1
|
Hong G, Li W, Mao L, Wang J, Liu T. Synthesis and antibacterial activity evaluation of N (7) position-modified balofloxacins. Front Chem 2022; 10:963442. [PMID: 36059868 PMCID: PMC9437215 DOI: 10.3389/fchem.2022.963442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
A series of small-molecule fluoroquinolones were synthesized, characterized by HRMS and NMR spectroscopy, and screened for their antibacterial activity against MRSA, P. aeruginosa, and E. coli as model G+/G− pathogens. Compounds 2-e, 3-e, and 4-e were more potent than the reference drug balofloxacin against MRSA and P. aeruginosa (MIC values of 0.0195 and 0.039 μg/ml for 2-e, 0.039 and 0.078 μg/ml for each of 3-e and 4-e, respectively). Analysis of the time-dependent antibacterial effect of compound 2-e toward MRSA showed that in the early logarithmic growth phase, bactericidal effects occurred, while in the late logarithmic growth phase, bacterial inhibition occurred because of concentration effects and possibly the development of drug resistance. Compound 2-e exhibited low toxicity toward normal mammalian cell lines 3T3 and L-02 and tumor cell lines A549, H520, BEL-7402, and MCF-7. The compound was not hemolytic. Atomic force microscopy (AFM) revealed that compound 2-e could effectively destroy the membrane and wall of MRSA cells, resulting in the outflow of the cellular contents. Docking studies indicated the good binding profile of these compounds toward DNA gyrase and topoisomerase IV. ADMET’s prediction showed that most of the synthesized compounds followed Lipinski’s “rule of five” and possessed good drug-like properties. Our data suggested that compound 2-e exhibited potent anti-MRSA activity and is worthy of further investigation.
Collapse
|
2
|
Wangsa K, Sarma I, Saikia P, Ananthakrishnan D, Sarma HN, Velmurugan D. Estrogenic Effect of Scoparia dulcis (Linn) Extract in Mice Uterus and In Silico Molecular Docking Studies of Certain Compounds with Human Estrogen Receptors. J Reprod Infertil 2020; 21:247-258. [PMID: 33209741 PMCID: PMC7648873 DOI: 10.18502/jri.v21i4.4329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: Scoparia dulcis Linn. is reported to be used by women of Assam and Arunachal Pradesh in northeast India for treating menstrual disorders. Scoparia dulcis contains compounds that bind with estrogen receptors (ERα and ERβ) evidenced by increased PCNA in endometrial epithelium. Methods: Crude extract was orally administered at the dose of 500 mg/kg body weight/day to the female mice (60–70 days old) in five different groups. Each group containing six females included: (I) cyclic control, (II) cyclic extract treated, (III) Ovariectomized (OVX)-vehicle treated (Control), (IV) OVX-E2 treated (V) OVX- extract treated. Extract was administered for eight days to the cyclic groups and three days to the OVX groups. PCNA was detected immunohistochemically in uterine tissues and signals were analyzed by Image J software (NIH, USA). Compounds were separated by GC-MS and identified using NIST. In silico molecular docking studies was performed with human estrogen receptors (ERα and ERβ). Molecular dynamics (MD) simulations of the best interacting compound was done using gromacs. Results: The results showed cell proliferation in the uterine endometrium evidenced by PCNA. Two phytocompounds, Octadecanoic acid and methyl stearate showed binding affinity with ERα and ERβ. Conclusion: Scoparia dulcis contains compounds having binding affinity with ERα and ERβ. The present study is the first report on compounds from Scoparia dulcis showing binding affinity with human estrogen receptors which may have biological effect on female reproduction.
