1
|
Soodmand I, Becker AK, Sass JO, Jabs C, Kebbach M, Wanke G, Dau M, Bader R. Heterogeneous material models for finite element analysis of the human mandible bone - A systematic review. Heliyon 2024; 10:e40668. [PMID: 39759346 PMCID: PMC11698920 DOI: 10.1016/j.heliyon.2024.e40668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/06/2024] [Accepted: 11/22/2024] [Indexed: 01/07/2025] Open
Abstract
Subject-specific finite element (FE) modeling of the mandible bone has recently gained attention for its higher accuracy. A critical modeling factor is including personalized material properties from medical images especially when bone quality has to be respected. However, there is no consensus on the material model for the mandible that realistically estimates the Young's modulus of the bone. Therefore, the present study aims to review FE studies employing heterogeneous material modeling of the human mandible bone, synthesizing these models, investigating their origins, and assessing their risk of bias. A systematic review using PRISMA guidelines was conducted on publications before 1st July 2024, involving PubMed, Scopus, and Web of Science. The search string considered (a) anatomical site (b) modeling strategy, and (c) metrics of interest. Two inclusion and five exclusion criteria were defined. A review of 77 FE studies identified 12 distinct heterogeneous material models, built based on different in vitro or computational methodologies leading to varied performance and highly deviated range of estimated Young's modulus. They are proposed for bones from five different anatomical sites than mandible and for both trabecular and cortical bone domains. The original studies were characterized with a low to medium risk of bias. This review assessed the current state of material modeling for subject-specific FE models in the craniomaxillofacial field. Recommendations are provided to support researchers in selecting density-modulus relationships. Future research should focus on standardizing experimental protocols, validating models through combined simulation and experimental approaches, and investigating the anisotropic behaviour of the mandible bone.
Collapse
Affiliation(s)
- Iman Soodmand
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany
| | - Ann-Kristin Becker
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany
| | - Jan-Oliver Sass
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany
| | - Christopher Jabs
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany
| | - Maeruan Kebbach
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany
| | - Gesa Wanke
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany
| | - Michael Dau
- Department of Oral, Maxillofacial Plastic Surgery, Rostock University Medical Center, Rostock, Germany
| | - Rainer Bader
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
2
|
Xin H, Ferguson BM, Wan B, Al Maruf DSA, Lewin WT, Cheng K, Kruse HV, Leinkram D, Parthasarathi K, Wise IK, Froggatt C, Crook JM, McKenzie DR, Li Q, Clark JR. A Preclinical Trial Protocol Using an Ovine Model to Assess Scaffold Implant Biomaterials for Repair of Critical-Sized Mandibular Defects. ACS Biomater Sci Eng 2024; 10:2863-2879. [PMID: 38696332 DOI: 10.1021/acsbiomaterials.4c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
The present work describes a preclinical trial (in silico, in vivo and in vitro) protocol to assess the biomechanical performance and osteogenic capability of 3D-printed polymeric scaffolds implants used to repair partial defects in a sheep mandible. The protocol spans multiple steps of the medical device development pipeline, including initial concept design of the scaffold implant, digital twin in silico finite element modeling, manufacturing of the device prototype, in vivo device implantation, and in vitro laboratory mechanical testing. First, a patient-specific one-body scaffold implant used for reconstructing a critical-sized defect along the lower border of the sheep mandible ramus was designed using on computed-tomographic (CT) imagery and computer-aided design software. Next, the biomechanical performance of the implant was predicted numerically by simulating physiological load conditions in a digital twin in silico finite element model of the sheep mandible. This allowed for possible redesigning of the implant prior to commencing in vivo experimentation. Then, two types of polymeric biomaterials were used to manufacture the mandibular scaffold implants: poly ether ether ketone (PEEK) and poly ether ketone (PEK) printed with fused deposition modeling (FDM) and selective laser sintering (SLS), respectively. Then, after being implanted for 13 weeks in vivo, the implant and surrounding bone tissue was harvested and microCT scanned to visualize and quantify neo-tissue formation in the porous space of the scaffold. Finally, the implant and local bone tissue was assessed by in vitro laboratory mechanical testing to quantify the osteointegration. The protocol consists of six component procedures: (i) scaffold design and finite element analysis to predict its biomechanical response, (ii) scaffold fabrication with FDM and SLS 3D printing, (iii) surface treatment of the scaffold with plasma immersion ion implantation (PIII) techniques, (iv) ovine mandibular implantation, (v) postoperative sheep recovery, euthanasia, and harvesting of the scaffold and surrounding host bone, microCT scanning, and (vi) in vitro laboratory mechanical tests of the harvested scaffolds. The results of microCT imagery and 3-point mechanical bend testing demonstrate that PIII-SLS-PEK is a promising biomaterial for the manufacturing of scaffold implants to enhance the bone-scaffold contact and bone ingrowth in porous scaffold implants. MicroCT images of the harvested implant and surrounding bone tissue showed encouraging new bone growth at the scaffold-bone interface and inside the porous network of the lattice structure of the SLS-PEK scaffolds.
