apert syndrome patients are different in clinical pathology, including obstructive sleep apnea, cleft palate, and mental deficiency. These functional deficiencies may be due to anatomic deformities, which may be caused by different forms of associated suture fusion. Therefore, a classification system of Apert syndrome based on the type of craniosynostosis pattern might be helpful in determining treatment choices. Methods: CT scans of 31 unoperated Apert syndrome and 51 controls were included and subgrouped as: class I. Bilateral coronal synostosis; class II. Pansynostosis; and class III. Perpendicular combination synostosis: a. unilateral coronal and metopic synostosis; b. sagittal with bilateral/unilateral lambdoid synostosis; and c. others. Results: Class I is the most common (55%) subtype. The cranial base angulation of class I was normal; however, the cranial base angulation on the cranium side of the skull in class II increased 12.16 degrees (P = 0.006), whereas the facial side cranial base angle of class IIIa decreased 4.31 degrees (P = 0.035) over time. The external cranial base linear measurements of class I showed more evident reduction in anterior craniofacial structures than posterior, whereas other subtypes developed more severe shortening in the posterior aspects. Conclusions: Bicoronal synostosis is the most common subtype of Apert syndrome with the normalized cranial base angulation. Combined pansynostosis patients have flatter cranial base, whereas the combined unilateral coronal synostosis have a kyphotic cranial base. Class I has more significant nasopharyngeal airway compromise in a vertical direction, whereas classes II and III have more limited oropharyngeal space.
Collapse
|
11
|
O'Hara J, Ruggiero F, Wilson L, James G, Glass G, Jeelani O, Ong J, Bowman R, Wyatt M, Evans R, Samuels M, Hayward R, Dunaway DJ. Syndromic Craniosynostosis: Complexities of Clinical Care. Mol Syndromol 2019; 10:83-97. [PMID: 30976282 DOI: 10.1159/000495739] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Patients with syndromic craniosynostosis have a molecularly identified genetic cause for the premature closure of their cranial sutures and associated facial and extra-cranial features. Their clinical complexity demands comprehensive management by an extensive multidisciplinary team. This review aims to marry genotypic and phenotypic knowledge with clinical presentation and management of the craniofacial syndromes presenting most frequently to the craniofacial unit at Great Ormond Street Hospital for Children NHS Foundation Trust.
Collapse
Affiliation(s)
- Justine O'Hara
- Great Ormond Street Craniofacial Unit, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Federica Ruggiero
- Great Ormond Street Craniofacial Unit, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Louise Wilson
- Great Ormond Street Craniofacial Unit, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Greg James
- Great Ormond Street Craniofacial Unit, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Graeme Glass
- Great Ormond Street Craniofacial Unit, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Owase Jeelani
- Great Ormond Street Craniofacial Unit, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Juling Ong
- Great Ormond Street Craniofacial Unit, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Richard Bowman
- Great Ormond Street Craniofacial Unit, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Michelle Wyatt
- Great Ormond Street Craniofacial Unit, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Robert Evans
- Great Ormond Street Craniofacial Unit, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Martin Samuels
- Great Ormond Street Craniofacial Unit, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Richard Hayward
- Great Ormond Street Craniofacial Unit, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - David J Dunaway
- Great Ormond Street Craniofacial Unit, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children NHS Trust, London, UK
| |
Collapse
|
12
|
Anterior convex lateral orbital wall: distinctive morphology in Apert syndrome. Br J Oral Maxillofac Surg 2018; 56:864-869. [DOI: 10.1016/j.bjoms.2018.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/23/2018] [Indexed: 11/21/2022]
|
13
|
|
14
|
Lewyllie A, Cadenas De Llano-Pérula M, Verdonck A, Willems G. Three-dimensional imaging of soft and hard facial tissues in patients with craniofacial syndromes: a systematic review of methodological quality. Dentomaxillofac Radiol 2017; 47:20170154. [PMID: 29168926 DOI: 10.1259/dmfr.20170154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES To systematically review the methodological quality of three-dimensional imaging studies of patients with craniofacial syndromes and to propose recommendations for future research. METHODS PubMed, Embase and Cochrane databases as well as Grey literature were electronically searched. Inclusion criteria were patients with genetic syndromes with craniofacial manifestations and three-dimensional imaging of facial soft and/or hard tissues. Exclusion criteria consisted of non-syndromic conditions or conditions owing to environmental causes, injury or trauma, facial soft and hard tissues not included in the image analysis, case reports, reviews, opinion articles. No restrictions were made for patients' ethnicity nor age, publication language or publication date. Study quality was evaluated using the Methodological Index for Non-Randomized Studies (MINORS). RESULTS The search yielded 2228 citations of which 116 were assessed in detail and 60 were eventually included in this review. Studies showed a large heterogeneity in study design, sample size and patient age. An increase was observed in the amount of studies with time, and the imaging method most often used was CT. The most studied craniofacial syndromes were Treacher Collins, Crouzon and Apert syndrome. The articles could be divided into three main groups: diagnostic studies (34/60, 57%), evaluation of surgical outcomes (21/60, 35%) and evaluation of imaging techniques (5/60, 8%). For comparative studies, the median MINORS score was 13 (12-15, 25-75th percentile), and for non-comparative studies, the median MINORS score was 8 (7-9, 25-75th percentile). CONCLUSIONS The median MINORS scores were only 50 and 54% of the maximum scores and there was a lack of prospective, controlled trials with sufficiently large study groups. To improve the quality of future studies in this domain and given the low incidence of craniofacial syndromes, more prospective multicentre controlled trials should be set up.