Collapse
Affiliation(s)
- Khamhee Wangsa
- Department of Zoology, Rajiv Gandhi University, Rono Hills, Itanagar, Arunachal Pradesh, India
| | - Indira Sarma
- Department of Zoology, Rajiv Gandhi University, Rono Hills, Itanagar, Arunachal Pradesh, India
| | - Purbajyoti Saikia
- Department of Zoology, Rajiv Gandhi University, Rono Hills, Itanagar, Arunachal Pradesh, India
| | - Dhanabalan Ananthakrishnan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, India
| | - Hirendra Nath Sarma
- Department of Zoology, Rajiv Gandhi University, Rono Hills, Itanagar, Arunachal Pradesh, India
| | - Devadasan Velmurugan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, India
| |
Collapse
|
3
|
Synthesis and Desymmetrization of meso-2,3-Diphenylpiperazine for Application in Asymmetric Transformations. ChemistrySelect 2017. [DOI: 10.1002/slct.201700488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
4
|
Leclercq G, Jacquot Y. Interactions of isoflavones and other plant derived estrogens with estrogen receptors for prevention and treatment of breast cancer-considerations concerning related efficacy and safety. J Steroid Biochem Mol Biol 2014; 139:237-44. [PMID: 23274118 DOI: 10.1016/j.jsbmb.2012.12.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/07/2012] [Accepted: 12/18/2012] [Indexed: 12/20/2022]
Abstract
Phytoestrogens are natural endocrine disruptors that interfere with estrogenic pathways. They insert directly within the hormone-binding domain of ERα and β, with a preference for the β isoform of which the concentration predominates in the normal mammary epithelium. Since ERβ antagonizes the growth promoting effect of ERα, which is mainly expressed in estrogen-sensitive tumor cells, a potential protective action against breast cancer incidence has been ascribed to phytoestrogens. The fact that Asian women living in far-east countries who consume isoflavone-rich food are less subjected to breast cancer emergence than their congeners in the USA as well as Caucasian women has been advocated to justify such a concept. Overview of data concerning the mechanism of action phytoestrogens reveals that such a view is an oversimplification: Such compounds interfere with a huge panel of regulatory proteins, giving rise to both promoting and antagonizing carcinogenic effects. Moreover, various physiological and pathological factors able to amplify these effects are not often sufficiently taken into account, which increases the difficulty to interpret data. Nevertheless, this overview of data established that chemical structures and concentrations modulate such effects: at the micromolar level, isoflavones activate ERα-mediated transcription and breast cancer cell proliferation while flavones fail to induce any significant promoting effects. At higher doses, both classes of compounds may display an antitumor activity. Reasons for such distinct behaviors as well as their potential impact in therapeutic applications are analyzed here. Ability of isoflavones and flavones to antagonize the association of calmodulin to ERα, which is required for its enhanced transcriptional activity is evoked to justify the antitumor activity ascribed to some flavones. Finally, a suspicion that peculiar classes of phytoestrogens may adopt a SERM-like conformation is addressed in a context of selection and synthesis of compounds with non-equivocal therapeutic value. This article is part of a Special Issue entitled "Phytoestrogens".
Collapse
Affiliation(s)
- Guy Leclercq
- Laboratoire J.-C. Heuson de Cancérologie Mammaire, Université Libre de Bruxelles (U.L.B.), Institut Jules Bordet, 1, rue Héger Bordet, Brussels, B-1000, Belgium.
| | | |
Collapse
|
5
|
Xu X, Yang W, Li Y, Wang Y. Discovery of estrogen receptor modulators: a review of virtual screening and SAR efforts. Expert Opin Drug Discov 2012; 5:21-31. [PMID: 22823969 DOI: 10.1517/17460440903490395] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
IMPORTANCE OF THE FIELD Virtual screening (VS) coupled with structural biology is a significantly important approach to increase the number and enhance the success of projects in lead identification stage of drug discovery process. Recent advances and future directions in estrogen therapy have resulted in great demand for identifying the potential estrogen receptor (ER) modulators with more activity and selectivity. AREAS COVERED IN THIS REVIEW This review presents the current state of the art in VS and structure-activity relationship of ER modulators in recent discovery, and discusses the strengths and weaknesses of the technology. WHAT THE READER WILL GAIN Readers will gain an overview of the current platforms of in silico screening for discovery of ER modulators; they will learn which structural information is significantly correlated with the bioactivity of ER modulators and what novel strategies should be considered for the creation of more effective chemical structures. TAKE HOME MESSAGE With the goal of reducing toxicity and/or improving efficacy, challenges to the successful modeling of endocrine agents are proposed, providing new paradigms for the design of ER inhibitors.