Collapse
Affiliation(s)
- Hai Xin
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Ben M Ferguson
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Darlington, NSW 2006, Australia
| | - Boyang Wan
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Darlington, NSW 2006, Australia
| | - D S Abdullah Al Maruf
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - William T Lewin
- Arto Hardy Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
- Sarcoma and Surgical Research Centre, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Kai Cheng
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, NSW 2050, Australia
| | - Hedi V Kruse
- Arto Hardy Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
- Sarcoma and Surgical Research Centre, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
- School of Physics, Faculty of Science, The University of Sydney, Syndey, NSW 2006, Australia
| | - David Leinkram
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, NSW 2050, Australia
| | - Krishnan Parthasarathi
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
| | - Innes K Wise
- Laboratory Animal Services, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Catriona Froggatt
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
| | - Jeremy M Crook
- Arto Hardy Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
- Sarcoma and Surgical Research Centre, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Intelligent Polymer Research Institute, AIIM Facility, The University of Wollongong, Wollongong, NSW 2519, Australia
| | - David R McKenzie
- Arto Hardy Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
- Sarcoma and Surgical Research Centre, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
- School of Physics, Faculty of Science, The University of Sydney, Syndey, NSW 2006, Australia
| | - Qing Li
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Darlington, NSW 2006, Australia
- Centre for Advanced Materials Technology, The University of Sydney, Darlington, NSW 2006, Australia
| | - Jonathan R Clark
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, NSW 2050, Australia
| |
Collapse
|
3
|
Aftabi H, Zaraska K, Eghbal A, McGregor S, Prisman E, Hodgson A, Fels S. Computational models and their applications in biomechanical analysis of mandibular reconstruction surgery. Comput Biol Med 2024; 169:107887. [PMID: 38160502 DOI: 10.1016/j.compbiomed.2023.107887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Advanced head and neck cancers involving the mandible often require surgical removal of the diseased parts and replacement with donor bone or prosthesis to recreate the form and function of the premorbid mandible. The degree to which this reconstruction successfully replicates key geometric features of the original bone critically affects the cosmetic and functional outcomes of speaking, chewing, and breathing. With advancements in computational power, biomechanical modeling has emerged as a prevalent tool for predicting the functional outcomes of the masticatory system and evaluating the effectiveness of reconstruction procedures in patients undergoing mandibular reconstruction surgery. These models offer cost-effective and patient-specific treatment tailored to the needs of individuals. To underscore the significance of biomechanical modeling, we conducted a review of 66 studies that utilized computational models in the biomechanical analysis of mandibular reconstruction surgery. The majority of these studies employed finite element method (FEM) in their approach; therefore, a detailed investigation of FEM has also been provided. Additionally, we categorized these studies based on the main components analyzed, including bone flaps, plates/screws, and prostheses, as well as their design and material composition.
Collapse
Affiliation(s)
- Hamidreza Aftabi
- Department of ECE, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada.
| | - Katrina Zaraska
- Department of Surgery, University of British Columbia, Gordon and Leslie Diamond Health Care Centre, Vancouver, V5Z 1M9, BC, Canada
| | - Atabak Eghbal
- Department of ECE, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada
| | - Sophie McGregor
- Department of Surgery, University of British Columbia, Gordon and Leslie Diamond Health Care Centre, Vancouver, V5Z 1M9, BC, Canada
| | - Eitan Prisman
- Department of Surgery, University of British Columbia, Gordon and Leslie Diamond Health Care Centre, Vancouver, V5Z 1M9, BC, Canada
| | - Antony Hodgson
- Department of Mechanical Engineering, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada
| | - Sidney Fels
- Department of ECE, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada
| |
Collapse
|
4
|
Thomková B, Marcián P, Borák L, Joukal M, Wolff J. Biomechanical performance of dental implants inserted in different mandible locations and at different angles: A finite element study. J Prosthet Dent 2024; 131:128.e1-128.e10. [PMID: 37919129 DOI: 10.1016/j.prosdent.2023.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023]
Abstract
STATEMENT OF PROBLEM Accurate implant placement is essential for the success of dental implants. This placement influences osseointegration and occlusal forces. The freehand technique, despite its cost-effectiveness and time efficiency, may result in significant angular deviations compared with guided implantation, but the effect of angular deviations on the stress-strain state of peri-implant bone is unclear. PURPOSE The purpose of this finite element analysis (FEA) study was to examine the effects of angular deviations on stress-strain states in peri-implant bone. MATERIAL AND METHODS Computational modeling was used to investigate 4 different configurations of dental implant positions, each with 3 angles of insertion. The model was developed using computed tomography images, and typical mastication forces were considered. Strains were analyzed using the mechanostat hypothesis. RESULTS The location of the implant had a significant impact on bone strain intensity. An angular deviation of ±5 degrees from the planned inclination did not significantly affect cancellous bone strains, which primarily support the implant. However, it had a substantial effect on strains in the cortical bone near the implant. Such deviations also significantly influenced implant stresses, especially when the support from the cortical bone was uneven or poorly localized. CONCLUSIONS In extreme situations, angular deviations can lead to overstraining the cortical bone, risking implant failure from unfavorable interaction with the implant. Accurate implant placement is essential to mitigate these risks.
Collapse
Affiliation(s)
- Barbora Thomková
- Graduate student, Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Petr Marcián
- Graduate student, Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic.
| | - Libor Borák
- Graduate student, Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Marek Joukal
- Associate Professor, Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Wolff
- Professor, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Zhong S, Shi Q, Van Dessel J, Gu Y, Lübbers HT, Yang S, Sun Y, Politis C. Biomechanical feasibility of non-locking system in patient-specific mandibular reconstruction using fibular free flaps. J Mech Behav Biomed Mater 2023; 148:106197. [PMID: 37875041 DOI: 10.1016/j.jmbbm.2023.106197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
Mandibular reconstruction with free fibular flaps is frequently used to restore segmental defects. The osteosythesis, including locking and non-locking plate/screw systems, is essential to the mandibular reconstruction. Compared with the non-locking system that requires good adaption between plate and bone, the locking system appears to present a better performance by locking the plate to fixation screws. However, it also brings about limitations on screw options, a higher risk of screw failure, and difficulties in screw placement. Furthermore, its superiority is undermined by the advancing of patient-specific implant design and additive manufacturing. A customized plate can be designed and fabricated to accurately match the mandibular contour for patient-specific mandibular reconstruction. Consequently, the non-locking system seems more practicable with such personalized plates, and its biomechanical feasibility ought to be estimated. Finite element analyses of mandibular reconstruction assemblies were conducted for four most common segmental mandibular reconstructions regarding locking and non-locking systems under incisal biting and right molars clenching, during which the influencing factor of muscles' capacity was introduced to simulate the practical loadings after mandibular resection and reconstruction surgeries. Much higher, somewhat lower, and similar maximum von Mises stresses are separately manifested by the patient-specific mandibular reconstruction plate (PSMRP), fixation screws, and reconstructed mandible with the non-locking system than those with the locking system. Equivalent maximum displacements are identified between PSMRPs, fixation screws, and reconstructed mandibles with the non-locking and locking system in all four reconstruction types during two masticatory tasks. Parallel maximum and minimum principal strain distributions are shared by the reconstructed mandibles with the non-locking and locking system in four mandibular reconstructions during both occlusions. Conclusively, it is feasible to use the non-locking system in case of patient-specific mandibular reconstruction with fibular free flaps based on the adequate safety, comparable stability, and analogous mechanobiology it presents compared with the locking system in a more manufacturable and economical way.
