1
|
Kandav G, Chandel A. Revolutionizing cancer treatment: an in-depth exploration of CAR-T cell therapies. Med Oncol 2024; 41:275. [PMID: 39400611 DOI: 10.1007/s12032-024-02491-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024]
Abstract
Cancer is a leading cause of fatality worldwide. Due to the heterogeneity of cancer cells the effectiveness of various conventional cancer treatment techniques is constrained. Thus, researchers are diligently investigating therapeutic approaches like immunotherapy for effective tumor managements. Immunotherapy harnesses the inherent potential of patient's immune system to achieve desired outcomes. Within the realm of immunotherapy, CAR-T (Chimeric Antigen Receptor T) cells, emerges as a revolutionary innovation for cancer therapy. The process of CAR-T cell therapy entails extracting the patient's T cells, altering them with customized receptors designed to specifically recognize and eradicate the tumor cells, and then reinfusing the altered cells into the patient's body. Although there has been significant progress with CAR-T cell therapy in certain cases of specific B-cell leukemia and lymphoma, its effectiveness is hindered in hematological and solid tumors due to the challenges such as severe toxicities, restricted tumor infiltration, cytokine release syndrome and antigen escape. Overcoming these obstacles requires innovative approaches to design more effective CAR-T cells, which require a competent and diverse team to develop and implement. This comprehensive review addresses numerous therapeutic issues and provides a strategic solution while providing a deep understanding of the structural intricacies and production processes of CAR-T cells. In addition, this review explores the practical aspects of CAR-T cell therapy in clinical settings.
Collapse
Affiliation(s)
- Gurpreet Kandav
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Landran, Sahibzada Ajit Singh Nagar, Punjab, 140307, India.
| | - Akash Chandel
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Landran, Sahibzada Ajit Singh Nagar, Punjab, 140307, India
| |
Collapse
|
2
|
Baucher L, Lemiale V, Joseph A, Wallet F, Pineton de Chambrun M, Ferré A, Lombardi R, Platon L, Contejean A, Fuseau C, Calvet L, Pène F, Kouatchet A, Mokart D, Azoulay E, Lafarge A. Severe infections requiring intensive care unit admission in patients receiving ibrutinib for hematological malignancies: a groupe de recherche respiratoire en réanimation onco-hématologique (GRRR-OH) study. Ann Intensive Care 2023; 13:123. [PMID: 38055081 DOI: 10.1186/s13613-023-01219-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND In the last decade, Ibrutinib has become the standard of care in the treatment of several lymphoproliferative diseases such as chronic lymphocytic leukemia (CLL) and several non-Hodgkin lymphoma. Beyond Bruton tyrosine kinase inhibition, Ibrutinib shows broad immunomodulatory effects that may promote the occurrence of infectious complications, including opportunistic infections. The infectious burden has been shown to vary by disease status, neutropenia, and prior therapy but data focusing on severe infections requiring intensive care unit (ICU) admission remain scarce. We sought to investigate features and outcomes of severe infections in a multicenter cohort of 69 patients receiving ibrutinib admitted to 10 French intensive care units (ICU) from 1 January 2015 to 31 December 2020. RESULTS Median time from ibrutinib initiation was 6.6 [3-18] months. Invasive fungal infections (IFI) accounted for 19% (n = 13/69) of severe infections, including 9 (69%; n = 9/13) invasive aspergillosis, 3 (23%; n = 3/13) Pneumocystis pneumonia, and 1 (8%; n = 1/13) cryptococcosis. Most common organ injury was acute respiratory failure (ARF) (71%; n = 49/69) and 41% (n = 28/69) of patients required mechanical ventilation. Twenty (29%; n = 20/69) patients died in the ICU while day-90 mortality reached 55% (n = 35/64). In comparison with survivors, decedents displayed more severe organ dysfunctions (SOFA 7 [5-11] vs. 4 [3-7], p = 0.004) and were more likely to undergo mechanical ventilation (68% vs. 31%, p = 0.010). Sixty-three ibrutinib-treated patients were matched based on age and underlying malignancy with 63 controls receiving conventional chemotherapy from an historic cohort. Despite a higher median number of prior chemotherapy lines (2 [1-2] vs. 0 [0-2]; p < 0.001) and higher rates of fungal [21% vs. 8%, p = 0.001] and viral [17% vs. 5%, p = 0.027] infections in patients receiving ibrutinib, ICU (27% vs. 38%, p = 0.254) and day-90 mortality (52% vs. 48%, p = 0.785) were similar between the two groups. CONCLUSION In ibrutinib-treated patients, severe infections requiring ICU admission were associated with a dismal prognosis, mostly impacted by initial organ failures. Opportunistic agents should be systematically screened by ICU clinicians in this immunocompromised population.
Collapse
Affiliation(s)
- Louise Baucher
- Médecine Intensive Réanimation, Hôpital Saint Louis, AP-HP, Université Paris Cité, Paris, France.
- Sorbonne Université, Paris, France.
| | - Virginie Lemiale
- Médecine Intensive Réanimation, Hôpital Saint Louis, AP-HP, Université Paris Cité, Paris, France
| | - Adrien Joseph
- Médecine Intensive Réanimation, Hôpital Saint Louis, AP-HP, Université Paris Cité, Paris, France
| | - Florent Wallet
- Médecine Intensive Réanimation, Hospices Civils de Lyon, Lyon, France
| | - Marc Pineton de Chambrun
- Service de Médecine Intensive-Réanimation, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Hôpital de La Pitié-Salpêtrière, Paris, France
- Sorbonne Université, INSERM, UMRS_1166-ICAN, Institut de Cardiométabolisme Et Nutrition (ICAN), 75013, Paris, France
| | - Alexis Ferré
- Réanimation Médico-Chirurgicale, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Romain Lombardi
- Médecine Intensive Réanimation, Hôpital Pasteur, Nice, France
| | - Laura Platon
- Médecine Intensive Réanimation, Hôpital Lapeyronie, Montpellier, France
| | | | - Charline Fuseau
- Hématologie, Institut de Cancérologie (ICANS), Strasbourg, France
| | - Laure Calvet
- Médecine Intensive Réanimation, Hôpital Gabriel Montpied, Clermont-Ferrand, France
| | - Frédéric Pène
- Médecine Intensive Réanimation, Hôpital Cochin, Paris, France
| | | | - Djamel Mokart
- Anesthésie Réanimation, Institut Paoli Calmettes, Marseille, France
| | - Elie Azoulay
- Médecine Intensive Réanimation, Hôpital Saint Louis, AP-HP, Université Paris Cité, Paris, France
| | - Antoine Lafarge
- Médecine Intensive Réanimation, Hôpital Saint Louis, AP-HP, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Abbasi S, Totmaj MA, Abbasi M, Hajazimian S, Goleij P, Behroozi J, Shademan B, Isazadeh A, Baradaran B. Chimeric antigen receptor T (CAR-T) cells: Novel cell therapy for hematological malignancies. Cancer Med 2023; 12:7844-7858. [PMID: 36583504 PMCID: PMC10134288 DOI: 10.1002/cam4.5551] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/23/2022] [Accepted: 12/03/2022] [Indexed: 12/31/2022] Open
Abstract
Over the last decade, the emergence of several novel therapeutic approaches has changed the therapeutic perspective of human malignancies. Adoptive immunotherapy through chimeric antigen receptor T cell (CAR-T), which includes the engineering of T cells to recognize tumor-specific membrane antigens and, as a result, death of cancer cells, has created various clinical benefits for the treatment of several human malignancies. In particular, CAR-T-cell-based immunotherapy is known as a critical approach for the treatment of patients with hematological malignancies such as acute lymphoblastic leukemia (ALL), multiple myeloma (MM), chronic lymphocytic leukemia (CLL), acute myeloid leukemia (AML), Hodgkin lymphoma (HL), and non-Hodgkin's lymphoma (NHL). However, CAR-T-cell therapy of hematological malignancies is associated with various side effects. There are still extensive challenges in association with further progress of this therapeutic approach, from manufacturing and engineering issues to limitations of applications and serious toxicities. Therefore, further studies are required to enhance efficacy and minimize adverse events. In the current review, we summarize the development of CAR-T-cell-based immunotherapy and current clinical antitumor applications to treat hematological malignancies. Furthermore, we will mention the current advantages, disadvantages, challenges, and therapeutic limitations of CAR-T-cell therapy.
Collapse
Affiliation(s)
- Samane Abbasi
- Department of Biology, Faculty of SciencesUniversity of GuilanRashtIran
| | - Milad Asghari Totmaj
- Department of Clinical Immunology, Faculty of MedicineThe University of ManchesterManchesterUK
| | - Masoumeh Abbasi
- Department of Microbiology, Malekan BranchIslamic Azad UniversityMalekanIran
| | - Saba Hajazimian
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Pouya Goleij
- Department of Genetics, Faculty of BiologySana Institute of Higher EducationSariIran
| | - Javad Behroozi
- Department of Genetics and Biotechnology, School of MedicineAJA University of Medical SciencesTehranIran
| | - Behrouz Shademan
- Department of Medical Biology, Faculty of MedicineEge UniversityIzmirTurkey
| | - Alireza Isazadeh
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Behzad Baradaran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
4
|
Alnefaie A, Albogami S, Asiri Y, Ahmad T, Alotaibi SS, Al-Sanea MM, Althobaiti H. Chimeric Antigen Receptor T-Cells: An Overview of Concepts, Applications, Limitations, and Proposed Solutions. Front Bioeng Biotechnol 2022; 10:797440. [PMID: 35814023 PMCID: PMC9256991 DOI: 10.3389/fbioe.2022.797440] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Adaptive immunity, orchestrated by B-cells and T-cells, plays a crucial role in protecting the body from pathogenic invaders and can be used as tools to enhance the body's defense mechanisms against cancer by genetically engineering these immune cells. Several strategies have been identified for cancer treatment and evaluated for their efficacy against other diseases such as autoimmune and infectious diseases. One of the most advanced technologies is chimeric antigen receptor (CAR) T-cell therapy, a pioneering therapy in the oncology field. Successful clinical trials have resulted in the approval of six CAR-T cell products by the Food and Drug Administration for the treatment of hematological malignancies. However, there have been various obstacles that limit the use of CAR T-cell therapy as the first line of defense mechanism against cancer. Various innovative CAR-T cell therapeutic designs have been evaluated in preclinical and clinical trial settings and have demonstrated much potential for development. Such trials testing the suitability of CARs against solid tumors and HIV are showing promising results. In addition, new solutions have been proposed to overcome the limitations of this therapy. This review provides an overview of the current knowledge regarding this novel technology, including CAR T-cell structure, different applications, limitations, and proposed solutions.
Collapse
Affiliation(s)
- Alaa Alnefaie
- Department of Medical Services, King Faisal Medical Complex, Taif, Saudi Arabia
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Yousif Asiri
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Tanveer Ahmad
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Hisham Althobaiti
- Chief of Medical Department, King Faisal Medical Complex (KFMC), Taif, Saudi Arabia
| |
Collapse
|
5
|
Lee GW, Kang MH, Jeon JH, Song DW, Ro WB, Kim HS, Park HM. Case Report: Long-Term Survival of a Dog With Chronic Lymphocytic Leukemia Treated With Chlorambucil, Prednisolone, and Imatinib. Front Vet Sci 2022; 8:625527. [PMID: 35111836 PMCID: PMC8801678 DOI: 10.3389/fvets.2021.625527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
A 7-year-old castrated male Poodle dog presented with chronic progressive lymphocytosis. Hematologic and peripheral blood smear findings included remarkable lymphocytosis with well-differentiated small lymphocytes. Cytology of bone marrow aspirate showed hypercellular integrity with infiltration of small mature lymphocytes, accounting for 45% of all nucleated cells. Flow cytometry of blood and marrow samples revealed neoplastic lymphocytes predominantly expressing the CD21 molecule. B-cell chronic lymphocytic leukemia (CLL) was diagnosed on an immunophenotypic analysis. Administrations of prednisolone and chlorambucil were initiated and the response was unremarkable. Therefore, additional treatment with imatinib was provided, which resolved the hematologic abnormalities associated with CLL. Flow cytometry after ~1 year of treatment showed normalization of the count of lymphocytes positive for CD21 and resolved hematologic lymphocytosis. The dog was followed-up for 2 years, and there were no severe adverse effects. This case indicates that imatinib may be a good option as an adjunctive therapy with prednisolone and chlorambucil treatment for CLL in dogs without treatment response.