Collapse
Affiliation(s)
- Xue Xu
- Northwest A&F University, Center of Bioinformatics, Yangling, Shaanxi, 712100, China
| | | | | | | |
Collapse
|
6
|
Dadiboyena S. Recent advances in the synthesis of raloxifene: A selective estrogen receptor modulator. Eur J Med Chem 2012; 51:17-34. [DOI: 10.1016/j.ejmech.2012.02.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 11/30/2011] [Accepted: 02/11/2012] [Indexed: 10/28/2022]
|
7
|
Schäfer A, Wellner A, Gust R. Synthesis and Investigations on the Oxidative Degradation of C3/C5-Alkyl-1,2,4-triarylpyrroles as Ligands for the Estrogen Receptor. ChemMedChem 2011; 6:794-803. [DOI: 10.1002/cmdc.201000537] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Indexed: 11/07/2022]
|
8
|
Musa MA, Cooperwood JS, Khan MOF, Rahman T. In-vitro antiproliferative activity of benzopyranone derivatives in comparison with standard chemotherapeutic drugs. Arch Pharm (Weinheim) 2010; 344:102-10. [PMID: 21290426 DOI: 10.1002/ardp.201000207] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 08/21/2010] [Accepted: 08/27/2010] [Indexed: 11/07/2022]
Abstract
The cytotoxic activities of five new benzopyranone derivatives containing basic amino side chain are described. Their cytotoxicities against ER(+) MCF-7 and ER(-) MDA-MB-231 human breast cancer cell lines, and Ishikawa human endometrial cell line were determined after 72 h drug exposure employing CellTiter-Glo assay at concentrations ranging from 0.01-1.0 × 10(5) nM. The antiproliferative activities of these compounds were compared to tamoxifen (TAM), 4-hydroxytamoxifen (4-OHT, active metabolite of tamoxifen), and raloxifene (RAL). In-vitro results indicated that compounds 9, 10, 12, and 13 were more potent than TAM against the human breast cancer cell lines with IC(50) < 20 µM. The in-silico structure-activity relationships of these compounds and their binding mode within the estrogen receptor (ER) binding site using AutoDock vina are discussed.
Collapse
Affiliation(s)
- Musiliyu A Musa
- Florida A&M University, College of Arts and Sciences, Department of Chemistry, Tallahassee, FL, USA.
| | | | | | | |
Collapse
|
9
|
In silico prediction of estrogen receptor subtype binding affinity and selectivity using statistical methods and molecular docking with 2-arylnaphthalenes and 2-arylquinolines. Int J Mol Sci 2010; 11:3434-58. [PMID: 20957105 PMCID: PMC2956105 DOI: 10.3390/ijms11093434] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 08/23/2010] [Accepted: 08/27/2010] [Indexed: 11/24/2022] Open
Abstract
Over the years development of selective estrogen receptor (ER) ligands has been of great concern to researchers involved in the chemistry and pharmacology of anticancer drugs, resulting in numerous synthesized selective ER subtype inhibitors. In this work, a data set of 82 ER ligands with ERα and ERβ inhibitory activities was built, and quantitative structure-activity relationship (QSAR) methods based on the two linear (multiple linear regression, MLR, partial least squares regression, PLSR) and a nonlinear statistical method (Bayesian regularized neural network, BRNN) were applied to investigate the potential relationship of molecular structural features related to the activity and selectivity of these ligands. For ERα and ERβ, the performances of the MLR and PLSR models are superior to the BRNN model, giving more reasonable statistical properties (ERα: for MLR, Rtr2 = 0.72, Qte2 = 0.63; for PLSR, Rtr2 = 0.92, Qte2 = 0.84. ERβ: for MLR, Rtr2 = 0.75, Qte2 = 0.75; for PLSR, Rtr2 = 0.98, Qte2 = 0.80). The MLR method is also more powerful than other two methods for generating the subtype selectivity models, resulting in Rtr2 = 0.74 and Qte2 = 0.80. In addition, the molecular docking method was also used to explore the possible binding modes of the ligands and a relationship between the 3D-binding modes and the 2D-molecular structural features of ligands was further explored. The results show that the binding affinity strength for both ERα and ERβ is more correlated with the atom fragment type, polarity, electronegativites and hydrophobicity. The substitutent in position 8 of the naphthalene or the quinoline plane and the space orientation of these two planes contribute the most to the subtype selectivity on the basis of similar hydrogen bond interactions between binding ligands and both ER subtypes. The QSAR models built together with the docking procedure should be of great advantage for screening and designing ER ligands with improved affinity and subtype selectivity property.