Collapse
Affiliation(s)
- Shengping Zhong
- Department of Imaging & Pathology, Biomedical Sciences Group, KU Leuven & Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium
| | - Qimin Shi
- Department of Imaging & Pathology, Biomedical Sciences Group, KU Leuven & Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium; Yantai Research Institute, Harbin Engineering University, Qingdao Avenue 1, 264000, Yantai, PR China
| | - Jeroen Van Dessel
- Department of Imaging & Pathology, Biomedical Sciences Group, KU Leuven & Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium
| | - Yifei Gu
- Department of Imaging & Pathology, Biomedical Sciences Group, KU Leuven & Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium; Department of Dentistry, Dushu Lake Hospital Affiliated to Soochow University, Chongwen Road 9, 215000, Suzhou, PR China
| | - Heinz-Theo Lübbers
- Clinic for Cranio-Maxillofacial Surgery, University Hospital of Zurich, Frauenklinikstrasse 24, Zurich, CH-8091, Switzerland
| | - Shoufeng Yang
- Yantai Research Institute, Harbin Engineering University, Qingdao Avenue 1, 264000, Yantai, PR China.
| | - Yi Sun
- Department of Imaging & Pathology, Biomedical Sciences Group, KU Leuven & Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium.
| | - Constantinus Politis
- Department of Imaging & Pathology, Biomedical Sciences Group, KU Leuven & Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium
| |
Collapse
|
6
|
Wang CF, Liu S, Hu LH, Yu Y, Peng X, Zhang WB. Biomechanical behavior of the three-dimensionally printed surgical plates for mandibular defect reconstruction: a finite element analysis. Comput Assist Surg (Abingdon) 2023; 28:2286181. [PMID: 38010807 DOI: 10.1080/24699322.2023.2286181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
The aim of the study was to investigate the biomechanical behavior of three-dimensionally (3D)-printed surgical plates used for mandibular defect reconstruction, compare them with conventional surgical plates, and provide experimental evidence for their clinical application. Three-dimensional models were created for the normal mandible and for mandibular body defects reconstructed using free fibula and deep circumflex iliac artery flaps. Three-dimensional finite element models of reconstructed mandibles fixed using 3D-printed and conventional surgical plates were established. Vertical occlusal forces were applied to the remaining teeth and the displacement and Von Mises stress distributions were studied using finite element analysis. The normal and reconstructed mandibles had similar biomechanical behaviors. The displacement distributions for the surgical plates were similar, and the maximum total deformation occurred at the screw hole of the anterior segment of the surgical plates. However, there were differences in the Von Mises stress distributions for the surgical plates. In reconstructed mandibles fixed using 3D-printed surgical plates, the maximum equivalent Von Mises stress occurred at the screw hole of the posterior segment, while in those fixed using conventional surgical plates, the maximum equivalent Von Mises stress was at the screw hole of the anterior segment. In the mandible models reconstructed with the same free flap but fixed with different surgical plates, the plates had similar biomechanical behaviors. The biomechanical behavior of 3D-printed surgical plates was similar to conventional surgical plates, suggesting that 3D-printed surgical plates used to reconstruct mandibular body defects with vascularized autogenous bone grafts could lead to secure and stable fixation.
Collapse
Affiliation(s)
- Chao-Fei Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Shuo Liu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Lei-Hao Hu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yao Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xin Peng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Wen-Bo Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
7
|
Dutta A, Mukherjee K, Seesala VS, Dutta K, Paul RR, Dhara S, Gupta S. Comparative evaluation of a patient-specific customised plate designs and screws for partial mandibular reconstruction. Med Eng Phys 2023; 111:103941. [PMID: 36792242 DOI: 10.1016/j.medengphy.2022.103941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/27/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Mandibles with odontogenic tumors are often partially reconstructed with a metallic bone graft analogue with dental roots, crowns, along with a customized plate fixed with monocortical or bicortical screws, following resection of the tumor. In this study, two different designs of patient specific customized Ti reconstruction plates, solid and plate with holes, were considered. Fixation through both bicortical and monocortical screw types were investigated. FE models of the reconstructed mandibles were developed to analyse the influence of the plate-screw type combination on the load transfer across the mandibles under a mastication cycle. The effective homogenized orthotropic material properties of the lattice structures with 0.6 mm fibre diameter with 0.5 mm inter-fibre space were assigned to material properties for the bone graft analogue. The study shows that the combination of plate and screw types influences the state of stresses in the reconstructed mandible. Based on the results of this patient specific study, following resection of the tumor, either solid Ti plate with bicortical screws or Ti plate with holes along with monocortical screws may be used for partial mandibulectomy. It should also be noted that stresses in none of the plates or screws exceeded the yield limit for Ti under the mastication cycle indicating that the components are safe for mandibular reconstruction. However, the choice of this combination of reconstruction plates and screws is dependant on the condition and severity of the tumor in the diseased mandible.
Collapse
Affiliation(s)
- Abir Dutta
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302, India
| | - Kaushik Mukherjee
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302, India; Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Venkata Sundeep Seesala
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302, India
| | - Kaushik Dutta
- Gurunanak Institute of Dental Science and Research, Department of Oral and Maxillofacial Pathology, Kolkata, West Bengal 700 114, India
| | - Ranjan Rashmi Paul
- Gurunanak Institute of Dental Science and Research, Department of Oral and Maxillofacial Pathology, Kolkata, West Bengal 700 114, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302, India
| | - Sanjay Gupta
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302, India
| |
Collapse
|
8
|
A hierarchical vascularized engineered bone inspired by intramembranous ossification for mandibular regeneration. Int J Oral Sci 2022; 14:31. [PMID: 35732648 PMCID: PMC9217949 DOI: 10.1038/s41368-022-00179-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/22/2022] Open
Abstract
Mandibular defects caused by injuries, tumors, and infections are common and can severely affect mandibular function and the patient’s appearance. However, mandible reconstruction with a mandibular bionic structure remains challenging. Inspired by the process of intramembranous ossification in mandibular development, a hierarchical vascularized engineered bone consisting of angiogenesis and osteogenesis modules has been produced. Moreover, the hierarchical vascular network and bone structure generated by these hierarchical vascularized engineered bone modules match the particular anatomical structure of the mandible. The ultra-tough polyion complex has been used as the basic scaffold for hierarchical vascularized engineered bone for ensuring better reconstruction of mandible function. According to the results of in vivo experiments, the bone regenerated using hierarchical vascularized engineered bone is similar to the natural mandibular bone in terms of morphology and genomics. The sonic hedgehog signaling pathway is specifically activated in hierarchical vascularized engineered bone, indicating that the new bone in hierarchical vascularized engineered bone underwent a process of intramembranous ossification identical to that of mandible development. Thus, hierarchical vascularized engineered bone has a high potential for clinical application in mandibular defect reconstruction. Moreover, the concept based on developmental processes and bionic structures provides an effective strategy for tissue regeneration.