Collapse
Affiliation(s)
- Ga-Won Lee
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Min-Hee Kang
- Department of Bio-Animal Care, Jangan University, Hwaseong, South Korea
| | - Jin-Ha Jeon
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Doo-Won Song
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Woong-Bin Ro
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Heyong-Seok Kim
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Hee-Myung Park
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
- *Correspondence: Hee-Myung Park
| |
Collapse
|
6
|
Rezaei M, Tan J, Zeng C, Li Y, Ganjalikhani-Hakemi M. TIM-3 in Leukemia; Immune Response and Beyond. Front Oncol 2021; 11:753677. [PMID: 34660319 PMCID: PMC8514831 DOI: 10.3389/fonc.2021.753677] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/10/2021] [Indexed: 02/05/2023] Open
Abstract
T cell immunoglobulin and mucin domain 3 (TIM-3) expression on malignant cells has been reported in some leukemias. In myelodysplastic syndrome (MDS), increased TIM-3 expression on TH1 cells, regulatory T cells, CD8+ T cells, and hematopoietic stem cells (HSCs), which play a role in the proliferation of blasts and induction of immune escape, has been reported. In AML, several studies have reported overexpression of TIM-3 on leukemia stem cells (LSCs) but not on healthy HSCs. Overexpression of TIM-3 on exhausted CD4+ and CD8+ T cells and leukemic cells in CML, ALL, and CLL patients could be a prognostic risk factor for poor therapeutic response and relapse in patients. Currently, several TIM-3 inhibitors are used in clinical trials for leukemias, and some have shown encouraging response rates for MDS and AML treatment. For AML immunotherapy, blockade TIM-3 may have dual effects: directly inhibiting AML cell proliferation and restoring T cell function. However, blockade of PD-1 and TIM-3 fails to restore the function of exhausted CD8+ T cells in the early clinical stages of CLL, indicating that the effects of TIM-3 blockade may be different in AML and other leukemias. Thus, further studies are required to evaluate the efficacy of TIM-3 inhibitors in different types and stages of leukemia. In this review, we summarize the biological functions of TIM-3 and its contribution as it relates to leukemias. We also discuss the effects of TIM-3 blockade in hematological malignancies and clinical trials of TIM-3 for leukemia therapy.
Collapse
Affiliation(s)
- Mahnaz Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jiaxiong Tan
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Chengwu Zeng
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Mazdak Ganjalikhani-Hakemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Kranzler EC, Olson JS, Nichols HM, Yuen EY, McManus S, Buzaglo JS, Zaleta AK. Patient-Reported Communication With Their Health Care Team About New Treatment Options for Chronic Lymphocytic Leukemia. J Patient Exp 2021; 8:23743735211034967. [PMID: 34458567 PMCID: PMC8392805 DOI: 10.1177/23743735211034967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) often requires consideration of multiple treatment options. Shared decision-making (SDM) is important, given the availability of increasingly novel therapies; however, patient–provider treatment conversations vary. We examined relationships between patient–provider discussions of new CLL treatment options and sociodemographic, clinical, and patient–provider communication variables among 187 CLL patients enrolled in Cancer Support Community’s Cancer Experience Registry. Factors significantly associated with self-reports of whether patients’ providers discussed new CLL treatment options with them were examined using χ2 tests, t tests, and hierarchical logistic regression. Fifty-eight percent of patients reported discussing new treatment options with their doctor. Patients with higher education were 3 times more likely to discuss new treatment options relative to those with lower education (OR = 3.06, P < .05). Patients who experienced a cancer recurrence were 7 times more likely to discuss new treatment options compared to those who had not (OR = 7.01, P < .05). Findings offer insights into the correlates of patient–provider discussions of new CLL treatment options. As novel therapies are incorporated into standards of care, opportunities exist for providers to improve patient care through enhanced SDM.
Collapse
Affiliation(s)
- Elissa C Kranzler
- Cancer Support Community, Research and Training Institute, Philadelphia, PA, USA
| | - Julie S Olson
- Cancer Support Community, Research and Training Institute, Philadelphia, PA, USA
| | | | - Eva Yn Yuen
- Deakin University, Centre for Quality and Patient Safety Research, Institute for Health Transformation, Burwood, VIC, Australia.,Monash Health, Centre for Quality and Patient Safety Research, Monash Health Partnership, Clayton, VIC, Australia.,La Trobe University, School of Psychology and Public Health, Bundoora, VIC, Australia.,Austin Health, Olivia Newton-John Cancer, Research and Wellness Centre, Psycho-Oncology Research Unit, Heidelberg, VIC, Australia
| | - Shauna McManus
- Cancer Support Community, Research and Training Institute, Philadelphia, PA, USA
| | | | - Alexandra K Zaleta
- Cancer Support Community, Research and Training Institute, Philadelphia, PA, USA
| |
Collapse
|
8
|
Marofi F, Rahman HS, Al-Obaidi ZMJ, Jalil AT, Abdelbasset WK, Suksatan W, Dorofeev AE, Shomali N, Chartrand MS, Pathak Y, Hassanzadeh A, Baradaran B, Ahmadi M, Saeedi H, Tahmasebi S, Jarahian M. Novel CAR T therapy is a ray of hope in the treatment of seriously ill AML patients. Stem Cell Res Ther 2021; 12:465. [PMID: 34412685 PMCID: PMC8377882 DOI: 10.1186/s13287-021-02420-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a serious, life-threatening, and hardly curable hematological malignancy that affects the myeloid cell progenies and challenges patients of all ages but mostly occurs in adults. Although several therapies are available including chemotherapy, allogeneic hematopoietic stem cell transplantation (alloHSCT), and receptor-antagonist drugs, the 5-year survival of patients is quietly disappointing, less than 30%. alloHSCT is the major curative approach for AML with promising results but the treatment has severe adverse effects such as graft-versus-host disease (GVHD). Therefore, as an alternative, more efficient and less harmful immunotherapy-based approaches such as the adoptive transferring T cell therapy are in development for the treatment of AML. As such, chimeric antigen receptor (CAR) T cells are engineered T cells which have been developed in recent years as a breakthrough in cancer therapy. Interestingly, CAR T cells are effective against both solid tumors and hematological cancers such as AML. Gradually, CAR T cell therapy found its way into cancer therapy and was widely used for the treatment of hematologic malignancies with successful results particularly with somewhat better results in hematological cancer in comparison to solid tumors. The AML is generally fatal, therapy-resistant, and sometimes refractory disease with a disappointing low survival rate and weak prognosis. The 5-year survival rate for AML is only about 30%. However, the survival rate seems to be age-dependent. Novel CAR T cell therapy is a light at the end of the tunnel. The CD19 is an important target antigen in AML and lymphoma and the CAR T cells are engineered to target the CD19. In addition, a lot of research goes on the discovery of novel target antigens with therapeutic efficacy and utilizable for generating CAR T cells against various types of cancers. In recent years, many pieces of research on screening and identification of novel AML antigen targets with the goal of generation of effective anti-cancer CAR T cells have led to new therapies with strong cytotoxicity against cancerous cells and impressive clinical outcomes. Also, more recently, an improved version of CAR T cells which were called modified or smartly reprogrammed CAR T cells has been designed with less unwelcome effects, less toxicity against normal cells, more safety, more specificity, longer persistence, and proliferation capability. The purpose of this review is to discuss and explain the most recent advances in CAR T cell-based therapies targeting AML antigens and review the results of preclinical and clinical trials. Moreover, we will criticize the clinical challenges, side effects, and the different strategies for CAR T cell therapy.
Collapse
Affiliation(s)
- Faroogh Marofi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq.,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Chaq-Chaq Qularaise, Sulaimaniyah, Iraq
| | - Zaid Mahdi Jaber Al-Obaidi
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Alkafeel, Najaf, 54001, Iraq.,Department of Chemistry and Biochemistry, College of Medicine, University of Kerbala, Karbala, 56001, Iraq
| | | | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia.,Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | | | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Yashwant Pathak
- Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA.,Department of Pharmaceutics, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Ali Hassanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safa Tahmasebi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy, No. 2, Floor 4 Unit (G401), 69120, Heidelberg, Germany.
| |
Collapse
|
9
|
Beckmann L, Berg V, Dickhut C, Sun C, Merkel O, Bloehdorn J, Robrecht S, Seifert M, da Palma Guerreiro A, Claasen J, Loroch S, Oliverio M, Underbayev C, Vaughn L, Thomalla D, Hülsemann MF, Tausch E, Fischer K, Fink AM, Eichhorst B, Sickmann A, Wendtner CM, Stilgenbauer S, Hallek M, Wiestner A, Zahedi RP, Frenzel LP. MARCKS affects cell motility and response to BTK inhibitors in CLL. Blood 2021; 138:544-556. [PMID: 33735912 PMCID: PMC8377477 DOI: 10.1182/blood.2020009165] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/18/2021] [Accepted: 03/06/2021] [Indexed: 12/26/2022] Open
Abstract
Bruton tyrosine kinase (BTK) inhibitors are highly active drugs for the treatment of chronic lymphocytic leukemia (CLL). To understand the response to BTK inhibitors on a molecular level, we performed (phospho)proteomic analyses under ibrutinib treatment. We identified 3466 proteins and 9184 phosphopeptides (representing 2854 proteins) in CLL cells exhibiting a physiological ratio of phosphorylated serines (pS), threonines (pT), and tyrosines (pY) (pS:pT:pY). Expression of 83 proteins differed between unmutated immunoglobulin heavy-chain variable region (IGHV) CLL (UM-CLL) and mutated IGHV CLL (M-CLL). Strikingly, UM-CLL cells showed higher basal phosphorylation levels than M-CLL samples. Effects of ibrutinib on protein phosphorylation levels were stronger in UM-CLL, especially on phosphorylated tyrosines. The differentially regulated phosphopeptides and proteins clustered in pathways regulating cell migration, motility, cytoskeleton composition, and survival. One protein, myristoylated alanine-rich C-kinase substrate (MARCKS), showed striking differences in expression and phosphorylation level in UM-CLL vs M-CLL. MARCKS sequesters phosphatidylinositol-4,5-bisphosphate, thereby affecting central signaling pathways and clustering of the B-cell receptor (BCR). Genetically induced loss of MARCKS significantly increased AKT signaling and migratory capacity. CD40L stimulation increased expression of MARCKS. BCR stimulation induced phosphorylation of MARCKS, which was reduced by BTK inhibitors. In line with our in vitro findings, low MARCKS expression is associated with significantly higher treatment-induced leukocytosis and more pronounced decrease of nodal disease in patients with CLL treated with acalabrutinib.
Collapse
Affiliation(s)
- Laura Beckmann
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Valeska Berg
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Clarissa Dickhut
- Leibniz-Institut für Analytische Wissenschaften (ISAS) eV, Dortmund, Germany
| | - Clare Sun
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Olaf Merkel
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | | - Sandra Robrecht
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
| | - Marc Seifert
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Alexandra da Palma Guerreiro
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Julia Claasen
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Stefan Loroch
- Leibniz-Institut für Analytische Wissenschaften (ISAS) eV, Dortmund, Germany
| | - Matteo Oliverio
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Chingiz Underbayev
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Lauren Vaughn
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Daniel Thomalla
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Malte F Hülsemann
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Eugen Tausch
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Kirsten Fischer
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
| | - Anna Maria Fink
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
| | - Barbara Eichhorst
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften (ISAS) eV, Dortmund, Germany
| | - Clemens M Wendtner
- Department I of Internal Medicine and
- Munich Clinic Schwabing, Academic Teaching Hospital, Ludwig Maximilian University (LMU), Munich, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, Ulm University, Ulm, Germany
- Department of Internal Medicine I, Saarland University, Homburg, Germany
| | - Michael Hallek
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften (ISAS) eV, Dortmund, Germany
- Segal Cancer Proteomics Centre, Lady Davis Institute and
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, QC, Canada; and
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Lukas P Frenzel
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Zam W, Assaad A. Chimeric antigen receptor T-cells (CARs) in cancer treatment. Curr Mol Pharmacol 2021; 15:532-546. [PMID: 34382510 DOI: 10.2174/1874467214666210811150255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is one of the leading causes of death worldwide. Chemotherapy, radiation therapy, and stem cell transplantation were the main cancer treatment approaches for several years but due to their limited effectiveness, there was a constant search for new therapeutic approaches. Cancer immunotherapy that utilizes and enhances the normal capacity of the patient's immune system was used to fight against cancer. Genetically engineered T-cells that express chimeric antigen receptors (CARs) showed remarkable anti-tumor activity against hematologic malignancies and is now being investigated in a variety of solid tumors. The use of this therapy in the last few years has been successful, achieving a great success in improving the quality of life and prolonging the survival time of patients with a reduction in remission rates. However, many challenges still need to be resolved in order for this technology to gain widespread adoption. <P> Objective: This review summarizes various experimental approaches towards the use of CAR T-cells in hematologic malignancies and solid tumors. <P> Conclusion: Finally, we address the challenges posed by CAR T-cells and discuss strategies for improving the performance of these T cells in fighting cancers.
