1
|
Walsh MP, Barclay JA, Begg CS, Xuan J, Johnson NT, Cole JC, Kitching MO. Identifying a Hidden Conglomerate Chiral Pool in the CSD. JACS AU 2022; 2:2235-2250. [PMID: 36311827 PMCID: PMC9597607 DOI: 10.1021/jacsau.2c00394] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Conglomerate crystallization is the spontaneous generation of individually enantioenriched crystals from a nonenantioenriched material. This behavior is responsible for spontaneous resolution and the discovery of molecular chirality by Pasteur. The phenomenon of conglomerate crystallization of chiral organic molecules has been left largely undocumented, with no actively curated list available in the literature. While other crystallographic behaviors can be interrogated by automated searching, conglomerate crystallizations are not identified within the Cambridge Structural Database (CSD) and are therefore not accessible by conventional automated searching. By conducting a manual search of the CSD and literature, a list of over 1800 chiral species capable of conglomerate crystallization was curated by inspection of the racemic synthetic routes described in each publication. The majority of chiral conglomerate crystals are produced and published by synthetic chemists who seldom note and rarely exploit the implications this phenomenon can have on the enantiopurity of their crystalline materials. With their structures revealed, we propose that this list of compounds represents a new chiral pool which is not tied to biological sources of chirality.
Collapse
Affiliation(s)
- Mark P. Walsh
- Department
of Chemistry Durham University, Lower Mount Joy, South Rd, DurhamDH1 3LE, United
Kingdom
| | - James A. Barclay
- Department
of Chemistry Durham University, Lower Mount Joy, South Rd, DurhamDH1 3LE, United
Kingdom
| | - Callum S. Begg
- Department
of Chemistry Durham University, Lower Mount Joy, South Rd, DurhamDH1 3LE, United
Kingdom
| | - Jinyi Xuan
- Department
of Chemistry Durham University, Lower Mount Joy, South Rd, DurhamDH1 3LE, United
Kingdom
| | - Natalie T. Johnson
- Cambridge
Crystallographic Data Centre, 12 Union Road, CambridgeCB2 1EZ, United Kingdom
| | - Jason C. Cole
- Cambridge
Crystallographic Data Centre, 12 Union Road, CambridgeCB2 1EZ, United Kingdom
| | - Matthew O. Kitching
- Department
of Chemistry Durham University, Lower Mount Joy, South Rd, DurhamDH1 3LE, United
Kingdom
| |
Collapse
|
2
|
Tang KG, Kent GT, Erden I, Wu W. cis-β-Bromostyrene derivatives from cinnamic acids via a tandem substitutive bromination-decarboxylation sequence. Tetrahedron Lett 2017; 58:3894-3896. [PMID: 28966405 DOI: 10.1016/j.tetlet.2017.08.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
cis-β-Bromostyrene derivatives were synthesized stereospecifically from cinnamic acids through β-lactone intermediates. The synthetic sequence did not require the purification of the β-lactone intermediates although they were found to be stable and readily purified in most cases.
Collapse
Affiliation(s)
- Khanh G Tang
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Greggory T Kent
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Ihsan Erden
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Weiming Wu
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| |
Collapse
|
3
|
Chanda PB, Boyle KE, Brody DM, Shukla V, Boger DL. Synthesis and evaluation of duocarmycin SA analogs incorporating the methyl 1,2,8,8a-tetrahydrocyclopropa[c]imidazolo[4,5-e]indol-4-one-6-carboxylate (CImI) alkylation subunit. Bioorg Med Chem 2016; 24:4779-4786. [PMID: 27221071 DOI: 10.1016/j.bmc.2016.04.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/18/2016] [Accepted: 04/23/2016] [Indexed: 10/21/2022]
Abstract
The design, synthesis, and evaluation of methyl 1,2,8,8a-tetrahydrocyclopropa[c]imidazolo[4,5-e]indol-4-one-6-carboxylate (CImI) derivatives are detailed representing analogs of duocarmycin SA and yatakemycin containing an imidazole replacement for the fused pyrrole found in the DNA alkylation subunit.