Collapse
|
9
|
Cheng KJ, Liu YF, Wang JH, Wang R, Xia J, Xu X, Jiang XF, Dong XT. 3D-printed porous condylar prosthesis for temporomandibular joint replacement: Design and biomechanical analysis. Technol Health Care 2022; 30:1017-1030. [PMID: 35275582 DOI: 10.3233/thc-213534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Customized prosthetic joint replacements have crucial applications in severe temporomandibular joint problems, and the combined use of porous titanium scaffold is a potential method to rehabilitate the patients. OBJECTIVE The objective of the study was to develop a design method to obtain a titanium alloy porous condylar prosthesis with good function and esthetic outcomes for mandibular reconstruction. METHODS A 3D virtual mandibular model was created from CBCT data. A condylar defect model was subsequently created by virtual condylectomy on the initial mandibular model. The segmented condylar defect model was reconstructed by either solid or porous condyle with a fixation plate. The porous condyle was created by a density-driven modeling scheme with an inhomogeneous tetrahedral lattice structure. The porous condyle, supporting fixation plate, and screw locations were topologically optimized. Biomechanical behaviors of porous and solid condylar prostheses made of Ti-6Al-4V alloy were compared. Finite element analysis (FEA) was used to evaluate maximum stress distribution on both prostheses and the remaining mandibular ramus. RESULTS The FEA results showed levels of maximum stresses were 6.6%, 36.4% and 47.8% less for the porous model compared to the solid model for LCI, LRM, and LBM loading conditions. Compared to the solid prosthesis, the porous prosthesis had a weight reduction of 57.7% and the volume of porosity of the porous condyle was 65% after the topological optimization process. CONCLUSIONS A custom-made porous condylar prosthesis with fixation plate was designed in this study. The 3D printed Ti-6Al-4V porous condylar prosthesis had reduced weight and effective modulus of elasticity close to that of cortical bone. The.
Collapse
Affiliation(s)
- Kang-Jie Cheng
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China.,Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, Zhejiang, China.,National International Joint Research Center of Special Purpose Equipment and Advanced Processing Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Yun-Feng Liu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China.,Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, Zhejiang, China.,National International Joint Research Center of Special Purpose Equipment and Advanced Processing Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Joanne H Wang
- Department of Orthopedic Surgery, University Hospitals of Cleveland, Case Medical Center, Cleveland, OH, USA
| | - Russell Wang
- Department of Comprehensive Care, Case Western Reserve University School of Dental Medicine, Cleveland, OH, USA
| | - Jiang Xia
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China.,Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Xu Xu
- Department of Stomatology, People's Hospital of Quzhou, Quzhou, Zhejiang, China
| | - Xian-Feng Jiang
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China.,Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Xing-Tao Dong
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China.,Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Cheng KJ, Liu YF, Wang R, Yuan ZX, Jiang XF, Dong XT. Biomechanical behavior of mandible with posterior marginal resection using finite element analysis. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3549. [PMID: 34723440 DOI: 10.1002/cnm.3549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
This study aims to characterize biomechanical behavior of various designs of posterior mandibular marginal resection under functional loadings using finite element method. The ultimate goal of this work is to provide clinically relevant information to prevent postoperative fracture and to stipulate prophylactic internal fixation for planning of marginal mandibulectomy. A 3D mandibular master model was reconstructed from cone beam computed tomography images. Different marginal resection models were created based on three design parameters, namely, defect curvilinear radius, anterior-posterior defect width and residual height of the mandibular body. Functional loadings from incisors (60 N) and contralateral first molar area (200 N) were applied to designed models and stress patterns were compared of five groups with curvilinear radius from 0 (conventional rectangular shape), 2.5, 3.5, 5, and 6 mm. Models with 25, 35 and 45 mm defect width mimic defects varied from canine to 3rd molar were tested. Residual height range from 10 to 4 mm was assessed. The results show high stresses predominated in the occlusal area and the posterior inferior border near the resection corner. The average maximum stress decreased by 29.8% (r = 2.5 mm), 51.9% (r = 3.5 mm), 54.4% (r = 5 mm), and 59.3% (r = 6 mm) compared to the baseline of r = 0 mm. The results from the combined defect width/residual height models demonstrate the increase of defect width and the decrease in residual height resulted in the increase of maximum stress. Our data also confirm that the factor of residual height supersedes defect width in terms of prevention of postoperative fracture when considering resection design.