Collapse
Affiliation(s)
- Wissam Zam
- Department of Analytical and Food Chemistry, Faculty of Pharmacy, Al-Wadi International University, Homs. Syrian Arab Republic
| | - Amany Assaad
- 2. Department of Analytical and Food Chemistry, Faculty of Pharmacy,Tartous University, Tartous. Syrian Arab Republic
| |
Collapse
|
11
|
Mavridou D, Psatha K, Aivaliotis M. Proteomics and Drug Repurposing in CLL towards Precision Medicine. Cancers (Basel) 2021; 13:cancers13143391. [PMID: 34298607 PMCID: PMC8303629 DOI: 10.3390/cancers13143391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Despite continued efforts, the current status of knowledge in CLL molecular pathobiology, diagnosis, prognosis and treatment remains elusive and imprecise. Proteomics approaches combined with advanced bioinformatics and drug repurposing promise to shed light on the complex proteome heterogeneity of CLL patients and mitigate, improve, or even eliminate the knowledge stagnation. In relation to this concept, this review presents a brief overview of all the available proteomics and drug repurposing studies in CLL and suggests the way such studies can be exploited to find effective therapeutic options combined with drug repurposing strategies to adopt and accost a more “precision medicine” spectrum. Abstract CLL is a hematological malignancy considered as the most frequent lymphoproliferative disease in the western world. It is characterized by high molecular heterogeneity and despite the available therapeutic options, there are many patient subgroups showing the insufficient effectiveness of disease treatment. The challenge is to investigate the individual molecular characteristics and heterogeneity of these patients. Proteomics analysis is a powerful approach that monitors the constant state of flux operators of genetic information and can unravel the proteome heterogeneity and rewiring into protein pathways in CLL patients. This review essences all the available proteomics studies in CLL and suggests the way these studies can be exploited to find effective therapeutic options combined with drug repurposing approaches. Drug repurposing utilizes all the existing knowledge of the safety and efficacy of FDA-approved or investigational drugs and anticipates drug alignment to crucial CLL therapeutic targets, leading to a better disease outcome. The drug repurposing studies in CLL are also discussed in this review. The next goal involves the integration of proteomics-based drug repurposing in precision medicine, as well as the application of this procedure into clinical practice to predict the most appropriate drugs combination that could ensure therapy and the long-term survival of each CLL patient.
Collapse
Affiliation(s)
- Dimitra Mavridou
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Functional Proteomics and Systems Biology (FunPATh)—Center for Interdisciplinary Research and Innovation (CIRI-AUTH), GR-57001 Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Konstantina Psatha
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Functional Proteomics and Systems Biology (FunPATh)—Center for Interdisciplinary Research and Innovation (CIRI-AUTH), GR-57001 Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, GR-70013 Heraklion, Greece
- Correspondence: (K.P.); (M.A.)
| | - Michalis Aivaliotis
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Functional Proteomics and Systems Biology (FunPATh)—Center for Interdisciplinary Research and Innovation (CIRI-AUTH), GR-57001 Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, GR-70013 Heraklion, Greece
- Correspondence: (K.P.); (M.A.)
| |
Collapse
|
12
|
Interleukin-10 suppression enhances T-cell antitumor immunity and responses to checkpoint blockade in chronic lymphocytic leukemia. Leukemia 2021; 35:3188-3200. [PMID: 33731852 PMCID: PMC8446094 DOI: 10.1038/s41375-021-01217-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 02/15/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
T-cell dysfunction is a hallmark of B-cell Chronic Lymphocytic Leukemia (CLL), where CLL cells downregulate T-cell responses through regulatory molecules including programmed death ligand-1 (PD-L1) and Interleukin-10 (IL-10). Immune checkpoint blockade (ICB) aims to restore T-cell function by preventing the ligation of inhibitory receptors like PD-1. However, most CLL patients do not respond well to this therapy. Thus, we investigated whether IL-10 suppression could enhance antitumor T-cell activity and responses to ICB. Since CLL IL-10 expression depends on Sp1, we utilized a novel, better tolerated analogue of the Sp1 inhibitor mithramycin (MTMox32E) to suppress CLL IL-10. MTMox32E treatment inhibited mouse and human CLL IL-10 production and maintained T-cell effector function in vitro. In the Eμ-Tcl1 mouse model, treatment reduced plasma IL-10 and CLL burden and increased CD8+ T-cell proliferation, effector and memory cell prevalence, and interferon-γ production. When combined with ICB, suppression of IL-10 improved responses to anti-PD-L1 as shown by a 4.5-fold decrease in CLL cell burden compared to anti-PD-L1 alone. Combination therapy also produced more interferon-γ+, cytotoxic effector KLRG1+, and memory CD8+ T-cells, and fewer exhausted T-cells. Since current therapies for CLL do not target IL-10, this provides a novel strategy to improve immunotherapies.
Collapse
|
13
|
de Weerdt I, Lameris R, Ruben JM, de Boer R, Kloosterman J, King LA, Levin MD, Parren PWHI, de Gruijl TD, Kater AP, van der Vliet HJ. A Bispecific Single-Domain Antibody Boosts Autologous Vγ9Vδ2-T Cell Responses Toward CD1d in Chronic Lymphocytic Leukemia. Clin Cancer Res 2021; 27:1744-1755. [PMID: 33451981 DOI: 10.1158/1078-0432.ccr-20-4576] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/30/2020] [Accepted: 01/13/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Although considerable progress has been made with autologous T cell-based therapy in B-cell malignancies, application in chronic lymphocytic leukemia (CLL) lags behind due to disappointing response rates as well as substantial toxicity that is of particular concern in the elderly CLL population. Vγ9Vδ2-T cells form a conserved T-cell subset with strong intrinsic immunotherapeutic potential, largely because of their capacity to be triggered by phosphoantigens that can be overproduced by CLL and other malignant cells. Specific activation of Vγ9Vδ2-T cells by a bispecific antibody may improve the efficacy and toxicity of autologous T-cell-based therapy in CLL. EXPERIMENTAL DESIGN We evaluated CD1d expression in a cohort of 78 untreated patients with CLL and generated and functionally characterized a CD1d-specific Vγ9Vδ2-T cell engager based on single-domain antibodies (VHH). RESULTS CD1d was expressed by CLL in the majority of patients, particularly in patients with advanced disease. The CD1d-specific Vγ9Vδ2-T cell engager induced robust activation and degranulation of Vγ9Vδ2-T cells, enabling Vγ9Vδ2-T cells from patients with CLL to lyse autologous leukemic cells at low effector-to-target ratios. Expression of CD1d on CLL cells is upregulated by all-trans retinoic acid, and sensitizes the malignant cells to bispecific VHH-induced lysis. Furthermore, we provide evidence that the Vγ9Vδ2-T cell receptor retains responsiveness to phosphoantigens when the bispecific VHH is bound, and aminobisphosphonates can therefore enhance bispecific Vγ9Vδ2-T cell engager-mediated tumor-specific killing. CONCLUSIONS Collectively, our data demonstrate the immunotherapeutic potential of this novel CD1d-specific Vγ9Vδ2-T cell engager in CLL.
Collapse
Affiliation(s)
- Iris de Weerdt
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.,Department of Hematology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Roeland Lameris
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jurjen M Ruben
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Renate de Boer
- Department of Experimental Immunology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan Kloosterman
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Lisa A King
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, the Netherlands
| | - Paul W H I Parren
- Lava Therapeutics, Utrecht, the Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Arnon P Kater
- Department of Hematology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, the Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands. .,Lava Therapeutics, Utrecht, the Netherlands
| |
Collapse
|
14
|
Chen TL, Harrington B, Truxall J, Wasmuth R, Prouty A, Sloan S, Lehman AM, Sampath D, Orlemans E, Baiocchi RA, Alinari L, Byrd JC, Woyach JA, Hertlein E. Preclinical evaluation of the Hsp90 inhibitor SNX-5422 in ibrutinib resistant CLL. J Hematol Oncol 2021; 14:36. [PMID: 33627156 PMCID: PMC7905592 DOI: 10.1186/s13045-021-01039-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/28/2021] [Indexed: 11/29/2022] Open
Abstract
B-cell receptor (BCR) antagonists such as the BTK inhibitor ibrutinib have proven to effectively target chronic lymphocytic leukemia (CLL) tumor cells, leading to impressive response rates in these patients. However patients do still relapse on ibrutinib, and the progressive disease is often quite aggressive requiring immediate treatment. Several strategies are being pursued to treat patients who relapse on ibrutinib therapy. As the most common form of relapse is the development of a mutant form of BTK which limits ibrutinib binding, agents which lead to degradation of the BTK protein are a promising strategy. Our study explores the efficacy of the Hsp90 inhibitor, SNX-5422, in CLL. The SNX Hsp90 inhibitor was effective in primary CLL cells, as well as B-cell lines expressing either BTK wild type or C481 mutant BTK, which has been identified as the primary resistance mechanism to ibrutinib in CLL patients. Furthermore the combination of SNX-5422 and ibrutinib provided a remarkable in vivo survival benefit in the Eμ-TCL1 mouse model of CLL compared to the vehicle or single agent groups (51 day median survival in the vehicle and ibrutinib groups versus 100 day median survival in the combination). We report here preclinical data suggesting that the Hsp90 inhibitor SNX-5422, which has been pursued in clinical trials in both solid tumor and hematological malignancies, is a potential therapy for ibrutinib resistant CLL.