Collapse
|
10
|
Capacity of type I and II ligands to confer to estrogen receptor alpha an appropriate conformation for the recruitment of coactivators containing a LxxLL motif-Relationship with the regulation of receptor level and ERE-dependent transcription in MCF-7 cells. Biochem Pharmacol 2009; 79:746-57. [PMID: 19879249 DOI: 10.1016/j.bcp.2009.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 10/19/2009] [Accepted: 10/19/2009] [Indexed: 01/15/2023]
Abstract
Estrogen receptor alpha (ERalpha) belongs to the superfamily of nuclear receptors and as such acts as a ligand-modulated transcription factor. Ligands elicit in ERalpha conformational changes leading to the recruitment of coactivators required for the transactivation of target genes via cognate response elements. In many cells, activated ERalpha also undergoes downregulation by proteolysis mediated by the ubiquitin/proteasome system. Although these various molecular processes have been well characterized, little is known as to which extent they are interrelated. In the present study, we used a panel of type I (estradiol derivatives and "linear", non-steroidal ligands) and type II ("angular" ligands) estrogens, in order to identify possible relationships between ligand binding affinity, recruitment of LxxLL-containing coactivators, ERalpha downregulation in MCF-7 cells and related transactivation activity of ligand-bound ERalpha. For type I estrogens, there was a clear-cut relationship between ligand binding affinity, hydrophobicity around C-11 of estradiol and ability of ERalpha to associate with LxxLL motifs, both in cell-free condition and in vivo (MCF-7 cells). Moreover, LxxLL motif recruitment by ERalpha seemed to be a prerequisite for the downregulation of the receptor. By contrast, type II ligands, as well as estradiol derivatives bearing a bulky side chain at 11beta, had much less tendency to promote ERalpha-LxxLL interaction or even behaved as antagonists in this respect, in agreement with the well known partial estrogenicity/antiestrogenicity of some of these compounds. Interestingly, some type II ligands which antagonized LxxLL motif recruitment were nonetheless able to enhance ERalpha-mediated gene transactivation.
Collapse
|
11
|
Abstract
This review emphasizes the relationship of breast cancer, estrogen receptor and ligands, especially the centrality of the estrogen receptor, which mediates on one hand the hormone-induced gene transcription and on the other hand the anti-estrogen action against breast cancer. The characterization of the estrogen receptor ligand-binding domain co-crystallized with agonists or antagonists provided a molecular basis to gain an insight into the regulation of estrogen receptor and, thereby, to describe the mechanism of the hormone therapy in treating breast cancer.
Collapse
Affiliation(s)
- Zhenlin Bai
- Institute of Pharmacy, Freie Universität Berlin, Knigin-Luise-Strasse 2 + 4, Berlin, Germany
| | | |
Collapse
|
12
|
Schlenk M, Ott I, Gust R. Cobalt-alkyne complexes with imidazoline ligands as estrogenic carriers: synthesis and pharmacological investigations. J Med Chem 2009; 51:7318-22. [PMID: 18942824 DOI: 10.1021/jm8008376] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We synthesized (4R,5S)/(4S,5R)-N-propargyl-4,5-bis(2-chloro-4-methoxy/hydroxyphenyl)-2-imidazolines (1 and 2) as estrogenic carriers for the dicobalthexacarbonyl fragment. The OH-substituted ligand 2 and its related complex 2-Co(2)(CO)(6) showed estrogenic activity in a transcriptional assay in ERalpha-containing MCF-7-2a cells. The cytotoxicity against breast cancer cell lines was more pronounced for the related O-methyl derivative 1-Co(2)(CO)(6). Further pharmacological investigations were performed on the cellular uptake into MCF-7 and MDA-MB-231 cells, the ability of binding to DNA, and the inactivation by HSA.
Collapse
Affiliation(s)
- Miriam Schlenk
- Institute of Pharmacy, Freie Universitat Berlin, Konigin Luise Strasse 2 + 4, 14195 Berlin, Germany
| | | | | |
Collapse
|
13
|
Winuthayanon W, Suksen K, Boonchird C, Chuncharunee A, Ponglikitmongkol M, Suksamrarn A, Piyachaturawat P. Estrogenic activity of diarylheptanoids from Curcuma comosa Roxb. Requires metabolic activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:840-845. [PMID: 19143535 DOI: 10.1021/jf802702c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Curcuma comosa Roxb. has traditionally been used as a dietary supplement for health promotion in peri- and postmenopausal women in Thailand. We investigated the estrogenic activity of 7 naturally occurring diarylheptanoids from the extracts of C. comosa both in vitro and in vivo. A yeast recombinant system containing human estrogen receptor alpha, coactivator TIF2 and a beta-galactosidase reporter gene was used to determine estrogenic activity of diarylheptanoids metabolically activated with rat liver S9-fraction prior to the assay. The most potent compound was (3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol, with a relative potency of 4% compared to 17beta-estradiol. The metabolic activation of diarylheptanoids markedly enhanced their efficiency. The chemical structure required for estrogenic activity of diarylheptanoids was the presence of a keto group at C3 and absence of hydroxyl moiety in ring B. Only diarylheptanoids showing full estrogenic efficiency in vitro were able to elicit uterotrophic activity of in immature ovariectomized rat. This is the first evidence for in vivo estrogenic activity of diarylheptanoids from C. comosa. This novel class of natural phytoestrogens has the potential to be developed for use as dietary supplement in the treatment of menopausal symptoms.