Collapse
Affiliation(s)
- Kang-Jie Cheng
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
- National International Joint Research Center of Special Purpose Equipment and Advanced Processing Technology, Zhejiang University of Technology, Hangzhou, China
| | - Yun-Feng Liu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
- National International Joint Research Center of Special Purpose Equipment and Advanced Processing Technology, Zhejiang University of Technology, Hangzhou, China
| | - Russell Wang
- Department of Comprehensive Care, Case Western Reserve University School of Dental Medicine, Cleveland, Ohio, USA
| | - Zi-Xi Yuan
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
- National International Joint Research Center of Special Purpose Equipment and Advanced Processing Technology, Zhejiang University of Technology, Hangzhou, China
| | - Xian-Feng Jiang
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Xing-Tao Dong
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
11
|
Cui H, Gao L, Han J, Liu J. Biomechanical analysis of mandibular defect reconstruction based on a new base-fixation system. Comput Methods Biomech Biomed Engin 2022; 25:1618-1628. [PMID: 35060776 DOI: 10.1080/10255842.2022.2029426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Buccal titanium plate fixation is a common method for repairing mandibular defects. However, the method presents certain problems: the requirement of a large volume of titanium plate, a large number of fixation screws, a lengthy duration of the surgical operation, and exposure of the fixation plate which easily causes wound infection. In this study, a new base-fixation system was designed. Mandibular reconstruction was performed using the three-dimensional reconstruction package Mimics. In order to compare the newly designed base-fixation system and the common buccal-fixation system, the stress distributions and the displacement distributions of the whole model under two loading conditions were studied, based on the finite element analysis package ANSYS. The safety of the base-fixation titanium plate was evaluated. The results showed that although the maximum stress of the base-fixation titanium plate was higher than that of the buccal-fixation titanium plate, it was still less than the yield strength of titanium. Therefore, under the condition of applying 300 N of vertical occlusal loading, the base-fixation titanium plate displayed superior fixation ability without permanent deformation (and concomitant fixation failure). The results of the fatigue simulation analysis showed that the safety factor of the base-fixation titanium plate in the working state was 3.8 (>1.0), indicating that its fatigue performance met the application requirements. Compared with traditional buccal fixation, the novel base-fixation system has obvious advantages, suggesting its suitability as a new treatment method for clinical mandibular defect reconstruction.
Collapse
Affiliation(s)
- Haipo Cui
- Shanghai Institute for Minimally Invasive Therapy, University of Shanghai for Science and Technology, Shanghai, China
| | - Liping Gao
- Shanghai Institute for Minimally Invasive Therapy, University of Shanghai for Science and Technology, Shanghai, China
| | - Jing Han
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, Shanghai, PR China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, PR China
| | - Jiannan Liu
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, Shanghai, PR China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, PR China
| |
Collapse
|
12
|
Kargarnejad S, Ghalichi F, Pourgol-Mohammad M, Garajei A. Mandibular reconstruction system reliability analysis using probabilistic finite element method. Comput Methods Biomech Biomed Engin 2021; 24:1437-1449. [PMID: 34657530 DOI: 10.1080/10255842.2021.1892660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The aim of this study was to design for mandibular reconstruction of large lateral defect with minimum target reliability with designated confidence interval under bite force range of 300 ± 102 N. The performance of the models has been evaluated by numerical analysis considering the uncertainty of input parameters. Computer-Aided design was used to develop the models of three designs according to the patient's anatomy and to achieve to near symmetry of the mandible. Stress-strength modeling was utilized for the probabilistic physics of failure analysis under assumption of a quasi-static load. Monte-Carlo simulation was also applied for probabilistic finite element analysis and reliability assessment. The sensitivity analysis of the models was developed to reflect the significance of the variables in the models. The deterministic stress analysis shows that the highest stress and the second maximum stress are 110 MPa and 85 MPa for cortical bone around the screws, respectively. Also, it is determined that the maximum plate stress of the titanium conventional plate model is 580 MPa. The reconstruction system success rate was improved in all models by observing the anatomy of the patient's mandible in the plate designs by computer-aided design and additive manufacturing techniques. Based on the results, the reliability of plate strength and pull-out screws strength are 99.99% and 96.71% for the fibula free flap model, respectively, and 99.99% and 94.17%, respectively, for the customized prosthesis model. Probability sensitivity factors showed that uncertainty in the elastic modulus of the cortical bone has the greatest effect on the probability of screws loosening.
Collapse
Affiliation(s)
- S Kargarnejad
- Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran
| | - F Ghalichi
- Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran
| | - M Pourgol-Mohammad
- Mechanical Engineering Department, Sahand University of Technology, Tabriz, Iran
| | - A Garajei
- Department of Oral and Maxillofacial Surgery, School of Dentistry and Department of Head and Neck Surgical Oncology and Reconstructive Surgery, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Sun Y, Guo Y, Li J, Yang D, Hu K. Three-dimensional finite element analysis of free fibular flap reconstruction of mandible defects. ADVANCES IN ORAL AND MAXILLOFACIAL SURGERY 2021. [DOI: 10.1016/j.adoms.2021.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
14
|
Ferguson BM, Entezari A, Fang J, Li Q. Optimal placement of fixation system for scaffold-based mandibular reconstruction. J Mech Behav Biomed Mater 2021; 126:104855. [PMID: 34872868 DOI: 10.1016/j.jmbbm.2021.104855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022]
Abstract
A current challenge in bone tissue engineering is to create favourable biomechanical conditions conducive to tissue regeneration for a scaffold implanted in a segmental defect. This is particularly the case immediately following surgical implantation when a firm mechanical union between the scaffold and host bone is yet to be established via osseointegration. For mandibular reconstruction of a large segmental defect, the position of the fixation system is shown here to have a profound effect on the mechanical stimulus (for tissue regeneration within the scaffold), structural strength, and structural stiffness of the tissue scaffold-host bone construct under physiological load. This research combines computer tomography (CT)-based finite element (FE) modelling with multiobjective optimisation to determine the optimal height and angle to place a titanium fixation plate on a reconstructed mandible so as to enhance tissue ingrowth, structural strength and structural stiffness of the scaffold-host bone construct. To this end, the respective design criteria for fixation plate placement are to: (i) maximise the volume of the tissue scaffold experiencing levels of mechanical stimulus sufficient to initiate bone apposition, (ii) minimise peak stress in the scaffold so that it remains intact with a diminished risk of failure and, (iii) minimise scaffold ridge displacement so that the reconstructed jawbone resists deformation under physiological load. First, a CT-based FE model of a reconstructed human mandible implanted with a bioceramic tissue scaffold is developed to visualise and quantify changes in the biomechanical responses as the fixation plate's height and/or angle are varied. The volume of the scaffold experiencing appositional mechanical stimulus is observed to increase with the height of the fixation plate. Also, as the principal load-transfer mechanism to the scaffold is via the fixation system, there is a significant ingress of appositional stimulus from the buccal side towards the centre of the scaffold, notably in the region bounded by the screws. Next, surrogate modelling is implemented to generate bivariate cubic polynomial functions of the three biomechanical responses with respect to the two design variables (height and angle). Finally, as the three design objectives are found to be competing, bi- and tri-objective particle swarm optimisation algorithms are invoked to determine the most optimal Pareto solution, which represents the best possible trade-off between the competing design objectives. It is recommended that consideration be given to placing the fixation system along the upper boundary of the mandible with a small clockwise rotation about its posterior end. The methodology developed here forms a useful decision aid for optimal surgical planning.