Collapse
Affiliation(s)
- Prem B Chanda
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kristopher E Boyle
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Daniel M Brody
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Vyom Shukla
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Dale L Boger
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
4
|
Condon S, Pichon C, Davi M. Preparation and Synthetic Applications of Trivalent Arylbismuth Compounds as Arylating Reagents. A Review. ORG PREP PROCED INT 2014. [DOI: 10.1080/00304948.2014.884369] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Okano K, Mitsuhashi N, Tokuyama H. Total synthesis of PDE-I and -II by copper-mediated double aryl amination. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.10.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Yasuike S, Nishioka M, Kakusawa N, Kurita J. Simple and efficient copper-catalyzed S-arylation of diaryl disulfides with triarylbismuthanes under aerobic conditions. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.09.071] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Lajiness JP, Boger DL. Asymmetric synthesis of 1,2,9,9a-tetrahydrocyclopropa[c]benzo[e]indol-4-one (CBI). J Org Chem 2011; 76:583-7. [PMID: 21192653 PMCID: PMC3079324 DOI: 10.1021/jo102136w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A short, asymmetric synthesis of the 1,2,9,9a-tetrahydrocyclopropa[c]benzo[e]indol-4-one (CBI) analogue of the CC-1065 and duocarmycin DNA alkylation subunits is described. Treatment of iodo-epoxide 5, prepared by late-stage alkylation of 4 with (S)-glycidal-3-nosylate, with EtMgBr at room temperature directly provides the optically pure alcohol 6 in 87% yield (99% ee) derived from selective metal-halogen exchange and subsequent regioselective intramolecular 6-endo-tet cyclization. The use of MeMgBr or i-PrMgBr also provides the product in high yields (82-87%), but requires larger amounts of the Grignard reagent to effect metal-halogen exchange and cyclization. Direct transannular spirocyclization of 7 following O-debenzylation of 6 provides N-Boc-CBI. This approach represents the most efficient (9-steps, 31% overall) and effective (99% ee) route to the optically pure CBI alkylation subunit yet described.
Collapse
Affiliation(s)
- James P. Lajiness
- Department of Chemistry and The Skaggs Institute for Chemical Biology,
The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla,
California 92037
| | - Dale L. Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology,
The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla,
California 92037
| |
Collapse
|
8
|
Robertson WM, Kastrinsky DB, Hwang I, Boger DL. Synthesis and evaluation of a series of C5'-substituted duocarmycin SA analogs. Bioorg Med Chem Lett 2010; 20:2722-5. [PMID: 20381346 PMCID: PMC2867475 DOI: 10.1016/j.bmcl.2010.03.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 03/17/2010] [Accepted: 03/19/2010] [Indexed: 10/19/2022]
Abstract
The synthesis and evaluation of a key series of analogs of duocarmycin SA, bearing a single substituent at the C5' position of the DNA binding subunit, are described.
Collapse
Affiliation(s)
- William M. Robertson
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - David B. Kastrinsky
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Inkyu Hwang
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Dale L. Boger
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
9
|
Synthesis and evaluation of duocarmycin SA analogs incorporating the methyl 1,2,8,8a-tetrahydrocyclopropa[c]oxazolo[2,3-e]indol-4-one-6-carboxylate (COI) alkylation subunit. Bioorg Med Chem Lett 2010; 20:1854-7. [PMID: 20171886 DOI: 10.1016/j.bmcl.2010.01.145] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 01/26/2010] [Accepted: 01/29/2010] [Indexed: 11/22/2022]
Abstract
The design, synthesis and evaluation of methyl 1,2,8,8a-tetrahydrocyclopropa[c]oxazolo[2,3-e]indol-4-one-6-carboxylate (COI) derivatives are detailed representing analogs of duocarmycin SA containing an oxazole replacement for the fused pyrrole found in the alkylation subunit.