Collapse
Affiliation(s)
- Wipawee Winuthayanon
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Vairaprakash P, Periasamy M. New chiral titanium complexes for enantioselective reductive cyclizations of diimines to trans-2,3-diarylpiperazines. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2007.12.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Martín-Santamaría S, Rodríguez JJ, de Pascual-Teresa S, Gordon S, Bengtsson M, Garrido-Laguna I, Rubio-Viqueira B, López-Casas PP, Hidalgo M, de Pascual-Teresa B, Ramos A. New scaffolds for the design of selective estrogen receptor modulators. Org Biomol Chem 2008; 6:3486-96. [DOI: 10.1039/b806918b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Keshri G, Oberoi RM, Lakshmi V, Pandey K, Singh MM. Contraceptive and hormonal properties of the stem bark of Dysoxylum binectariferum in rat and docking analysis of rohitukine, the alkaloid isolated from active chloroform soluble fraction. Contraception 2007; 76:400-7. [PMID: 17963866 DOI: 10.1016/j.contraception.2007.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 07/20/2007] [Accepted: 07/23/2007] [Indexed: 10/22/2022]
|
18
|
Laïos I, Cleeren A, Leclercq G, Nonclercq D, Laurent G, Schlenk M, Wellner A, Gust R. Effects of (R,S)/(S,R)-4,5-bis(2-chloro-4-hydroxyphenyl)-2-imidazolines and (R,S)/(S,R)-2,3-bis(2-chloro-4-hydroxyphenyl)piperazines on estrogen receptor alpha level and transcriptional activity in MCF-7 cells. Biochem Pharmacol 2007; 74:1029-38. [PMID: 17706611 DOI: 10.1016/j.bcp.2007.06.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 06/29/2007] [Accepted: 06/29/2007] [Indexed: 11/17/2022]
Abstract
4,5-Diaryl-2-imidazolines (Im(s)) and 2,3-diarylpiperazines (Pip(s)) belong to the type II class of estrogens. These compounds enhance ERalpha-mediated transcription of ERE-driven reporter genes in MCF-7 cells but do not compete with [(3)H]estradiol (E(2)) for receptor binding, because of distinct anchoring modes. The present study examined whether the estrogenic action of Im(s) and Pip(s) is associated with a down regulation of ERalpha, as reported for conventional agonists. Im and Pip derivatives displaying a large spectrum of activities in three distinct ERE-dependent transactivation systems were selected for that purpose. ERalpha immunostaining as well as Western blotting analysis revealed that both classes of compounds down regulated ERalpha with an efficiency closely related to their transactivation potency. MG-132 abrogated this down regulation, pointing to a proteasomal degradation process. Im(s) and Pip(s) with strong transactivation potency also altered [(3)H]E(2) binding parameters, leading to a progressive decrease of cellular estrogen binding capacity. This property occurred largely before ERalpha down regulation and persisted even in presence of MG-132, indicating that it did not result from ERalpha breakdown but rather from a conformational change of the receptor. The additional finding that the most active agonist tested in this study enhanced the capacity of a purified ERalpha recombinant to recruit LxxLL co-activators, while its inactive counterpart failed to do so confirmed this hypothesis. Altogether, our data indicate that the association of Im(s) and Pip(s) with ERalpha elicits similar responses to conventional agonists, even if they interact with distinct residues of the binding pocket.