Collapse
Affiliation(s)
- Ben M Ferguson
- School of Aerospace, Mechanical and Mechatronic Engineering, Faculty of Engineering and Australian Research Council Centre for Innovative BioEngineering, The University of Sydney, NSW, 2006, Australia.
| | - Ali Entezari
- School of Aerospace, Mechanical and Mechatronic Engineering, Faculty of Engineering and Australian Research Council Centre for Innovative BioEngineering, The University of Sydney, NSW, 2006, Australia
| | - Jianguang Fang
- School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Qing Li
- School of Aerospace, Mechanical and Mechatronic Engineering, Faculty of Engineering and Australian Research Council Centre for Innovative BioEngineering, The University of Sydney, NSW, 2006, Australia
| |
Collapse
|
15
|
Farajpour H, Bastami F, Bohlouli M, Khojasteh A. Reconstruction of bilateral ramus-condyle unit defect using custom titanium prosthesis with preservation of both condyles. J Mech Behav Biomed Mater 2021; 124:104765. [PMID: 34509905 DOI: 10.1016/j.jmbbm.2021.104765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/14/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Novel technologies for management and reconstruction of complex bony defects regarding both function and facial appearance are interestingly used in maxillofacial surgery. In the current study, we demonstrated reconstruction of a bilateral ramus-condyle unit (RCU) defect while preserving both condyles by a novel designed titanium prosthesis using virtual surgical planning (VSP), computer-aided design and manufacturing (CAD/CAM), and Selective Laser Melting (SLM) technologies. MATERIALS AND METHODS A 3D customized titanium prosthesis was designed for a 49 -year-old patient with bilateral mandibular aggressive central giant cell granuloma (CGCG) according to mandibular normal anatomy and structure while preserving bilateral intact condyles. Finite element study was performed to investigate the effects of new design strength and the stress shielding phenomenon. The design of macro-pores inside the body of prosthesis allowed it to act as a scaffold for bone tissue engineering under load bearing conditions. RESULTS Analysis of the strength and stress shielding phenomenon demonstrated favorable outcomes regarding the novel design. For instance, there was no stress shielding in any of the preserved condyles with regard to the size and distribution of stresses. Also, the stress distribution around the pores showed that these pores had no effect on the strength of the prosthesis. Thirty month follow-ups after reconstruction of bilateral RCU defect showed normal jaw function with a favorable facial appearance and mandibular contour. CONCLUSION We design a novel patient-specific prosthesis with desirable biomechanical features for reconstruction of bilateral RCU defect after resection of the benign tumor with preservation of bilateral intact condyles.
Collapse
Affiliation(s)
- Hekmat Farajpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Bastami
- Department of Oral and Maxillofacial Surgery, and Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Bohlouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Oral and Maxillofacial Surgery, Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Guest Professor, Faculty of Health and Medicine, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
16
|
Hussein MO, Alruthea MS. Evaluation of Bone-Implant Interface Stress and Strain Using Heterogeneous Mandibular Bone Properties Based on Different Empirical Correlations. Eur J Dent 2021; 15:454-462. [PMID: 33511598 PMCID: PMC8382467 DOI: 10.1055/s-0040-1721549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Objectives
The purpose of this study was to compare methods used for calculating heterogeneous patient-specific bone properties used in finite element analysis (FEA), in the field of implant dentistry, with the method based on homogenous bone properties.
Materials and Methods
In this study, three-dimensional (3D) computed tomography data of an edentulous patient were processed to create a finite element model, and five identical 3D implant models were created and distributed throughout the dental arch. Based on the calculation methods used for bone material assignment, four groups—groups I to IV—were defined. Groups I to III relied on heterogeneous bone property assignment based on different equations, whereas group IV relied on homogenous bone properties. Finally, 150 N vertical and 60-degree-inclined forces were applied at the top of the implant abutments to calculate the von Mises stress and strain.
Results
Groups I and II presented the highest stress and strain values, respectively. Based on the implant location, differences were observed between the stress values of group I, II, and III compared with group IV; however, no clear order was noted. Accordingly, variable von Mises stress and strain reactions at the bone–implant interface were observed among the heterogeneous bone property groups when compared with the homogenous property group results at the same implant positions.
Conclusion
Although the use of heterogeneous bone properties as material assignments in FEA studies seem promising for patient-specific analysis, the variations between their results raise doubts about their reliability. The results were influenced by implants’ locations leading to misleading clinical simulations.
Collapse
Affiliation(s)
- Mostafa Omran Hussein
- Department of Prosthodontic Sciences, College of Dentistry in Ar Rass, Qassim University, El-Qassim, Saudi Arabia
| | - Mohammed Suliman Alruthea
- Department of Prosthodontic Sciences, College of Dentistry in Ar Rass, Qassim University, El-Qassim, Saudi Arabia
| |
Collapse
|
17
|
KARGARNEJAD SAHAND, GHALICHI FARZAN, POURGOL-MOHAMMAD MOHAMMAD, OSKUI IZ, GARAJEI ATA. BIOMECHANICAL EVALUATION OF RECONSTRUCTED EXTENSIVE MANDIBULAR DEFECTS BY DIFFERENT MODELS USING FINITE ELEMENT METHOD. J MECH MED BIOL 2020. [DOI: 10.1142/s0219519420500530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rehabilitation of major mandibular defects after tumor resection has become a serious challenge for surgeons. In this research, four various models were designed to repair a critical mandibular lateral defect. Biomechanical behavior of the models was assessed by Finite Element Method. These models are including Fibular-Free Flap (FFF), Customized Prosthesis (CP), Tray Implant without Bone Graft (TI-wo-BG), and Tray Implant with Bone Graft (TI-w-BG). FFF is a subset of microvascular free flap technique in which some segments of patient’s fibula bone are used to restore mandibular defects. CP is a hollow and light prosthesis which is fabricated using Additive Manufacturing technology from Ti alloy powder. TI-wo-BG is similar to a crib which is designed according to the geometry of the patient’s mandible. TI-w-BG, in fact, is a TI-wo-BG which is filled with small cortico-cancellous chips in order to benefit potential profit of bone grafting. The chewing operation and loading on the mandible was simulated considering the three mandibular muscular forces including masseter, medial pterygoid, and temporalis. The result of FEM analysis of TI-wo-BG and TI-w-BG showed that in both models, screw number 6 endured a strain of 5684 and 2852[Formula: see text][Formula: see text]m/m which exceeded pathological and mild overload risk, respectively. This may increase the probability of screw loosening and system failure. The results proved the stability of the FFF and CP models. In addition, it can be concluded that stress and strain on the screw’s interfaces can decrease by improving the plate and increasing the friction at the interface of plate, bone and screw.