Collapse
|
10
|
Okano K, Mitsuhashi N, Tokuyama H. Total synthesis of PDE-II by copper-mediated double amination. Chem Commun (Camb) 2010; 46:2641-3. [DOI: 10.1039/b926965g] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Kentaro Okano
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | | | | |
Collapse
|
11
|
Synthesis and evaluation of a thio analogue of duocarmycin SA. Bioorg Med Chem Lett 2009; 19:6962-5. [PMID: 19879753 DOI: 10.1016/j.bmcl.2009.10.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/10/2009] [Accepted: 10/13/2009] [Indexed: 11/21/2022]
Abstract
The design, synthesis, and preliminary evaluation of methyl 1,2,8,8a-tetrahydrocyclopropa[c]thieno[3,2-e]indol-4-one-6-carboxylate (CTI) derivatives are detailed representing a single atom change (N to S) embedded in the duocarmycin SA alkylation subunit.
Collapse
|
12
|
MacMillan KS, Boger DL. Fundamental relationships between structure, reactivity, and biological activity for the duocarmycins and CC-1065. J Med Chem 2009; 52:5771-80. [PMID: 19639994 PMCID: PMC2755654 DOI: 10.1021/jm9006214] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Karen S MacMillan
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
13
|
Shimizu A, Mori T, Inoue Y, Yamada S. Combined Experimental and Quantum Chemical Investigation of Chiroptical Properties of Nicotinamide Derivatives with and without Intramolecular Cation−π Interactions. J Phys Chem A 2009; 113:8754-64. [DOI: 10.1021/jp904243w] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Akinori Shimizu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Japan, and Department of Chemistry, Graduate School of Science, Ochanomizu University, Tokyo 112-8610, Japan
| | - Tadashi Mori
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Japan, and Department of Chemistry, Graduate School of Science, Ochanomizu University, Tokyo 112-8610, Japan
| | - Yoshihisa Inoue
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Japan, and Department of Chemistry, Graduate School of Science, Ochanomizu University, Tokyo 112-8610, Japan
| | - Shinji Yamada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Japan, and Department of Chemistry, Graduate School of Science, Ochanomizu University, Tokyo 112-8610, Japan
| |
Collapse
|
14
|
Huang YL, Cheng YH, Hsien KC, Chen YL, Kao CL. Concise bromodecarboxylation of cinnamic acids to β-bromostyrenes. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
|
16
|
Jin W, Trzupek JD, Rayl TJ, Broward MA, Vielhauer GA, Weir SJ, Hwang I, Boger DL. A unique class of duocarmycin and CC-1065 analogues subject to reductive activation. J Am Chem Soc 2007; 129:15391-7. [PMID: 18020335 PMCID: PMC2519901 DOI: 10.1021/ja075398e] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
N-Acyl O-amino phenol derivatives of CBI-TMI and CBI-indole2 are reported as prototypical members of a new class of reductively activated prodrugs of the duocarmycin and CC-1065 class of antitumor agents. The expectation being that hypoxic tumor environments, with their higher reducing capacity, carry an intrinsic higher concentration of "reducing" nucleophiles (e.g., thiols) capable of activating such derivatives (tunable N-O bond cleavage) and increasing their sensitivity to the prodrug treatment. Preliminary studies indicate the prodrugs effectively release the free drug in functional cellular assays for cytotoxic activity approaching or matching the activity of the free drug, yet remain essentially stable and unreactive to in vitro DNA alkylation conditions (<0.1-0.01% free drug release) and pH 7.0 phosphate buffer, and exhibit a robust half-life in human plasma (t1/2 = 3 h). Characterization of a representative O-(acylamino) prodrug in vivo indicates that they approach the potency and exceed the efficacy of the free drug itself (CBI-indole2), indicating that not only is the free drug effectively released from the inactive prodrug but also that they offer additional advantages related to a controlled or targeted release in vivo.