Collapse
Affiliation(s)
- Ioanna Laïos
- Laboratoire J.-C. Heuson de Cancérologie Mammaire, Université Libre de Bruxelles, Institut Jules Bordet, Rue Héger-Bordet, 1 - 1000 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Jacquot Y, Laïos I, Cleeren A, Nonclercq D, Bermont L, Refouvelet B, Boubekeur K, Xicluna A, Leclercq G, Laurent G. Synthesis, structure, and estrogenic activity of 4-amino-3-(2-methylbenzyl)coumarins on human breast carcinoma cells. Bioorg Med Chem 2007; 15:2269-82. [PMID: 17275315 DOI: 10.1016/j.bmc.2007.01.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 01/09/2007] [Accepted: 01/17/2007] [Indexed: 11/28/2022]
Abstract
A number of coumarins exhibit interesting pharmacological activities and are therefore of therapeutic use. We report here the synthesis and the structural analysis of new N-substituted 4-amino-3-(2-methylbenzyl)coumarins (compounds 8a-8e) that present structural analogies with estrothiazine and 11- or 7-substituted 17beta-estradiol. These derivatives were tested with respect to estrogenic activity on the estrogen receptor positive (ER+) human MCF-7 breast cancer cell line. Two of the reported compounds (8a and 8b) stimulated specifically the proliferation of MCF-7 cells, but not that of estrogen receptor negative (ER-) human MDA-MB-231 breast cancer cells, suggesting that their mitogenic activity is mediated by ER. Accordingly, the stimulating effect of 8a and 8b was suppressed by the pure antiestrogen fulvestrant. Besides, 8a and 8b induced ER down-regulation similar to that produced by classical ER agonists or pure antagonists. The effects of the compounds under study on ER-mediated transcription were assessed on (ER+) MVLN cells, that is, MCF-7 cells stably transfected with a pVit-tk-Luc reporter plasmid. Derivatives 8a and 8b, and surprisingly compound 8c, enhanced ER-mediated gene transactivation in that model. Finally, no coumarin was able to compete with tritiated 17beta-estradiol ([(3)H]E(2)) for ER binding, suggesting unconventional interactions with the receptor, such as interactions with the second binding pocket or with the coactivator-binding region. To conclude, observations performed in this study on compound 8c reveal that estrogenic activity can be dissociated from enhancement of cell proliferation. Furthermore, ERE-driven transactivation of transcription seems to be a condition necessary, but not sufficient, for estrogen-induced stimulation of cell growth.
Collapse
Affiliation(s)
- Yves Jacquot
- Equipe de Chimie Thérapeutique, Faculté de Médecine et de Pharmacie, Place Saint-Jacques, 25030 Besançon, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Trafalis DTP, Geromichalos GD, Koukoulitsa C, Papageorgiou A, Karamanakos P, Camoutsis C. Lactandrate: a D-homo-aza-androsterone alkylator in the treatment of breast cancer. Breast Cancer Res Treat 2005; 97:17-31. [PMID: 16319980 DOI: 10.1007/s10549-005-9083-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Accepted: 09/16/2005] [Indexed: 10/25/2022]
Abstract
The sensitivity of breast neoplasms to hormonal control provides the basis of novel investigational treatments with steroidal alkylators. An androsterone D-lactam steroidal ester, the 3beta-hydroxy-13alpha-amino-13,17-seco- 5alpha-androstan-17-oic-13,17-lactam, p-bis(2-chloroethyl)amino phenyl acetate (lactandrate) was synthesized and tested for antitumor activity against six human breast cancer cell lines in vitro and against two murine and one xenograft mammary tumors in vivo. A docking study on the binding interactions of lactandrate with the ligand-binding domain (LBD) of estrogen receptor-alpha (ERalpha) was inquired. In vitro testing of lactandrate cytostatic and cytotoxic activity was performed on T47D, MCF7, MDA-MB-231, BT-549, Hs578T, MDA-MB-435 breast adenocarcinoma human cell lines. In vivo testing was performed on two murine mammary tumors, the MXT tumor and CD8F1 adenocarcinoma, as well as on human mammary carcinoma MX-1 xenograft. Molecular modeling techniques were adopted to predict a possible location and interaction mode of the molecule into LBD. Lactandrate induced significantly high antitumor effect against all tested in vitro and in vivo models. The cell lines with positive ER expression found to be significantly more sensitive to lactandrate. Moreover, lactandrate found to be positioned inside the binding cavity with its steroidal moiety, whilst the alkylating moiety protrudes out of receptor's pocket. Lactandrate produced important anticancer activity on breast cancer in vitro and in vivo. Some correlation between ER and lactandrate effect was demonstrated. Docking studies provide the basis for the structure-based design of improved steroidal alkylating esters for the treatment of estrogen-related cancers.
Collapse
Affiliation(s)
- Dimitrios T P Trafalis
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy, University of Patras, Patras, Greece.
| | | | | | | | | | | |
Collapse
|