Collapse
Affiliation(s)
- SAHAND KARGARNEJAD
- Faculty of Biomedical Engineering, Sahand University of Technology, P.O. Box: 51335/1996, Sahand New Town, Tabriz, Iran
| | - FARZAN GHALICHI
- Faculty of Biomedical Engineering, Sahand University of Technology, P.O. Box: 51335/1996, Sahand New Town, Tabriz, Iran
| | - MOHAMMAD POURGOL-MOHAMMAD
- Mechanical Engineering Department, Sahand University of Technology, P.O. Box: 51335/1996, Sahand New Town, Tabriz, Iran
| | - I. Z. OSKUI
- Faculty of Biomedical Engineering, Sahand University of Technology, P.O. Box: 51335/1996, Sahand New Town, Tabriz, Iran
| | - ATA GARAJEI
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran, Iran
- The Cancer Institute, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- The Cancer Institute, Imam Hospital Complex, Keshavarz Blvd., Tehran, Iran
| |
Collapse
|
18
|
Han L, Zhang X, Guo Z, Long J. Application of optimized digital surgical guides in mandibular resection and reconstruction with vascularized fibula flaps: Two case reports. Medicine (Baltimore) 2020; 99:e21942. [PMID: 32871940 PMCID: PMC7458250 DOI: 10.1097/md.0000000000021942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
RATIONALE Currently, digital surgical techniques have been widely used in the precise treatment of mandibular resection and reconstruction with fibula flaps. Utilizing these innovative techniques in surgical planning and hardware fabrication before surgery has shown to provide great help. However, it is difficult for even experienced surgeons to place the preformed reconstruction plate in the same position as its preoperative design, causing surgical results to differ from preoperative planning. This study aims to solve these acknowledged challenges by creating newly designed equipment. PATIENT CONCERNS Two patients suffering from long-term expansion of the mandible were admitted to our department. Case I was a 39-year-old female patient who was concerned about the disease in the middle of the mandible, Case II was a 45-year-old female patient who was concerned about the disease at the left mandibular angle and ramus region. DIAGNOSES Two patients were diagnosed with the mandibular ameloblastoma based on computed tomography (CT) scan and pathological results. INTERVENTIONS Personalized 3-dimensional (3D) surgical guides were applied to 2 patients with mandibular ameloblastoma who underwent mandibular resection and reconstruction with vascularized fibula flaps using a specially optimized and designed reconstruction guide plate. OUTCOMES We achieved precise mandibular repair with such a guide in full accordance with the preoperative plan and ensured the restoration of patient facial symmetry. LESSONS Optimized reconstruction guide template could accurately locate the preformed reconstruction plate. This component had the ability to ensure that the location of the actual reconstruction plates were highly consistent with preoperative designed models.
Collapse
Affiliation(s)
- Lu Han
- The State Key Laboratory of Oral Diseases
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University
- National Engineering Laboratory for Oral Regenerative Medicine
| | - Xiaojie Zhang
- Stomatology Hospital, Zhejiang University School of Medicine
| | - Zeyou Guo
- The State Key Laboratory of Oral Diseases
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University
- National Engineering Laboratory for Oral Regenerative Medicine
| | - Jie Long
- The State Key Laboratory of Oral Diseases
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, Chengdu, P.R. China
| |
Collapse
|
19
|
Lisiak-Myszke M, Marciniak D, Bieliński M, Sobczak H, Garbacewicz Ł, Drogoszewska B. Application of Finite Element Analysis in Oral and Maxillofacial Surgery-A Literature Review. MATERIALS 2020; 13:ma13143063. [PMID: 32659947 PMCID: PMC7411758 DOI: 10.3390/ma13143063] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
In recent years in the field of biomechanics, the intensive development of various experimental methods has been observed. The implementation of virtual studies that for a long time have been successfully used in technical sciences also represents a new trend in dental engineering. Among these methods, finite element analysis (FEA) deserves special attention. FEA is a method used to analyze stresses and strains in complex mechanical systems. It enables the mathematical conversion and analysis of mechanical properties of a geometric object. Since the mechanical properties of the human skeleton cannot be examined in vivo, a discipline in which FEA has found particular application is oral and maxillofacial surgery. In this review we summarize the application of FEA in particular oral and maxillofacial fields such as traumatology, orthognathic surgery, reconstructive surgery and implantology presented in the current literature. Based on the available literature, we discuss the methodology and results of research where FEA has been used to understand the pathomechanism of fractures, identify optimal osteosynthesis methods, plan reconstructive operations and design intraosseous implants or osteosynthesis elements. As well as indicating the benefits of FEA in mechanical parameter analysis, we also point out the assumptions and simplifications that are commonly used. The understanding of FEA's opportunities and advantages as well as its limitations and main flaws is crucial to fully exploit its potential.