Collapse
Affiliation(s)
- Timothy L Chen
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 462 OSUCCC, 410 W 12th Avenue, Columbus, OH, 43210, USA
| | - Bonnie Harrington
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 462 OSUCCC, 410 W 12th Avenue, Columbus, OH, 43210, USA.,Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Jean Truxall
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 462 OSUCCC, 410 W 12th Avenue, Columbus, OH, 43210, USA
| | - Ronni Wasmuth
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 462 OSUCCC, 410 W 12th Avenue, Columbus, OH, 43210, USA
| | - Alexander Prouty
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 462 OSUCCC, 410 W 12th Avenue, Columbus, OH, 43210, USA
| | - Shelby Sloan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 462 OSUCCC, 410 W 12th Avenue, Columbus, OH, 43210, USA
| | - Amy M Lehman
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Deepa Sampath
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 462 OSUCCC, 410 W 12th Avenue, Columbus, OH, 43210, USA
| | | | - Robert A Baiocchi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 462 OSUCCC, 410 W 12th Avenue, Columbus, OH, 43210, USA
| | - Lapo Alinari
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 462 OSUCCC, 410 W 12th Avenue, Columbus, OH, 43210, USA
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 462 OSUCCC, 410 W 12th Avenue, Columbus, OH, 43210, USA.,Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Jennifer A Woyach
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 462 OSUCCC, 410 W 12th Avenue, Columbus, OH, 43210, USA
| | - Erin Hertlein
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 462 OSUCCC, 410 W 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
15
|
Zheng M, Li K, Chen T, Liu S, He L. Geniposide protects depression through BTK/JAK2/STAT1 signaling pathway in lipopolysaccharide-induced depressive mice. Brain Res Bull 2021; 170:65-73. [PMID: 33561536 DOI: 10.1016/j.brainresbull.2021.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/15/2022]
Abstract
The purpose of this study was to investigate the antidepressant mechanism of GEN (geniposide) on depression mice induced by LPS. The mice were intragastrically treated with GEN (10 mg/kg/d or 40 mg/kg/d) or ibrutinib for continuous 7 days prior to LPS injection. The anxiety- and depression-like behaviors of mice were assessed via behavioral tests (sucrose preference test (SPT), tail suspension test (TST), forced swimming test (FST), and open-field test (OFT)). Microglial BV2 cells were treated with GEN or/and ibrutinib and stimulated with LPS. The productions of pro-inflammatory cytokines IL-6 and TNF-α in hippocampus, serum, and supernatant were detected by ELISA. The correlative proteins BTK, p-BTK, JAK2, p-JAK2, STAT1, p-STAT1, BDNF, TrkB, and p-TrkB were assessed through western blot. As a result, GEN ameliorated the anxiety- and depression-like behaviors of mice in behavioral tests. GEN treatment also regulated microglia polarization towards anti-inflammatory phenotype M2 and inhibited the production of pro-inflammatory cytokines IL-6 and TNF-α. In addition, with the application of ibrutinib, the selective inhibitor of BTK, it was proclaimed that the administration of GEN restrained the activation of JAK2/STAT1 pathway via attenuating the hyperphosphorylation of BTK both in mice and BV2 cells. Furthermore, it was also found that GEN activated BDNF/TrkB neuroprotective signaling pathway through the reduction of BTK phosphorylation. From the overall results, we suggested that GEN exerted a beneficial effect on LPS-induced depression in mice possibly through the modulation of BTK/JAK2/STAT1 signaling.
Collapse
Affiliation(s)
- Menglin Zheng
- Department of Pharmacology, China Pharmaceutical University, 639, Longmian Avenue, Nanjing, 211198, China
| | - Ke Li
- Department of Pharmacology, China Pharmaceutical University, 639, Longmian Avenue, Nanjing, 211198, China
| | - Tong Chen
- Department of Pharmacology, China Pharmaceutical University, 639, Longmian Avenue, Nanjing, 211198, China
| | - Shengnan Liu
- Department of Pharmacology, China Pharmaceutical University, 639, Longmian Avenue, Nanjing, 211198, China
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, 639, Longmian Avenue, Nanjing, 211198, China.
| |
Collapse
|
16
|
Series J, Ribes A, Garcia C, Souleyreau P, Bauters A, Morschhauser F, Jürgensmeier JM, Sié P, Ysebaert L, Payrastre B. Effects of novel Btk and Syk inhibitors on platelet functions alone and in combination in vitro and in vivo. J Thromb Haemost 2020; 18:3336-3351. [PMID: 32926549 DOI: 10.1111/jth.15098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/25/2020] [Accepted: 08/31/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Inhibitors of tyrosine kinases downstream of the B-cell receptor, such as Bruton's tyrosine kinase (Btk) or Spleen tyrosine kinase (Syk), used alone or in combination are new therapeutic options in the treatment of B-cell malignancies. A challenge in the development of second-generation Btk inhibitors is to limit their side effects such as the increased bleeding risk. Considering the pivotal role of Syk in immunoreceptor tyrosine-based activation motif mediated platelet signaling, the impact of inhibiting this kinase on platelet functions is also worth analyzing. OBJECTIVES We investigated the effect of a novel Btk inhibitor, tirabrutinib, and a Syk inhibitor, entospletinib, alone and in combination on platelet signaling and functions in vitro and ex vivo. METHODS Platelet aggregation, secretion, and signaling responses as well as thrombus growth under flow were analyzed in the presence of the inhibitors alone or in combination in vitro, at clinically relevant doses, and ex vivo in patients treated with these inhibitors in the context of a phase I trial. RESULTS Although tirabrutinib alone had modest effects on platelet activation in vitro and ex vivo, entospletinib alone efficiently inhibited washed platelet aggregation in response to collagen. However, entospletinib weakly affected platelet activation in platelet-rich plasma, in whole blood and ex vivo. Importantly, the combination of tirabrutinib and entospletinib induced a significant decrease in platelet response to collagen in vitro and ex vivo correlating with mild bleedings reported in some of the treated patients. CONCLUSION These new results should contribute to improve the safety of these targeted therapies.
Collapse
Affiliation(s)
- Jennifer Series
- Inserm, U1048, Université Toulouse 3, I2MC, Toulouse Cedex 04, France
- Laboratoire d'Hématologie CHU de Toulouse, Toulouse Cedex 04, France
| | - Agnès Ribes
- Inserm, U1048, Université Toulouse 3, I2MC, Toulouse Cedex 04, France
- Laboratoire d'Hématologie CHU de Toulouse, Toulouse Cedex 04, France
| | - Cédric Garcia
- Inserm, U1048, Université Toulouse 3, I2MC, Toulouse Cedex 04, France
- Laboratoire d'Hématologie CHU de Toulouse, Toulouse Cedex 04, France
| | - Pierre Souleyreau
- Laboratoire d'Hématologie CHU de Toulouse, Toulouse Cedex 04, France
| | - Anne Bauters
- Institut d'hématologie-transfusion, Laboratoire d'hémostase, CHU Lille, Lille, France
| | | | | | - Pierre Sié
- Inserm, U1048, Université Toulouse 3, I2MC, Toulouse Cedex 04, France
- Laboratoire d'Hématologie CHU de Toulouse, Toulouse Cedex 04, France
| | - Loïc Ysebaert
- Service d'Hématologie IUCT-oncopôle, Toulouse Cedex 09, France
| | - Bernard Payrastre
- Inserm, U1048, Université Toulouse 3, I2MC, Toulouse Cedex 04, France
- Laboratoire d'Hématologie CHU de Toulouse, Toulouse Cedex 04, France
| |
Collapse
|
17
|
de Weerdt I, Lameris R, Scheffer GL, Vree J, de Boer R, Stam AG, van de Ven R, Levin MD, Pals ST, Roovers RC, Parren PWHI, de Gruijl TD, Kater AP, van der Vliet HJ. A Bispecific Antibody Antagonizes Prosurvival CD40 Signaling and Promotes Vγ9Vδ2 T cell-Mediated Antitumor Responses in Human B-cell Malignancies. Cancer Immunol Res 2020; 9:50-61. [PMID: 33177109 DOI: 10.1158/2326-6066.cir-20-0138] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/05/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022]
Abstract
Novel T cell-based therapies for the treatment of B-cell malignancies, such as chronic lymphocytic leukemia (CLL) and multiple myeloma (MM), are thought to have strong potential. Progress, however, has been hampered by low efficacy and high toxicity. Tumor targeting by Vγ9Vδ2 T cells, a conserved T-cell subset with potent intrinsic antitumor properties, mediated by a bispecific antibody represents a novel approach promising high efficacy with limited toxicity. Here, we describe the generation of a bispecific Vγ9Vδ2 T-cell engager directed against CD40, which, due to its overexpression and biological footprint in malignant B cells, represents an attractive target. The CD40-targeting moiety of the bispecific antibody was selected because it can prevent CD40L-induced prosurvival signaling and reduce CD40-mediated resistance of CLL cells to venetoclax. Selective activation of Vγ9Vδ2 T cells in the presence of CD40+ tumor cells induced potent Vγ9Vδ2 T-cell degranulation, cytotoxicity against CLL and MM cells in vitro, and in vivo control of MM in a xenograft model. The CD40-bispecific γδ T-cell engager demonstrated lysis of leukemic cells by autologous Vγ9Vδ2 T cells present in patient-derived samples. Taken together, our CD40 bispecific γδ T-cell engager increased the sensitivity of leukemic cells to apoptosis and induced a potent Vγ9Vδ2 T cell-dependent antileukemic response. It may, therefore, represent a potential candidate for the development of novel treatments for B-cell malignancies.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/pharmacology
- CD40 Antigens/immunology
- Cell Line, Tumor
- Female
- HEK293 Cells
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocyte Activation/drug effects
- Male
- Mice
- Mice, Inbred NOD
- Middle Aged
- Signal Transduction/drug effects
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Iris de Weerdt
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Hematology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Roeland Lameris
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - George L Scheffer
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jana Vree
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Renate de Boer
- Department of Hematology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Anita G Stam
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Rieneke van de Ven
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, the Netherlands
| | - Steven T Pals
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, the Netherlands
| | | | - Paul W H I Parren
- Lava Therapeutics, Utrecht, the Netherlands
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Arnon P Kater
- Department of Hematology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, the Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
- Lava Therapeutics, Utrecht, the Netherlands
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW This review provides guidance in the rapidly changing scenario of chronic lymphocytic leukemia (CLL) treatment. New studies as well as updates of other seminal ones have been recently presented and are likely to change the management of patients with CLL in everyday clinical practice. RECENT FINDINGS Kinase inhibitors (e.g. ibrutinib and idelalisib) have transformed the treatment paradigm in CLL in both front-line and relapsed/refractory patients. Longer follow-up data are now available supporting the safety of ibrutinib and the continuous administration required per current label. Novel studies show the superiority of the drug alone or in combination with monoclonal antibodies compared with standard chemoimmunotherapy. The combination of venetoclax and obinutuzumab (treatment-naïve, only in United States) or rituximab (relapsed/refractory) has granted approval from the regulatory authorities in United States and Europe, based on phase 3 randomized studies. These novel chemo-free combinations allow for fixed-duration treatment and undetectable minimal residual disease. Novel targeted strategies including second and third generation BTK and PI3K inhibitors are currently under investigation and promise to further improve the CLL treatment armamentarium. The chimeric-antigen receptor (CAR) T cells are coming to the stage with promising efficacy and new challenges. SUMMARY A bright chemo-free era for CLL patients is just around the corner. A deep knowledge of currently available evidences is key to tailor treatment choice and optimize long-term tolerability and disease control. Fixed-duration combinations are investigated to allow treatment holidays and avoid the emergence of resistant clones under the selective pressure of continuous treatment.
Collapse
|
19
|
Jing Z, Gao L, Wang H, Chen J, Nie B, Hong Q. Long non-coding RNA GAS5 regulates human B lymphocytic leukaemia tumourigenesis and metastasis by sponging miR-222. Cancer Biomark 2020; 26:385-392. [PMID: 31594210 DOI: 10.3233/cbm-190246] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Accumulating evidence has shown that lncRNA GAS5 is a novel tumour-promoting RNA that contributes to tumour progression by sponging miRNAs. However, the detailed role of lncRNA GAS5 in B lymphocytic leukaemia is still unclear. A qRT-PCR assay was used to examine the levels of lncRNA GAS5 and miR-222 in leukomonocytes of patients with B lymphocytic leukaemia and in healthy donors. Raji cells were transfected with GAS5 overexpression or shRNA-GAS5 plasmids for 48h, and cell proliferation was assessed by the CCK-8 assay, while apoptosis and cell cycle progression were assessed using flow cytometry. The Transwell assay was applied to detect the invasion of Raji cells with GAS5 overexpression or knockdown. The dual luciferase reporter assay and regression curve were conducted to evaluate the binding interaction between lncRNA GAS5 and miR-222. The results showed that the expression of lncRNA GAS5 was decreased in B lymphocytic leukaemia patients compared with the healthy group, and the levels of lncRNA GAS5 in B lymphocytic leukaemia cell lines were significantly higher than those in the normal B cell line, whereas the levels of miR-222 were increased in B lymphocytic leukaemia patients compared with the healthy group. Moreover, cell culture experiments indicated that lncRNA GAS5 overexpression decreased B lymphocytic leukaemia cell proliferation, promoted B lymphocytic leukaemia cell apoptosis, arrested B lymphocytic leukaemia cells in the G1 phase of the cell cycle, and inhibited B lymphocytic leukaemia cell invasion. Finally, the luciferase reporter assay showed a direct target interaction between lncRNA GAS5 and miR-222. The regression analysis showed a negative correlation between the levels of lncRNA GAS5 and miR-222. Thus, our data suggested that lncRNA GAS5 could effectively sponge miR-222 to modulate human B lymphocytic leukaemia cell tumourigenesis and metastasis. This work advances our understanding of the clinical significance of lncRNA GAS5 from the perspective of lncRNA-miRNA regulation.