Collapse
Affiliation(s)
- Wei Jin
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, E-mail:
| | - John D. Trzupek
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, E-mail:
| | - Thomas J. Rayl
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, E-mail:
| | - Melinda A. Broward
- Office of Therapeutics, Discovery and Development, University of Kansas Cancer Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160
| | - George A. Vielhauer
- Office of Therapeutics, Discovery and Development, University of Kansas Cancer Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160
| | - Scott J. Weir
- Office of Therapeutics, Discovery and Development, University of Kansas Cancer Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160
| | - Inkyu Hwang
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, E-mail:
| | - Dale L. Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, E-mail:
| |
Collapse
|
17
|
Tichenor MS, MacMillan KS, Stover JS, Wolkenberg SE, Pavani MG, Zanella L, Zaid AN, Spalluto G, Rayl TJ, Hwang I, Baraldi PG, Boger DL. Rational design, synthesis, and evaluation of key analogues of CC-1065 and the duocarmycins. J Am Chem Soc 2007; 129:14092-9. [PMID: 17948994 DOI: 10.1021/ja073989z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design, synthesis, and evaluation of a predictably more potent analogue of CC-1065 entailing the substitution replacement of a single skeleton atom in the alkylation subunit are disclosed and were conducted on the basis of design principles that emerged from a fundamental parabolic relationship between chemical reactivity and cytotoxic potency. Consistent with projections, the 7-methyl-1,2,8,8a-tetrahydrocyclopropa[c]thieno[3,2-e]indol-4-one (MeCTI) alkylation subunit and its isomer 6-methyl-1,2,8,8a-tetrahydrocyclopropa[c]thieno[2,3-e]indol-4-one (iso-MeCTI) were found to be 5-6 times more stable than the MeCPI alkylation subunit found in CC-1065 and slightly more stable than even the DSA alkylation subunit found in duocarmycin SA, placing it at the point of optimally balanced stability and reactivity for this class of antitumor agents. Their incorporation into the key analogues of the natural products provided derivatives that surpassed the potency of MeCPI derivatives (3-10-fold), matching or slightly exceeding the potency of the corresponding DSA derivatives, consistent with projections made on the basis of the parabolic relationship. Notable of these, MeCTI-TMI proved to be as potent as or slightly more potent than the natural product duocarmycin SA (DSA-TMI, IC50 = 5 vs 8 pM), and MeCTI-PDE2 proved to be 3-fold more potent than the natural product CC-1065 (MeCPI-PDE2, IC50 = 7 vs 20 pM). Both exhibited efficiencies of DNA alkylation that correlate with this enhanced potency without impacting the intrinsic selectivity characteristic of this class of antitumor agents.
Collapse
Affiliation(s)
- Mark S Tichenor
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pichierri F, Galasso V. DFT Study of Conformational and Spectroscopic Properties of Yatakemycin. J Phys Chem A 2007; 111:5898-906. [PMID: 17564422 DOI: 10.1021/jp071851x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular structure and conformational preferences of yatakemycin, a novel and exceptionally potent antitumor agent, have been investigated using the density functional theory (DFT) formalism. From the relative stability of various possible conformations, it is found that two conformers are nearly isoenergetic and markedly more stable than the others in the gas phase. To test the effect of polar mediums, the relative energies have been recalculated using the self-consistent reaction field method. Thus, the most stable conformer of the isolated molecule in the gas phase is expected to be still more preferred in solution. The molecular structure of yatakemycin has also been studied by means of its spectroscopic properties. The DFT results satisfactorily reproduce the experimental data and corroborate the reliability of the structural characterization advanced for yatakemycin. The lowest-energy electronic transitions have been interpreted with time-dependent DFT calculations. Notably, the strong IR band observed at 2852 cm(-1) is unambiguously assigned to the O-H stretching of the (C7)O-H...O(C12) fragment, linked by a strong intramolecular H-bond, and may be viewed as a distinctive fingerprint of yatakemycin. Furthermore, the calculated set of NMR chemical shifts of carbonyl carbon atoms and indole protons, the most sensitive to stereoelectronic factors, is consistent with experiment. The effects of both protonation and oxidation on the geometry of the most stable conformer have also been studied. With reference to yatakemycin's DNA alkylation properties, the structure of the yatakemycin-adenine adduct has been theoretically modeled and found to be consistent with experimental spectroscopic evidence.
Collapse
Affiliation(s)
- Fabio Pichierri
- COE Laboratory, Tohoku University, IMRAM, 2-1-1 Katahira, Sendai 980-8577, Japan.
| | | |
Collapse
|