Collapse
Affiliation(s)
- Magdalena Lisiak-Myszke
- Maxillofacial Surgery Ward, Alfa-Med Medical Center, 85-095 Bydgoszcz, Poland
- Correspondence:
| | - Dawid Marciniak
- Faculty of Mechanical Engineering, Department of Manufacturing Technology, UTP University of Science and Technology, 85-796 Bydgoszcz, Poland; (D.M.); (M.B.)
| | - Marek Bieliński
- Faculty of Mechanical Engineering, Department of Manufacturing Technology, UTP University of Science and Technology, 85-796 Bydgoszcz, Poland; (D.M.); (M.B.)
| | - Hanna Sobczak
- Department of Maxillofacial Surgery, Medical University of Gdansk, 80-210 Gdansk, Poland; (H.S.); (Ł.G.); (B.D.)
| | - Łukasz Garbacewicz
- Department of Maxillofacial Surgery, Medical University of Gdansk, 80-210 Gdansk, Poland; (H.S.); (Ł.G.); (B.D.)
| | - Barbara Drogoszewska
- Department of Maxillofacial Surgery, Medical University of Gdansk, 80-210 Gdansk, Poland; (H.S.); (Ł.G.); (B.D.)
| |
Collapse
|
20
|
Pang Y, Zhang K, Liu L, Feng D, Liu C, Wang J, Du Y, Guo Z. [Biomechanical study of cystic lesions of the mandible based on a three-dimensional finite element model]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:911-915. [PMID: 32895206 DOI: 10.12122/j.issn.1673-4254.2020.06.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To analyze the biomechanics of cystic lesions in the mandibular body in a three-dimensional (3D) finite element model. METHODS A 3D finite element model of cystic lesion of the mandibular body was constructed based on the CT images of the mandible of a healthy adult female volunteer with normal occlusion. The size of the cyst and the residual bone wall were analyzed when the lesion area approached the stress peak under certain constraints and loading conditions. RESULTS When the size of the cyst reached 37.63 mm×11.32 mm×21.45 mm, the maximal von Mises stress in the lesion area reached 77.295 MPa, close to the yield strength of the mandible with a risk of pathological fracture. At this point, the remaining bone thickness of the buccal and lingual sides and the lower margin of the mandible in the lesion area was 1.52 mm, 0.76 mm and 1.04 mm, respectively. CONCLUSIONS Residual bone mass is an important factor to affect the risk of pathological fracture after curettage of cystic lesions. A thickness as low as 1 mm of the residual bone cortex in the cystic lesion area of the mandibular body can be used as the threshold for a clinical decision on one-stage windowing decompression combined with two- stage curettage.
Collapse
Affiliation(s)
- Yaqian Pang
- Department of Stomatology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Kai Zhang
- Department of Stomatology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Liang Liu
- Department of Stomatology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Dajun Feng
- Department of Oral and Maxillofacial Surgery, Fourth Affiliated Hospital of Anhui Medical University, Hefei 230001, China
| | - Chang Liu
- Department of Stomatology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Jing Wang
- Department of Stomatology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Yue Du
- Department of Stomatology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Zhenfei Guo
- Department of Stomatology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| |
Collapse
|
21
|
Stróżyk P, Jacek B. Effect of foods on selected dynamic parameters of mandibular elevator muscles during symmetric incisal biting. J Biomech 2020; 106:109800. [PMID: 32517980 DOI: 10.1016/j.jbiomech.2020.109800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 04/08/2020] [Accepted: 04/11/2020] [Indexed: 11/29/2022]
Abstract
The paper focuses on research that enables the relationship between food and selected mechanical parameters do be determined. The main aim of the study was to designate, depending on the food: (1) the work of a single muscle (i.e. masseter, medial pterygoid, temporalis), and (2) the energy balance of mandibular elevator muscles based on the dynamic patterns of muscles. In turn, the indirect goal was to determine: (1) the muscle contraction, and (2) the average muscle contraction velocity based on the specified kinematic parameters, i.e. incisal biting velocity and incisal biting time. A hybrid model, consisting of a phenomenological model of the masticatory system and a behavioural model of incisal biting, was used in the calculations. The phenomenological model was based on an anatomically and physiologically normal mandible and healthy muscles, while the behavioural model was represented by the dynamic patterns of food. Calculations showed that muscle force is an important, but not the only, parameter that enables the quantitative and qualitative assessment of the functioning of the mandibular elevator muscles during symmetric incisal biting. Based on the obtained results, it can be stated that the dynamic patterns of muscles are a very important parameter, because on their basis, among others, muscle contraction, contraction time, work, and energy can be determined. The conducted calculations and analyses showed that the above-mentioned parameters depend on the mechanical properties of food (the dynamic patterns of food).
Collapse
Affiliation(s)
- Przemysław Stróżyk
- Department of Materials Science, Strength and Welding Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Łukasiewicza 5, 50-371 Wrocław, Poland.
| | - Bałchanowski Jacek
- Department of Biomedical Engineering, Mechatronics and Theory of Mechanisms, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Łukasiewicza 5, 50-371 Wrocław, Poland
| |
Collapse
|
22
|
Kucukguven MB, Akkocaoğlu M. Finite element analysis of stress distribution on reconstructed mandibular models for autogenous bone grafts. Technol Health Care 2019; 28:249-258. [PMID: 31594270 DOI: 10.3233/thc-191809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND There are several challenges in terms of mandibular reconstruction. The defect size, graft materials, and plate combinations should be taken into consideration in surgical planning. OBJECTIVE The aim of this study was to evaluate the effect of different reconstruction variations on the stress distribution of segmental resected mandibles with two different defect sizes using finite element analysis (FEA). METHODS Computerized tomography images of a human mandible, fibula, and iliac crest were used as references to build three-dimensional (3D) models on a PC. The virtual plates and screws were used to simulate reconstruction of the mandibular defects. The models were divided into two groups based on the longitudinal defect size. Different osteosynthesis variations and autogenous graft material combinations were used to reconstruct the mandibles. RESULTS In all models, higher von Mises stress values occurred on the mandibles reconstructed with the fibula than those with the iliac crest. Fixation of the bone grafts with a reconstruction plate for the 10-mm defects and using a mini-plate in addition to the reconstruction plate for the 30-mm defects decreased stresses on the grafted bones. CONCLUSIONS Mandibular reconstruction with the iliac grafts is biomechanically superior to that with the fibular grafts. In addition, osteosynthesis methods and the defect size affect the stress distribution.
Collapse
|