Collapse
Affiliation(s)
- Arianne Lewyllie
- Department of Oral Health Sciences - Orthodontics, KU Leuven and Dentistry, University Hospitals Leuven , Leuven , Belgium
| | - Maria Cadenas De Llano-Pérula
- Department of Oral Health Sciences - Orthodontics, KU Leuven and Dentistry, University Hospitals Leuven , Leuven , Belgium
| | - Anna Verdonck
- Department of Oral Health Sciences - Orthodontics, KU Leuven and Dentistry, University Hospitals Leuven , Leuven , Belgium
| | - Guy Willems
- Department of Oral Health Sciences - Orthodontics, KU Leuven and Dentistry, University Hospitals Leuven , Leuven , Belgium
| |
Collapse
|
15
|
Rodriguez-Florez N, Bruse JL, Borghi A, Vercruysse H, Ong J, James G, Pennec X, Dunaway DJ, Jeelani NUO, Schievano S. Statistical shape modelling to aid surgical planning: associations between surgical parameters and head shapes following spring-assisted cranioplasty. Int J Comput Assist Radiol Surg 2017; 12:1739-1749. [PMID: 28550406 PMCID: PMC5608871 DOI: 10.1007/s11548-017-1614-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/16/2017] [Indexed: 12/04/2022]
Abstract
PURPOSE Spring-assisted cranioplasty is performed to correct the long and narrow head shape of children with sagittal synostosis. Such corrective surgery involves osteotomies and the placement of spring-like distractors, which gradually expand to widen the skull until removal about 4 months later. Due to its dynamic nature, associations between surgical parameters and post-operative 3D head shape features are difficult to comprehend. The current study aimed at applying population-based statistical shape modelling to gain insight into how the choice of surgical parameters such as craniotomy size and spring positioning affects post-surgical head shape. METHODS Twenty consecutive patients with sagittal synostosis who underwent spring-assisted cranioplasty at Great Ormond Street Hospital for Children (London, UK) were prospectively recruited. Using a nonparametric statistical modelling technique based on mathematical currents, a 3D head shape template was computed from surface head scans of sagittal patients after spring removal. Partial least squares (PLS) regression was employed to quantify and visualise trends of localised head shape changes associated with the surgical parameters recorded during spring insertion: anterior-posterior and lateral craniotomy dimensions, anterior spring position and distance between anterior and posterior springs. RESULTS Bivariate correlations between surgical parameters and corresponding PLS shape vectors demonstrated that anterior-posterior (Pearson's [Formula: see text]) and lateral craniotomy dimensions (Spearman's [Formula: see text]), as well as the position of the anterior spring ([Formula: see text]) and the distance between both springs ([Formula: see text]) on average had significant effects on head shapes at the time of spring removal. Such effects were visualised on 3D models. CONCLUSIONS Population-based analysis of 3D post-operative medical images via computational statistical modelling tools allowed for detection of novel associations between surgical parameters and head shape features achieved following spring-assisted cranioplasty. The techniques described here could be extended to other cranio-maxillofacial procedures in order to assess post-operative outcomes and ultimately facilitate surgical decision making.
Collapse
Affiliation(s)
- Naiara Rodriguez-Florez
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
- Craniofacial Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| | - Jan L Bruse
- Craniofacial Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science, London, UK
| | - Alessandro Borghi
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
- Craniofacial Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Herman Vercruysse
- Craniofacial Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Juling Ong
- Craniofacial Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Greg James
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
- Craniofacial Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | - David J Dunaway
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
- Craniofacial Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - N U Owase Jeelani
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
- Craniofacial Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Silvia Schievano
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
- Craniofacial Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science, London, UK
| |
Collapse
|
16
|
Schaal SC, Ruff C, Pluijmers BI, Pauws E, Looman CWN, Koudstaal MJ, Dunaway DJ. Characterizing the skull base in craniofacial microsomia using principal component analysis. Int J Oral Maxillofac Surg 2017; 46:1656-1663. [PMID: 28774693 DOI: 10.1016/j.ijom.2017.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/23/2017] [Accepted: 07/10/2017] [Indexed: 11/19/2022]
Abstract
The aim of this study was to compare the anatomical differences in the skull base between the affected and non-affected side in patients with craniofacial microsomia (CFM), and to compare the affected and non-affected sides with measurements from a normal population. Three-dimensional computed tomography scans of 13 patients with unilateral CFM and 19 normal patients (age range 7-12 years) were marked manually with reliable homologous landmarks. Principal component analysis (PCA), as part of a point distribution model (PDM), was used to analyse the variability within the normal and preoperative CFM patient groups. Through analysis of the differences in the principal components calculated for the two groups, a model was created to describe the differences between CFM patients and normal age-matched controls. The PDMs were also used to describe the shape changes in the skull base between the cohorts and validated this model. Using thin-plate splines as a means of interpolation, videos were created to visualize the transformation from CFM skull to normal skull, and to display the variability in shape changes within the groups themselves. In CFM cases, the skull base showed significant asymmetry. Anatomical areas around the glenoid fossa and mastoid process showed the most asymmetry and restriction of growth, suggesting a pathology involving the first and second pharyngeal arches.