Collapse
Affiliation(s)
- Zhenhai Jing
- Department of Oncology, Hiser Medical Center of Qingdao (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Lei Gao
- Department of Oncology, Hiser Medical Center of Qingdao (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Hongzhou Wang
- Department of Oncology, Hiser Medical Center of Qingdao (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Jing Chen
- Department of Oncology, Hiser Medical Center of Qingdao (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Ben Nie
- Department of Oncology, Hiser Medical Center of Qingdao (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Qing Hong
- Department of Hematology, Hiser Medical Center of Qingdao (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| |
Collapse
|
20
|
Yang X, Wang GX, Zhou JF. CAR T Cell Therapy for Hematological Malignancies. Curr Med Sci 2019; 39:874-882. [PMID: 31845217 DOI: 10.1007/s11596-019-2118-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/25/2019] [Indexed: 12/11/2022]
Abstract
As a rapidly progressing field in oncology, the adoptive transfer of T cells that have been genetically modified with chimeric antigen receptors (CARs) has shown striking efficacy in the management of hematological malignancies and has been reported in a number of clinical trials. Of note, CAR T cell therapy has shown extraordinary potential, especially in relapsed/refractory patients. However, there are still challenges regarding the further development of this strategy, spanning from engineering and manufacturing issues, to limited applications, to accompanying toxicities. In this review, we will summarize the general knowledge of this novel method, including receptor composition, applications, adverse events and challenges. Additionally, we will propose several comprehensive recommendations.
Collapse
Affiliation(s)
- Xin Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gao-Xiang Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Feng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
21
|
|
22
|
Paul S, Jain N, Ferrajoli A, O'Brien S, Burger J, Keating M, Wierda W. A phase II trial of eltrombopag for patients with chronic lymphocytic leukaemia (CLL) and thrombocytopenia. Br J Haematol 2019; 185:606-608. [PMID: 30406944 PMCID: PMC11770971 DOI: 10.1111/bjh.15581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
MESH Headings
- Aged
- Aged, 80 and over
- Benzoates/administration & dosage
- Benzoates/adverse effects
- Female
- Humans
- Hydrazines/administration & dosage
- Hydrazines/adverse effects
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Middle Aged
- Pyrazoles/administration & dosage
- Pyrazoles/adverse effects
- Thrombocytopenia/drug therapy
- Thrombocytopenia/metabolism
- Thrombocytopenia/pathology
Collapse
Affiliation(s)
- Shilpa Paul
- Division of Pharmacy, the University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Nitin Jain
- Department of Leukemia, the University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Alessandra Ferrajoli
- Department of Leukemia, the University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Susan O'Brien
- Chao Family Comprehensive Cancer Center, University of California, Irvine Medical Center, Orange, CA, USA
| | - Jan Burger
- Department of Leukemia, the University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Keating
- Department of Leukemia, the University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - William Wierda
- Department of Leukemia, the University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
23
|
Durable Leukemic Remission and Autologous Marrow Recovery with Random Chromosomal Abnormalities after Allogeneic Hematopoietic Stem Cell Transplantation for Chronic Lymphocytic Leukemia. Case Rep Hematol 2019; 2019:9710790. [PMID: 30719361 PMCID: PMC6335663 DOI: 10.1155/2019/9710790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/27/2018] [Indexed: 11/18/2022] Open
Abstract
A 38-year-old woman with aggressive clinical course of chronic lymphocytic leukemia (CLL) was treated with 8 courses of R-CHOP. Clinical remission was achieved, while B-cell clonality remained. Allogeneic hematopoietic stem cell transplantation was performed with reduced intensity conditioning (fludarabine and 2-Gy total body irradiation). However, autologous hematopoietic recovery occurred within a month after the transplant. Nevertheless, B-cell clonality became undetectable at 14 days after transplant, which has been kept so for over 10 years with clinical remission. Cytogenetic analyses were repeatedly performed and demonstrated nonclonal chromosomal aberrations, although the patient did not develop any secondary malignancies. One possible explanation for the clinical course is a very short-term allogeneic immune reaction helping eradication of residual CLL cells.
Collapse
|
24
|
Jain N. Selecting Frontline Therapy for CLL in 2018. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:242-247. [PMID: 30504317 PMCID: PMC6245995 DOI: 10.1182/asheducation-2018.1.242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The treatment landscape of chronic lymphocytic leukemia (CLL) has changed dramatically in the last few years. The role of chemoimmunotherapy has declined significantly for patients with CLL. Fludarabine, cyclophosphamide, rituximab chemotherapy remains the standard frontline therapy for young fit patients with CLL, especially if IGHV mutated. For older adults, ibrutinib has been shown to be superior to chlorambucil. Hence, the role of chlorambucil monotherapy in the current era in the management of CLL is limited. The combination of chlorambucil and obinutuzumab is an alternative option for patients with comorbidities. For patients with del(17p), ibrutinib has become the standard treatment in the frontline setting. Several phase 3 trials with novel targeted agents, either as monotherapy or in combination, are either ongoing or have completed accrual. The results of many of these trials are expected in the next 1 to 2 years, and they will further help refine the frontline treatment strategy.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Age Factors
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Chlorambucil/therapeutic use
- Chromosome Deletion
- Chromosomes, Human, Pair 17
- Clinical Trials, Phase III as Topic
- Cyclophosphamide/therapeutic use
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Piperidines
- Pyrazoles/therapeutic use
- Pyrimidines/therapeutic use
- Rituximab/therapeutic use
- Smith-Magenis Syndrome
- Vidarabine/analogs & derivatives
- Vidarabine/therapeutic use
Collapse
Affiliation(s)
- Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
25
|
Yigit B, Wang N, Herzog RW, Terhorst C. SLAMF6 in health and disease: Implications for therapeutic targeting. Clin Immunol 2018; 204:3-13. [PMID: 30366106 DOI: 10.1016/j.clim.2018.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Burcu Yigit
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Ninghai Wang
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Huang C, Tu Y, Freter CE. Fludarabine-resistance associates with ceramide metabolism and leukemia stem cell development in chronic lymphocytic leukemia. Oncotarget 2018; 9:33124-33137. [PMID: 30237856 PMCID: PMC6145702 DOI: 10.18632/oncotarget.26043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/13/2018] [Indexed: 01/13/2023] Open
Abstract
Fludarabine (flu) -containing regimens such as flu, cyclophosphamide and rituximab have been established as one of the standard first line therapy in medically-fit chronic lymphocytic leukemia (CLL) patients. Therefore, flu-refractory (primary flu-insensitivity or flu-caused relapse) remains a major problem causing treatment failure for CLL patients. We isolated the peripheral blood mononuclear cells (PBMCs) from CLL patients and treated with flu to find flu-refractory cases, and established flu-resistant clonal cells to study molecular mechanism of flu-resistance. By comparing parental MEC-2 cells, a human CLL cell line, we found that flu-resistant clonal cells were significantly increased lethal dose 50 of flu concentration, and up-regulated expression of P-glycoprotein, a drug-resistant marker, glucosylceramide synthase (GCS), an enzyme that can convert ceramide to glucosylceramide, and CD34, a leukemia stem cell marker. Overexpression of GCS leads to promptly elimination of cellular ceramide levels and accumulation of glucosylceramide, which reduces apoptosis and promotes survival and proliferation of flu-resistant clonal cells. Furthermore, we demonstrated that the accumulation of glucosylceramide can be blocked by PDMP to restore flu-sensitivity in flu-resistant clonal cells. We also found that elevating glucosylceramide levels in flu-resistant clonal cells was associated with up-regulation of GCS and CD34 expression. Importantly, overexpression of GCS or CD34 was also determined in flu-refractory PBMCs. Our results show that flu-resistance is associated with the alteration of ceramide metabolism and the development of leukemia stem cell-like cells. The flu-resistance can be reversed by GCS inhibition as a novel strategy for overcoming drug resistance.
Collapse
Affiliation(s)
- Chunfa Huang
- Division of Hematology/Oncology, Department of Internal Medicine, School of Medicine, Saint Louis University, Saint Louis, MO, 63110, USA
| | - Yifan Tu
- Division of Hematology/Oncology, Department of Internal Medicine, School of Medicine, Saint Louis University, Saint Louis, MO, 63110, USA
| | - Carl E Freter
- Division of Hematology/Oncology, Department of Internal Medicine, School of Medicine, Saint Louis University, Saint Louis, MO, 63110, USA
| |
Collapse
|
27
|
Hew J, Pham D, Matthews Hew T, Minocha V. A Novel Treatment With Obinutuzumab-Chlorambucil in a Patient With B-Cell Prolymphocytic Leukemia: A Case Report and Review of the Literature. J Investig Med High Impact Case Rep 2018; 6:2324709618788674. [PMID: 30038912 PMCID: PMC6050796 DOI: 10.1177/2324709618788674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/20/2018] [Accepted: 06/23/2018] [Indexed: 12/25/2022] Open
Abstract
We report the case of a patient with B-cell prolymphocytic leukemia who was
successfully treated with the novel humanized monoclonal antibody obinutuzumab.
This patient was previously treated with the combination of rituximab and
bendamustine and had recurrent infusion reactions. Her treatment with rituximab
and bendamustine was discontinued when she developed disease progression after 3
cycles of therapy. She was then treated with obinutuzumab 1000 mg on day 1 of
every cycle and chlorambucil 0.5 mg/kg on days 1 and 15 every 28 days to which
she had greater tolerability. After 4 cycles of treatment, she had resolution of
her clinical symptoms, massive splenomegaly, and normalization of her white
blood cell count.
Collapse
Affiliation(s)
- Jason Hew
- University of Florida, Jacksonville, FL, USA
| | - Dat Pham
- University of Florida, Jacksonville, FL, USA
| | | | | |
Collapse
|
28
|
Noncovalent inhibition of C481S Bruton tyrosine kinase by GDC-0853: a new treatment strategy for ibrutinib-resistant CLL. Blood 2018; 132:1039-1049. [PMID: 30018078 DOI: 10.1182/blood-2017-10-809020] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 06/04/2018] [Indexed: 01/05/2023] Open
Abstract
The clinical success of ibrutinib validates Bruton tyrosine kinase (BTK) inhibition as an effective strategy for treating hematologic malignancies, including chronic lymphocytic leukemia (CLL). Despite ibrutinib's ability to produce durable remissions in patients, acquired resistance can develop, mostly commonly by mutation of C481 of BTK in the ibrutinib binding site. Here, we characterize a novel BTK inhibitor, GDC-0853, to evaluate its preclinical efficacy in ibrutinib-naive and ibrutinib-resistant CLL. GDC-0853 is unique among reported BTK inhibitors in that it does not rely upon covalent reaction with C481 to stabilize its occupancy within BTK's adenosine triphosphate binding site. As with ibrutinib, GDC-0853 potently reduces B-cell receptor signaling, viability, NF-κB-dependent transcription, activation, and migration in treatment naïve CLL cells. We found that GDC-0853 also inhibits the most commonly reported ibrutinib-resistant BTK mutant (C481S) both in a biochemical enzyme activity assay and in a stably transfected 293T cell line and maintains cytotoxicity against patient CLL cells harboring C481S BTK mutations. Additionally, GDC-0853 does not inhibit endothelial growth factor receptor or ITK, 2 alternative targets of ibrutinib that are likely responsible for some adverse events and may reduce the efficacy of ibrutinib-antibody combinations, respectively. Our results using GDC-0853 indicate that noncovalent, selective BTK inhibition may be effective in CLL either as monotherapy or in combination with therapeutic antibodies, especially among the emerging population of patients with acquired resistance to ibrutinib therapy.
Collapse
|
29
|
Zhao Z, Chen Y, Francisco NM, Zhang Y, Wu M. The application of CAR-T cell therapy in hematological malignancies: advantages and challenges. Acta Pharm Sin B 2018; 8:539-551. [PMID: 30109179 PMCID: PMC6090008 DOI: 10.1016/j.apsb.2018.03.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/26/2018] [Accepted: 02/18/2018] [Indexed: 02/07/2023] Open
Abstract
Chimeric antigen receptor T cell (CAR-T cell) therapy is a novel adoptive immunotherapy where T lymphocytes are engineered with synthetic receptors known as chimeric antigen receptors (CAR). The CAR-T cell is an effector T cell that recognizes and eliminates specific cancer cells, independent of major histocompatibility complex molecules. The whole procedure of CAR-T cell production is not well understood. The CAR-T cell has been used predominantly in the treatment of hematological malignancies, including acute lymphoblastic leukemia, chronic lymphocytic leukemia, lymphoma, and multiple myeloma. Solid tumors including melanoma, breast cancer and sarcoma offer great promise in CAR-T cell research and development. CD19 CAR-T cell is most commonly used, and other targets, including CD20, CD30, CD38 and CD138 are being studied. Although this novel therapy is promising, there are several disadvantages. In this review we discuss the applications of CAR-T cells in different hematological malignancies, and pave a way for future improvement on the effectiveness and persistence of these adoptive cell therapies.
Collapse
Affiliation(s)
- Zijun Zhao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yu Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | | | - Yuanqing Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Minhao Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
30
|
Anquetil T, Payrastre B, Gratacap MP, Viaud J. The lipid products of phosphoinositide 3-kinase isoforms in cancer and thrombosis. Cancer Metastasis Rev 2018; 37:477-489. [DOI: 10.1007/s10555-018-9735-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Novel role of prostate apoptosis response-4 tumor suppressor in B-cell chronic lymphocytic leukemia. Blood 2018; 131:2943-2954. [PMID: 29695515 DOI: 10.1182/blood-2017-10-813931] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/08/2018] [Indexed: 01/04/2023] Open
Abstract
Prostate apoptosis response-4 (Par-4), a proapoptotic tumor suppressor protein, is downregulated in many cancers including renal cell carcinoma, glioblastoma, endometrial, and breast cancer. Par-4 induces apoptosis selectively in various types of cancer cells but not normal cells. We found that chronic lymphocytic leukemia (CLL) cells from human patients and from Eµ-Tcl1 mice constitutively express Par-4 in greater amounts than normal B-1 or B-2 cells. Interestingly, knockdown of Par-4 in human CLL-derived Mec-1 cells results in a robust increase in p21/WAF1 expression and decreased growth due to delayed G1-to-S cell-cycle transition. Lack of Par-4 also increased the expression of p21 and delayed CLL growth in Eμ-Tcl1 mice. Par-4 expression in CLL cells required constitutively active B-cell receptor (BCR) signaling, as inhibition of BCR signaling with US Food and Drug Administration (FDA)-approved drugs caused a decrease in Par-4 messenger RNA and protein, and an increase in apoptosis. In particular, activities of Lyn, a Src family kinase, spleen tyrosine kinase, and Bruton tyrosine kinase are required for Par-4 expression in CLL cells, suggesting a novel regulation of Par-4 through BCR signaling. Together, these results suggest that Par-4 may play a novel progrowth rather than proapoptotic role in CLL and could be targeted to enhance the therapeutic effects of BCR-signaling inhibitors.
Collapse
|
32
|
Scialdone A, Hasni MS, Damm JK, Lennartsson A, Gullberg U, Drott K. The HDAC inhibitor valproate induces a bivalent status of the CD20 promoter in CLL patients suggesting distinct epigenetic regulation of CD20 expression in CLL in vivo. Oncotarget 2018; 8:37409-37422. [PMID: 28445158 PMCID: PMC5514918 DOI: 10.18632/oncotarget.16964] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/08/2017] [Indexed: 11/25/2022] Open
Abstract
Treatment with anti-CD20 antibodies is only moderately efficient in chronic lymphocytic leukemia (CLL), a feature which has been explained by the inherently low CD20 expression in CLL. It has been shown that CD20 is epigenetically regulated and that histone deacetylase inhibitors (HDACis) can increase CD20 expression in vitro in CLL. To assess whether HDACis can upregulate CD20 also in vivo in CLL, the HDACi valproate was given to three del13q/NOTCH1wt CLL patients and CD20 levels were analysed (the PREVAIL study). Valproate treatment resulted in expected global activating histone modifications suggesting HDAC inhibitory effects. However, although valproate induced expression of CD20 mRNA and protein in the del13q/NOTCH1wt I83-E95 CLL cell line, no such effects were observed in the patients studied. In contrast to the cell line, in patients valproate treatment resulted in transient recruitment of the transcriptional repressor EZH2 to the CD20 promoter, correlating to an increase of the repressive histone mark H3K27me3. This suggests that valproate-mediated induction of CD20 may be hampered by EZH2 mediated H3K27me3 in vivo in CLL. Moreover, valproate treatment resulted in induction of EZH2 and global H3K27me3 in patient cells, suggesting transcriptionally repressive effects of valproate in CLL. Our results suggest new in vivo mechanisms of HDACis which may have implications on the design of future clinical trials in B-cell malignancies.
Collapse
Affiliation(s)
- Annarita Scialdone
- Department of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | | | - Jesper Kofoed Damm
- Department of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Urban Gullberg
- Department of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Kristina Drott
- Department of Hematology and Transfusion Medicine, Lund University, Lund, Sweden.,Clinic of Oncology, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
33
|
Rocque GB, Williams CP, Halilova KI, Borate U, Jackson BE, Van Laar ES, Pisu M, Butler TW, Davis RS, Mehta A, Knight SJ, Safford MM. Improving shared decision-making in chronic lymphocytic leukemia through multidisciplinary education. Transl Behav Med 2018; 8:175-182. [DOI: 10.1093/tbm/ibx034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Gabrielle B Rocque
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Courtney P Williams
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Karina I Halilova
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Uma Borate
- Knight Cancer Institute, Oregon Health and Sciences University, Oregan, OR, USA
| | | | | | - Maria Pisu
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Thomas W Butler
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | - Randall S Davis
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amitkumar Mehta
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sara J Knight
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Monika M Safford
- Weill Cornell Medical College, Cornell University, Ithaca, NY, USA
| |
Collapse
|
34
|
Venetoclax for patients with chronic lymphocytic leukemia who progressed during or after idelalisib therapy. Blood 2018; 131:1704-1711. [PMID: 29305552 DOI: 10.1182/blood-2017-06-788133] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 12/15/2017] [Indexed: 12/21/2022] Open
Abstract
B-cell receptor pathway inhibitors (BCRis) have transformed treatment of chronic lymphocytic leukemia (CLL); however, the efficacy of therapies for patients whose disease is refractory to/relapses after (R/R) BCRis is unknown. Venetoclax is a selective, orally bioavailable BCL-2 inhibitor with activity in patients with CLL, including those who are heavily pretreated or have 17p deletion. This phase 2 study prospectively evaluated venetoclax in patients with R/R CLL after ibrutinib or idelalisib; here we report on patients who received idelalisib as the last BCRi before enrollment. Venetoclax was initiated at 20 mg daily, followed by intrapatient ramp-up to 400 mg daily. Primary objectives included efficacy (objective response rate [ORR]) and safety of venetoclax. The study enrolled 36 patients who previously received idelalisib (ORR, 67% [24/36]); 2 patients achieved complete remission, and 1 had complete remission with incomplete bone marrow recovery. Median progression-free survival (PFS) has not yet been reached; estimated 12-month PFS was 79%. The most common adverse events (AEs; all grades) were neutropenia (56%), diarrhea (42%), upper respiratory tract infection (39%), thrombocytopenia (36%), nausea (31%), fatigue (28%), cough (22%), rash (22%), and anemia (22%). Grade 3 or 4 AEs were primarily hematologic (neutropenia [50%], thrombocytopenia [25%], and anemia [17%]). No patients experienced tumor lysis syndrome. Venetoclax demonstrated promising clinical activity and favorable tolerability in patients with CLL whose disease progressed during or after idelalisib therapy. This trial was registered at www.clinicaltrials.gov as #NCT02141282.
Collapse
|
35
|
Jones JA, Mato AR, Wierda WG, Davids MS, Choi M, Cheson BD, Furman RR, Lamanna N, Barr PM, Zhou L, Chyla B, Salem AH, Verdugo M, Humerickhouse RA, Potluri J, Coutre S, Woyach J, Byrd JC. Venetoclax for chronic lymphocytic leukaemia progressing after ibrutinib: an interim analysis of a multicentre, open-label, phase 2 trial. Lancet Oncol 2018; 19:65-75. [PMID: 29246803 PMCID: PMC6027999 DOI: 10.1016/s1470-2045(17)30909-9] [Citation(s) in RCA: 282] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND Therapy targeting Bruton's tyrosine kinase (BTK) with ibrutinib has transformed the treatment of chronic lymphocytic leukaemia. However, patients who are refractory to or relapse after ibrutinib therapy have poor outcomes. Venetoclax is a selective, orally bioavailable inhibitor of BCL-2 active in previously treated patients with relapsed or refractory chronic lymphocytic leukaemia. In this study, we assessed the activity and safety of venetoclax in patients with chronic lymphocytic leukaemia who are refractory to or relapse during or after ibrutinib therapy. METHODS In this interim analysis of a multicentre, open-label, non-randomised, phase 2 trial, we enrolled patients aged 18 years or older with a documented diagnosis of chronic lymphocytic leukaemia according to the 2008 International Workshop on Chronic Lymphocytic Leukemia (IWCLL) criteria and an Eastern Cooperative Oncology Group performance score of 2 or lower. All patients had relapsed or refractory disease after previous treatment with a BCR signalling pathway inhibitor. All patients were screened for Richter's transformation and cases confirmed by biopsy were excluded. Eligible patients received oral venetoclax, starting at 20 mg per day with stepwise dose ramp-up over 5 weeks to 400 mg per day. Patients with rapidly progressing disease received an accelerated dosing schedule (to 400 mg per day by week 3). The primary endpoint was overall response, defined as the proportion of patients with an overall response per investigator's assessment according to IWCLL criteria. All patients who received at least one dose of venetoclax were included in the activity and safety analyses. This study is ongoing; data for this interim analysis were collected per regulatory agencies' request as of June 30, 2017. This trial is registered with ClinicalTrials.gov, number NCT02141282. FINDINGS Between September, 2014, and November, 2016, 127 previously treated patients with relapsed or refractory chronic lymphocytic leukaemia were enrolled from 15 sites across the USA. 91 patients had received ibrutinib as the last BCR inhibitor therapy before enrolment, 43 of whom were enrolled in the main cohort and 48 in the expansion cohort recruited later after a protocol amendment. At the time of analysis, the median follow-up was 14 months (IQR 8-18) for all 91 patients, 19 months (9-27) for the main cohort, and 12 months (8-15) for the expansion cohort. 59 (65%, 95% CI 53-74) of 91 patients had an overall response, including 30 (70%, 54-83) of 43 patients in the main cohort and 29 (60%, 43-72) of 48 patients in the expansion cohort. The most common treatment-emergent grade 3 or 4 adverse events were neutropenia (46 [51%] of 91 patients), thrombocytopenia (26 [29%]), anaemia (26 [29%]), decreased white blood cell count (17 [19%]), and decreased lymphocyte count (14 [15%]). 17 (19%) of 91 patients died, including seven because of disease progression. No treatment-related deaths occurred. INTERPRETATION The results of this interim analysis show that venetoclax has durable clinical activity and favourable tolerability in patients with relapsed or refractory chronic lymphocytic leukaemia whose disease progressed during or after discontinutation of ibrutinib therapy. The durability of response to venetoclax will be assessed in the final analysis in 2019. FUNDING AbbVie, Genentech.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Administration, Oral
- Adult
- Agammaglobulinaemia Tyrosine Kinase
- Aged
- Aged, 80 and over
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/adverse effects
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Bridged Bicyclo Compounds, Heterocyclic/adverse effects
- Disease Progression
- Disease-Free Survival
- Drug Administration Schedule
- Female
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Middle Aged
- Piperidines
- Protein Kinase Inhibitors/administration & dosage
- Protein Kinase Inhibitors/adverse effects
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Pyrazoles/administration & dosage
- Pyrazoles/adverse effects
- Pyrimidines/administration & dosage
- Pyrimidines/adverse effects
- Sulfonamides/administration & dosage
- Sulfonamides/adverse effects
- Time Factors
- Treatment Outcome
- United States
Collapse
Affiliation(s)
| | - Anthony R Mato
- Center for Chronic Lymphocytic Leukemia, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Michael Choi
- UC San Diego Moores Cancer Center, San Diego, CA, USA
| | | | | | | | - Paul M Barr
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | - Ahmed Hamed Salem
- AbbVie, North Chicago, IL, USA; Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | | | | | | - Steven Coutre
- Stanford Cancer Center, Stanford University School of Medicine, Stanford, CA, USA
| | | | - John C Byrd
- Division of Pharmaceutics, College of Pharmacy, Columbus, OH, USA.
| |
Collapse
|
36
|
Abstract
Idelalisib (GS-1101, CAL-101, Zydelig®) is an orally bioavailable, small-molecule inhibitor of the delta isoform (p110δ) of the enzyme phosphoinositide 3-kinase (PI3K). In contrast to the other PI3K isoforms, PI3Kδ is expressed selectively in hematopoietic cells. PI3Kδ signaling is active in many B-cell leukemias and lymphomas. By inhibiting the PI3Kδ protein, idelalisib blocks several cellular signaling pathways that maintain B-cell viability. Idelalisib is the first PI3K inhibitor approved by the US Food and Drug Administration (FDA). Treatment with idelalisib is indicated in relapsed/refractory chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), and small lymphocytic lymphoma (SLL). This review presents the preclinical and clinical activity of idelalisib with a focus on clinical studies in CLL.