Collapse
Affiliation(s)
- S C Schaal
- The Craniofacial Unit, Great Ormond Street Hospital Institute of Child Health, London, UK.
| | - C Ruff
- Medical Physics Department, University College London, London, UK
| | - B I Pluijmers
- The Dutch Craniofacial Centre, Department of Oral and Maxillofacial Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - E Pauws
- Department of Developmental Biology and Cancer Programme, UCL Great Ormond Street Hospital Institute of Child Health, London, UK
| | - C W N Looman
- Department of Public Health, Erasmus MC, Rotterdam, The Netherlands
| | - M J Koudstaal
- The Craniofacial Unit, Great Ormond Street Hospital Institute of Child Health, London, UK; Medical Physics Department, University College London, London, UK
| | - D J Dunaway
- The Craniofacial Unit, Great Ormond Street Hospital Institute of Child Health, London, UK
| |
Collapse
|
17
|
Dall'Asta A, Schievano S, Bruse JL, Paramasivam G, Kaihura CT, Dunaway D, Lees CC. Quantitative analysis of fetal facial morphology using 3D ultrasound and statistical shape modeling: a feasibility study. Am J Obstet Gynecol 2017; 217:76.e1-76.e8. [PMID: 28209493 DOI: 10.1016/j.ajog.2017.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/26/2017] [Accepted: 02/06/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND The antenatal detection of facial dysmorphism using 3-dimensional ultrasound may raise the suspicion of an underlying genetic condition but infrequently leads to a definitive antenatal diagnosis. Despite advances in array and noninvasive prenatal testing, not all genetic conditions can be ascertained from such testing. OBJECTIVES The aim of this study was to investigate the feasibility of quantitative assessment of fetal face features using prenatal 3-dimensional ultrasound volumes and statistical shape modeling. STUDY DESIGN: Thirteen normal and 7 abnormal stored 3-dimensional ultrasound fetal face volumes were analyzed, at a median gestation of 29+4 weeks (25+0 to 36+1). The 20 3-dimensional surface meshes generated were aligned and served as input for a statistical shape model, which computed the mean 3-dimensional face shape and 3-dimensional shape variations using principal component analysis. RESULTS Ten shape modes explained more than 90% of the total shape variability in the population. While the first mode accounted for overall size differences, the second highlighted shape feature changes from an overall proportionate toward a more asymmetric face shape with a wide prominent forehead and an undersized, posteriorly positioned chin. Analysis of the Mahalanobis distance in principal component analysis shape space suggested differences between normal and abnormal fetuses (median and interquartile range distance values, 7.31 ± 5.54 for the normal group vs 13.27 ± 9.82 for the abnormal group) (P = .056). CONCLUSION This feasibility study demonstrates that objective characterization and quantification of fetal facial morphology is possible from 3-dimensional ultrasound. This technique has the potential to assist in utero diagnosis, particularly of rare conditions in which facial dysmorphology is a feature.
Collapse
Affiliation(s)
- Andrea Dall'Asta
- Centre for Fetal Care, Queen Charlotte's and Chelsea Hospital, Imperial College Healthcare National Health Service Trust, London, United Kingdom; Obstetrics and Gynaecology Unit, University of Parma, Parma, Italy
| | - Silvia Schievano
- University College London Institute of Child Health and Great Ormond Street Hospital for Children, London, United Kingdom
| | - Jan L Bruse
- University College London Institute of Child Health and Great Ormond Street Hospital for Children, London, United Kingdom
| | - Gowrishankar Paramasivam
- Centre for Fetal Care, Queen Charlotte's and Chelsea Hospital, Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | | | - David Dunaway
- Craniofacial Unit, Great Ormond Street Hospital for Children National Health Service Foundation Trust and University College London Hospital, London, United Kingdom
| | - Christoph C Lees
- Centre for Fetal Care, Queen Charlotte's and Chelsea Hospital, Imperial College Healthcare National Health Service Trust, London, United Kingdom; Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| |
Collapse
|
18
|
Quantifying the effect of corrective surgery for trigonocephaly: A non-invasive, non-ionizing method using three-dimensional handheld scanning and statistical shape modelling. J Craniomaxillofac Surg 2017; 45:387-394. [DOI: 10.1016/j.jcms.2017.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/30/2016] [Accepted: 01/03/2017] [Indexed: 11/19/2022] Open
|
19
|
Evaluating the Efficacy of Monobloc Distraction in the Crouzon-Pfeiffer Craniofacial Deformity Using Geometric Morphometrics. Plast Reconstr Surg 2017; 139:477e-487e. [DOI: 10.1097/prs.0000000000003016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|