Collapse
|
37
|
Mauro FR, Foà R. Venetoclax: a chance for patients with chronic lymphocytic leukaemia previously treated with ibrutinib. Lancet Oncol 2017; 19:7-8. [PMID: 29246804 DOI: 10.1016/s1470-2045(17)30910-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 11/25/2022]
Affiliation(s)
- Francesca R Mauro
- Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy.
| | - Robin Foà
- Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| |
Collapse
|
38
|
van de Poll-Franse L, Oerlemans S, Bredart A, Kyriakou C, Sztankay M, Pallua S, Daniëls L, Creutzberg CL, Cocks K, Malak S, Caocci G, Molica S, Chie W, Efficace F. International development of four EORTC disease-specific quality of life questionnaires for patients with Hodgkin lymphoma, high- and low-grade non-Hodgkin lymphoma and chronic lymphocytic leukaemia. Qual Life Res 2017; 27:333-345. [PMID: 29127596 PMCID: PMC5846994 DOI: 10.1007/s11136-017-1718-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2017] [Indexed: 11/25/2022]
Abstract
PURPOSE This paper describes the international, cross-cultural development of four disease-specific EORTC QoL questionnaires, to supplement the EORTC QLQ-C30, for patients with Hodgkin lymphoma (HL), high- or low-grade non-Hodgkin lymphoma (HG/LG-NHL), and CLL. METHODS Questionnaire development was conducted according to guidelines from the EORTC Quality of Life Group. Phase I comprised generation of QoL issues relevant to patients. Phase II included operationalization and assessment of item relevance. In phase III, items were pretested in a cross-cultural sample. RESULTS In Phase I, 75 issues were identified through focus groups and systematic literature searches. Interviews with 80 health-care professionals and 245 patients resulted in a provisional module of 38 items (phase II) representing items relevant for all or at least one of the four malignancies. In Phase III, this was tested in 337 patients from five European countries and resulted in a questionnaire with 27 items for HL (EORTC QLQ-HL27), 29 items for HG-NHL (EORTC QLQ-NHL-HG29), 20 items for LG-NHL (EORTC QLQ-NHL-LG20) and 17 items for CLL (EORTC QLQ-CLL17). CONCLUSIONS This study provides four new EORTC modules for use in clinical research and routine practice in conjunction with the EORTC QLQ-C30 for assessing QoL in patients with lymphoma and CLL.
Collapse
Affiliation(s)
- Lonneke van de Poll-Franse
- Department of Research, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, The Netherlands
- Department of Psychosocial Research, Division of Psychosocial Research & Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Medical and Clinical Psychology, Tilburg University, Tilburg, The Netherlands
| | - Simone Oerlemans
- Department of Research, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, The Netherlands
| | - Anne Bredart
- Psycho-Oncology Unit, Institut Curie, Paris, France
- Psycho-pathology and Health Process Laboratory Psychology Institute, University Paris Descartes, Paris, France
| | - Charalampia Kyriakou
- Royal Free and North West London Hospitals, National Health Service Trust, London, UK
| | - Monika Sztankay
- Department of Psychiatry, Psychotherapy and Psychosomatics, Innsbruck Medical University, Innsbruck, Austria
| | - Stephan Pallua
- Department of Psychiatry, Psychotherapy and Psychosomatics, Innsbruck Medical University, Innsbruck, Austria
| | - Laurien Daniëls
- Department of Radiation Oncology, Leiden University Medical Centre (LUMC), Leiden, the Netherlands
| | - Carien L. Creutzberg
- Department of Radiation Oncology, Leiden University Medical Centre (LUMC), Leiden, the Netherlands
| | - Kim Cocks
- KCStats Consultancy, York, UK
- University of York, York, UK
| | - Sandra Malak
- Hôpital René Huguenin-Institut Curie- Hématologie, Saint-Cloud, France
| | - Giovanni Caocci
- Hematology, Department of Medical Sciences, University of Cagliari, Cagliari, Italy
| | | | | | - Fabio Efficace
- Health Outcomes Research Unit, Italian Group for Adult Hematologic Diseases (GIMEMA) Data Centre, Rome, Italy
| | | |
Collapse
|
39
|
Caimi PF, Cooper BW, William BM, Dowlati A, Barr PM, Fu P, Pink J, Xu Y, Lazarus HM, de Lima M, Gerson SL. Phase I clinical trial of the base excision repair inhibitor methoxyamine in combination with fludarabine for patients with advanced hematologic malignancies. Oncotarget 2017; 8:79864-79875. [PMID: 29108368 PMCID: PMC5668101 DOI: 10.18632/oncotarget.20094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023] Open
Abstract
PURPOSE We determined the safety, pharmacokinetics, pharmacodynamics and recommended phase II dose of the base excision repair blocker methoxyamine combined with fludarabine. MATERIALS AND METHODS This was a phase I study with intravenous fludarabine (25 mg/m2, days 1-5), and methoxyamine (15 mg/m2-120 mg/m2, once). A maximum of six cycles were given. Adult patients with relapsed/refractory hematologic malignancies, excluding acute myeloid leukemia, were eligible. RESULTS Twenty patients were treated; diagnoses included CLL/SLL (n = 10), follicular lymphoma (n = 3), DLBCL (n = 3), mantle cell lymphoma (n = 1), anaplastic large cell lymphoma (n = 1) and plasma cell myeloma (n = 2). No DLTs were observed and dose escalation reached the maximum planned dose. Hematologic toxicity was frequent; most common grade 3-4 toxicities were lymphopenia (70%), neutropenia (60%), leukopenia (50%) and anemia (40%). Four patients achieved a partial remission and 8 achieved stable disease. The drug combination resulted in increased DNA damage measured with the Comet assay. CONCLUSIONS Methoxyamine combined with fludarabine was safe and well tolerated. Hematologic toxicity was comparable to single agent fludarabine. Activity appears to correlate with increased levels of DNA damage. Further studies will examine use of this combination of as part conditioning regimens of stem cell transplant and use of methoxyamine as fludarabine dose-sparing agent.
Collapse
Affiliation(s)
- Paolo F. Caimi
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
| | - Brenda W. Cooper
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
| | - Basem M. William
- Division of Hematology. The Ohio State University Medical School, Columbus, Ohio, USA
| | - Afshin Dowlati
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
| | - Paul M. Barr
- Division of Hematology and Oncology, Department of Medicine, University of Rochester, Rochester, New York, USA
| | - Pingfu Fu
- Department of Biostatistics, Case Western Reserve University, Cleveland, Ohio, USA
| | - John Pink
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Yan Xu
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Hillard M. Lazarus
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
| | - Marcos de Lima
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
| | - Stanton L. Gerson
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
| |
Collapse
|
40
|
Functional precision cancer medicine-moving beyond pure genomics. Nat Med 2017; 23:1028-1035. [PMID: 28886003 DOI: 10.1038/nm.4389] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 07/20/2017] [Indexed: 12/18/2022]
Abstract
The essential job of precision medicine is to match the right drugs to the right patients. In cancer, precision medicine has been nearly synonymous with genomics. However, sobering recent studies have generally shown that most patients with cancer who receive genomic testing do not benefit from a genomic precision medicine strategy. Although some call the entire project of precision cancer medicine into question, I suggest instead that the tools employed must be broadened. Instead of relying exclusively on big data measurements of initial conditions, we should also acquire highly actionable functional information by perturbing-for example, with cancer therapies-viable primary tumor cells from patients with cancer.
Collapse
|
41
|
Brumbaugh Paradis H, Alter D, Llerandi D. Venetoclax: Management and Care for Patients With Relapsed or Refractory Chronic Lymphocytic Leukemia. Clin J Oncol Nurs 2017; 21:604-610. [DOI: 10.1188/17.cjon.604-610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Strati P, Keating MJ, Burger JA, O'Brien SM, Wierda WG, Estrov Z, Zacharian G, Ferrajoli A. Consolidation treatment with lenalidomide following front-line or salvage chemoimmunotherapy in chronic lymphocytic leukemia. Haematologica 2017; 102:e494-e496. [PMID: 28798068 DOI: 10.3324/haematol.2017.171561] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Paolo Strati
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jan A Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Susan M O'Brien
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gracy Zacharian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
43
|
Laurenti L, Innocenti I, Autore F, Ciolli S, Mauro FR, Mannina D, Del Poeta G, D'Arena G, Massaia M, Coscia M, Molica S, Pozzato G, Efremov DG, Vannata B, Marasca R, Galieni P, Cuneo A, Orlando S, Piciocchi A, Boncompagni R, Vincelli D, Liberati AM, Russo F, Foá R. Chlorambucil plus rituximab as front-line therapy for elderly and/or unfit chronic lymphocytic leukemia patients: correlation with biologically-based risk stratification. Haematologica 2017; 102:e352-e355. [PMID: 28596282 DOI: 10.3324/haematol.2016.156901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | - Giovanni D'Arena
- Hematology and Stem Cell Transplantation Unit, IRCCS Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, Italy
| | | | - Marta Coscia
- A.O. Città della Salute e della Scienza S. Giovanni Battista, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Robin Foá
- Ematologia, Policlinico Umberto 1, Università "Sapienza", Roma, Italy
| |
Collapse
|
44
|
Molica S. Targeted therapy in the treatment of chronic lymphocytic leukemia: facts, shortcomings and hopes for the future. Expert Rev Hematol 2017; 10:425-432. [DOI: 10.1080/17474086.2017.1313108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Stefano Molica
- Department of Hematology-Oncology, Azienda Ospedaliera Pugliese-Ciaccio, Catanzaro, Italy
| |
Collapse
|
45
|
PI3K-δ inhibition using CAL-101 exerts apoptotic effects and increases doxorubicin-induced cell death in pre-B-acute lymphoblastic leukemia cells. Anticancer Drugs 2017; 28:436-445. [DOI: 10.1097/cad.0000000000000477] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Colado A, Almejún MB, Podaza E, Risnik D, Stanganelli C, Elías EE, Dos Santos P, Slavutsky I, Fernández Grecco H, Cabrejo M, Bezares RF, Giordano M, Gamberale R, Borge M. The kinase inhibitors R406 and GS-9973 impair T cell functions and macrophage-mediated anti-tumor activity of rituximab in chronic lymphocytic leukemia patients. Cancer Immunol Immunother 2017; 66:461-473. [PMID: 28011996 PMCID: PMC11028675 DOI: 10.1007/s00262-016-1946-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 12/18/2016] [Indexed: 11/30/2022]
Abstract
Small molecules targeting kinases involved in B cell receptor signaling are showing encouraging clinical activity in chronic lymphocytic leukemia (CLL) patients. Fostamatinib (R406) and entospletinib (GS-9973) are ATP-competitive inhibitors designed to target spleen tyrosine kinase (Syk) that have shown clinical activity with acceptable toxicity in trials with CLL patients. Preclinical studies with these inhibitors in CLL have focused on their effect in patient-derived leukemic B cells. In this work we show that clinically relevant doses of R406 and GS-9973 impaired the activation and proliferation of T cells from CLL patients. This effect could not be ascribed to Syk-inhibition given that we show that T cells from CLL patients do not express Syk protein. Interestingly, ζ-chain-associated protein kinase (ZAP)-70 phosphorylation was diminished by both inhibitors upon TCR stimulation on T cells. In addition, we found that both agents reduced macrophage-mediated phagocytosis of rituximab-coated CLL cells. Overall, these results suggest that in CLL patients treated with R406 or GS-9973 T cell functions, as well as macrophage-mediated anti-tumor activity of rituximab, might be impaired. The potential consequences for CLL-treated patients are discussed.
Collapse
Affiliation(s)
- Ana Colado
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina (ANM), Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - María Belén Almejún
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina (ANM), Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Enrique Podaza
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina (ANM), Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Denise Risnik
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina (ANM), Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Carmen Stanganelli
- Servicio de Patología Molecular, Instituto de Investigaciones Hematológicas-ANM, Buenos Aires, Argentina
| | - Esteban Enrique Elías
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina (ANM), Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Patricia Dos Santos
- Laboratorio de Genética de Neoplasias Linfoides, IMEX-CONICET-ANM, Buenos Aires, Argentina
| | - Irma Slavutsky
- Laboratorio de Genética de Neoplasias Linfoides, IMEX-CONICET-ANM, Buenos Aires, Argentina
| | | | - María Cabrejo
- Departamento de Hematología, Sanatorio Julio Méndez, Buenos Aires, Argentina
| | | | - Mirta Giordano
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina (ANM), Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Romina Gamberale
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina (ANM), Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mercedes Borge
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina (ANM), Pacheco de Melo 3081, 1425, Buenos Aires, Argentina.
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
47
|
Abstract
Personalization of therapy to target specific molecular pathways has been placed in the forefront of cancer research. Initial reports from clinical trials designed to select patients for appropriate treatment on the basis of tumor characteristics not only have generated considerable excitement but also have identified several challenges. These challenges include the overcoming of regulatory and logistic difficulties, identification of the best selection biomarkers and diagnostic platforms that can be applied in the clinical setting, definition of relevant outcomes in small preselected patient populations, and the design of methods that facilitate rapid enrollment and interpretation of clinical trials by aggregating data across histologically diverse malignancies with common genetic alterations. Furthermore, because our knowledge of the functional consequences of many genetic alterations lags, investigators and sponsors struggle with choosing between ideal clinical trial designs and more practical ones. These challenges are amplified when more than one biomarker is used to select patients for a combination of targeted agents. This review summarizes the current status and challenges of clinical trials in the genomic era and proposes ways to address these challenges.
Collapse
Affiliation(s)
- Erel Joffe
- All authors: Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alexia Iasonos
- All authors: Memorial Sloan Kettering Cancer Center, New York, NY
| | - Anas Younes
- All authors: Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
48
|
Nandikolla AG, Derman O, Nautsch D, Liu Q, Massoumi H, Venugopal S, Braunschweig I, Janakiram M. Ibrutinib-induced severe liver injury. Clin Case Rep 2017; 5:735-738. [PMID: 28588800 PMCID: PMC5458017 DOI: 10.1002/ccr3.881] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 12/18/2016] [Accepted: 02/01/2017] [Indexed: 01/22/2023] Open
Abstract
Ibrutinib, an inhibitor of the Bruton's tyrosine kinase of the B‐cell receptor pathway, is an effective therapeutic agent for B‐cell lymphomas. As these drugs are novel, long‐term or rare adverse events are not yet known. We report the first case of ibrutinib‐induced severe liver injury in a patient with relapsed/refractory CLL.
Collapse
Affiliation(s)
- Amara G Nandikolla
- Department of Oncology Montefiore Medical Center/Albert Einstein College of Medicine Bronx New York USA
| | - Olga Derman
- Department of Oncology Montefiore Medical Center/Albert Einstein College of Medicine Bronx New York USA
| | - Deborah Nautsch
- Department of Pathology Montefiore Medical Center/Albert Einstein College of Medicine Bronx New York USA
| | - Qiang Liu
- Department of Pathology Montefiore Medical Center/Albert Einstein College of Medicine Bronx New York USA
| | - Hatef Massoumi
- Department of Hepatology Montefiore Medical Center/Albert Einstein College of Medicine Bronx New York USA
| | | | - Ira Braunschweig
- Department of Oncology Montefiore Medical Center/Albert Einstein College of Medicine Bronx New York USA
| | - Murali Janakiram
- Department of Oncology Montefiore Medical Center/Albert Einstein College of Medicine Bronx New York USA
| |
Collapse
|
49
|
Efficient synthesis of (S)-N-Boc-3-hydroxypiperidine using an (R)-specific carbonyl reductase from Candida parapsilosis. World J Microbiol Biotechnol 2017; 33:61. [DOI: 10.1007/s11274-016-2189-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/09/2016] [Indexed: 10/20/2022]
|
50
|
Chen Q, Jain N, Ayer T, Wierda WG, Flowers CR, O’Brien SM, Keating MJ, Kantarjian HM, Chhatwal J. Economic Burden of Chronic Lymphocytic Leukemia in the Era of Oral Targeted Therapies in the United States. J Clin Oncol 2017; 35:166-174. [PMID: 27870563 PMCID: PMC5559889 DOI: 10.1200/jco.2016.68.2856] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Purpose Oral targeted therapies represent a significant advance for the treatment of patients with chronic lymphocytic leukemia (CLL); however, their high cost has raised concerns about affordability and the economic impact on society. Our objective was to project the future prevalence and cost burden of CLL in the era of oral targeted therapies in the United States. Methods We developed a simulation model that evaluated the evolving management of CLL from 2011 to 2025: chemoimmunotherapy (CIT) as the standard of care before 2014, oral targeted therapies for patients with del(17p) and relapsed CLL from 2014, and for first-line treatment from 2016 onward. A comparator scenario also was simulated where CIT remained the standard of care throughout. Disease progression and survival parameters for each therapy were based on published clinical trials. Results The number of people living with CLL in the United States is projected to increase from 128,000 in 2011 to 199,000 by 2025 (55% increase) due to improved survival; meanwhile, the annual cost of CLL management will increase from $0.74 billion to $5.13 billion (590% increase). The per-patient lifetime cost of CLL treatment will increase from $147,000 to $604,000 (310% increase) as oral targeted therapies become the first-line treatment. For patients enrolled in Medicare, the corresponding total out-of-pocket cost will increase from $9,200 to $57,000 (520% increase). Compared with the CIT scenario, oral targeted therapies resulted in an incremental cost-effectiveness ratio of $189,000 per quality-adjusted life-year. Conclusion The increased benefit and cost of oral targeted therapies is projected to enhance CLL survivorship but can impose a substantial financial burden on both patients and payers. More sustainable pricing strategies for targeted therapies are needed to avoid financial toxicity to patients.
Collapse
Affiliation(s)
- Qiushi Chen
- Qiushi Chen and Turgay Ayer, Georgia Institute of Technology; Christopher R. Flowers, Emory University, Atlanta, GA; Qiushi Chen and Jagpreet Chhatwal, Massachusetts General Hospital; Jagpreet Chhatwal, Harvard Medical School, Boston, MA; Nitin Jain, William G. Wierda, Michael J. Keating, and Hagop M. Kantarjian, The University of Texas MD Anderson Cancer Center, Houston, TX; and Susan M. O’Brien, University of California Irvine Medical Center, Orange, CA
| | - Nitin Jain
- Qiushi Chen and Turgay Ayer, Georgia Institute of Technology; Christopher R. Flowers, Emory University, Atlanta, GA; Qiushi Chen and Jagpreet Chhatwal, Massachusetts General Hospital; Jagpreet Chhatwal, Harvard Medical School, Boston, MA; Nitin Jain, William G. Wierda, Michael J. Keating, and Hagop M. Kantarjian, The University of Texas MD Anderson Cancer Center, Houston, TX; and Susan M. O’Brien, University of California Irvine Medical Center, Orange, CA
| | - Turgay Ayer
- Qiushi Chen and Turgay Ayer, Georgia Institute of Technology; Christopher R. Flowers, Emory University, Atlanta, GA; Qiushi Chen and Jagpreet Chhatwal, Massachusetts General Hospital; Jagpreet Chhatwal, Harvard Medical School, Boston, MA; Nitin Jain, William G. Wierda, Michael J. Keating, and Hagop M. Kantarjian, The University of Texas MD Anderson Cancer Center, Houston, TX; and Susan M. O’Brien, University of California Irvine Medical Center, Orange, CA
| | - William G. Wierda
- Qiushi Chen and Turgay Ayer, Georgia Institute of Technology; Christopher R. Flowers, Emory University, Atlanta, GA; Qiushi Chen and Jagpreet Chhatwal, Massachusetts General Hospital; Jagpreet Chhatwal, Harvard Medical School, Boston, MA; Nitin Jain, William G. Wierda, Michael J. Keating, and Hagop M. Kantarjian, The University of Texas MD Anderson Cancer Center, Houston, TX; and Susan M. O’Brien, University of California Irvine Medical Center, Orange, CA
| | - Christopher R. Flowers
- Qiushi Chen and Turgay Ayer, Georgia Institute of Technology; Christopher R. Flowers, Emory University, Atlanta, GA; Qiushi Chen and Jagpreet Chhatwal, Massachusetts General Hospital; Jagpreet Chhatwal, Harvard Medical School, Boston, MA; Nitin Jain, William G. Wierda, Michael J. Keating, and Hagop M. Kantarjian, The University of Texas MD Anderson Cancer Center, Houston, TX; and Susan M. O’Brien, University of California Irvine Medical Center, Orange, CA
| | - Susan M. O’Brien
- Qiushi Chen and Turgay Ayer, Georgia Institute of Technology; Christopher R. Flowers, Emory University, Atlanta, GA; Qiushi Chen and Jagpreet Chhatwal, Massachusetts General Hospital; Jagpreet Chhatwal, Harvard Medical School, Boston, MA; Nitin Jain, William G. Wierda, Michael J. Keating, and Hagop M. Kantarjian, The University of Texas MD Anderson Cancer Center, Houston, TX; and Susan M. O’Brien, University of California Irvine Medical Center, Orange, CA
| | - Michael J. Keating
- Qiushi Chen and Turgay Ayer, Georgia Institute of Technology; Christopher R. Flowers, Emory University, Atlanta, GA; Qiushi Chen and Jagpreet Chhatwal, Massachusetts General Hospital; Jagpreet Chhatwal, Harvard Medical School, Boston, MA; Nitin Jain, William G. Wierda, Michael J. Keating, and Hagop M. Kantarjian, The University of Texas MD Anderson Cancer Center, Houston, TX; and Susan M. O’Brien, University of California Irvine Medical Center, Orange, CA
| | - Hagop M. Kantarjian
- Qiushi Chen and Turgay Ayer, Georgia Institute of Technology; Christopher R. Flowers, Emory University, Atlanta, GA; Qiushi Chen and Jagpreet Chhatwal, Massachusetts General Hospital; Jagpreet Chhatwal, Harvard Medical School, Boston, MA; Nitin Jain, William G. Wierda, Michael J. Keating, and Hagop M. Kantarjian, The University of Texas MD Anderson Cancer Center, Houston, TX; and Susan M. O’Brien, University of California Irvine Medical Center, Orange, CA
| | - Jagpreet Chhatwal
- Qiushi Chen and Turgay Ayer, Georgia Institute of Technology; Christopher R. Flowers, Emory University, Atlanta, GA; Qiushi Chen and Jagpreet Chhatwal, Massachusetts General Hospital; Jagpreet Chhatwal, Harvard Medical School, Boston, MA; Nitin Jain, William G. Wierda, Michael J. Keating, and Hagop M. Kantarjian, The University of Texas MD Anderson Cancer Center, Houston, TX; and Susan M. O’Brien, University of California Irvine Medical Center, Orange, CA
| |
Collapse
|