1
|
Zhang M, Zhang S, Wang L, Zhang Z, Hu Q, Liu D. Key Factors for Improving Predictive Accuracy and Avoiding Overparameterization of the PBPK Absorption Model in Food Effect Studies of Weakly Basic Water-Insoluble Compounds in Immediate Release Formulations. Pharmaceutics 2024; 16:1324. [PMID: 39458653 PMCID: PMC11511194 DOI: 10.3390/pharmaceutics16101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Physiologically based pharmacokinetic (PBPK) absorption models are instrumental for assessing drug absorption prior to clinical food effect studies, though discrepancies in predictive and actual outcomes are observed. This study focused on immediate release formulations of weakly basic water-insoluble compounds, namely rivaroxaban, ticagrelor, and PB-201, to investigate factors that could improve the predictive accuracy of PBPK models regarding food effects. Methods: Comprehensive in vitro experimental results provided the basis for the development of mechanistic absorption models, which were then combined with mechanistic disposition models to predict the systemic exposure of the model drugs in both fasted and fed states. Results: The developed PBPK models showed moderate to high predictive accuracy for food effects in Caucasian populations. For the Chinese population, the ticagrelor model's initial overestimation of fed-state absorption was addressed by updating the permeability parameters from Caco-2 cell assays to those derived from parallel artificial membrane permeability assays in FaSSIF and FeSSIF media. This refinement was also applied to the rivaroxaban and ticagrelor models, leading to a more accurate representation of absorption in Caucasians. Conclusions: This study highlights the importance of apparent permeability in enhancing the predictive accuracy of PBPK absorption models for weakly basic water-insoluble compounds. Furthermore, the precipitation of PB-201 in the two-stage transfer experiments suggests that precipitation may not be a universal phenomenon for such compounds in vivo. Consequently, the precipitation rate constant, a theoretically essential parameter, should be determined based on experimental evidence to avoid overparameterization and ensure robust predictive accuracy of PBPK models.
Collapse
Affiliation(s)
- Miao Zhang
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China;
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Shudong Zhang
- NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Beijing Institute for Drug Control, Beijing 102206, China
| | - Lin Wang
- NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Beijing Institute for Drug Control, Beijing 102206, China
| | - Zhe Zhang
- NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Beijing Institute for Drug Control, Beijing 102206, China
| | - Qin Hu
- NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Beijing Institute for Drug Control, Beijing 102206, China
| | - Dongyang Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China;
| |
Collapse
|
2
|
Tan X, Liu Q, Fang Y, Zhu Y, Chen F, Zeng W, Ouyang D, Dong J. Predicting Peptide Permeability Across Diverse Barriers: A Systematic Investigation. Mol Pharm 2024; 21:4116-4127. [PMID: 39031123 DOI: 10.1021/acs.molpharmaceut.4c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Peptide-based therapeutics hold immense promise for the treatment of various diseases. However, their effectiveness is often hampered by poor cell membrane permeability, hindering targeted intracellular delivery and oral drug development. This study addressed this challenge by introducing a novel graph neural network (GNN) framework and advanced machine learning algorithms to build predictive models for peptide permeability. Our models offer systematic evaluation across diverse peptides (natural, modified, linear and cyclic) and cell lines [Caco-2, Ralph Russ canine kidney (RRCK) and parallel artificial membrane permeability assay (PAMPA)]. The predictive models for linear and cyclic peptides in Caco-2 and RRCK cell lines were constructed for the first time, with an impressive coefficient of determination (R2) of 0.708, 0.484, 0.553, and 0.528 in the test set, respectively. Notably, the GNN framework behaved better in permeability prediction with larger data sets and improved the accuracy of cyclic peptide prediction in the PAMPA cell line. The R2 increased by about 0.32 compared with the reported models. Furthermore, the important molecular structural features that contribute to good permeability were interpreted; the influence of cell lines, peptide modification, and cyclization on permeability were successfully revealed. To facilitate broader use, we deployed these models on the user-friendly KNIME platform (https://github.com/ifyoungnet/PharmPapp). This work provides a rapid and reliable strategy for systematically assessing peptide permeability, aiding researchers in drug delivery optimization, peptide preselection during drug discovery, and potentially the design of targeted peptide-based materials.
Collapse
Affiliation(s)
- Xiaorong Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, China
| | - Qianhui Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, China
| | - Yanpeng Fang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, China
| | - Yingli Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, China
| | - Defang Ouyang
- Institute of Chinese Medical Sciences (ICMS), State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau 999078, China
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, China
| |
Collapse
|
3
|
Odehnalová K, Balouch M, Storchmannová K, Petrová E, Konefał M, Zadražil A, Berka K, Brus J, Štěpánek F. Liposomal Copermeation Assay Reveals Unexpected Membrane Interactions of Commonly Prescribed Drugs. Mol Pharm 2024; 21:2673-2683. [PMID: 38682796 DOI: 10.1021/acs.molpharmaceut.3c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The permeation of small molecules across biological membranes is a crucial process that lies at the heart of life. Permeation is involved not only in the maintenance of homeostasis at the cell level but also in the absorption and biodistribution of pharmacologically active substances throughout the human body. Membranes are formed by phospholipid bilayers that represent an energy barrier for permeating molecules. Crossing this energy barrier is assumed to be a singular event, and permeation has traditionally been described as a first-order kinetic process, proportional only to the concentration gradient of the permeating substance. For a given membrane composition, permeability was believed to be a unique property dependent only on the permeating molecule itself. We provide experimental evidence that this long-held view might not be entirely correct. Liposomes were used in copermeation experiments with a fluorescent probe, where simultaneous permeation of two substances occurred over a single phospholipid bilayer. Using an assay of six commonly prescribed drugs, we have found that the presence of a copermeant can either enhance or suppress the permeation rate of the probe molecule, often more than 2-fold in each direction. This can have significant consequences for the pharmacokinetics and bioavailability of commonly prescribed drugs when used in combination and provide new insight into so-far unexplained drug-drug interactions as well as changing the perspective on how new drug candidates are evaluated and tested.
Collapse
Affiliation(s)
- Klára Odehnalová
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic
| | - Martin Balouch
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic
- Zentiva, k.s., U Kabelovny 130, Prague 10 102 37, Czech Republic
| | - Kateřina Storchmannová
- Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, Olomouc 771 46, Czech Republic
| | - Eliška Petrová
- Department of Organic Technology, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic
| | - Magdalena Konefał
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague 6 162 00, Czech Republic
| | - Aleš Zadražil
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic
| | - Karel Berka
- Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, Olomouc 771 46, Czech Republic
| | - Jiří Brus
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague 6 162 00, Czech Republic
| | - František Štěpánek
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic
| |
Collapse
|
4
|
Wang S, Zhang Z, Li D, Illa SE, Li L. In silico model-based exploration of the applicability of parallel artificial membrane permeability assay (PAMPA) to screen chemicals of environmental concern. ENVIRONMENT INTERNATIONAL 2022; 170:107589. [PMID: 36274493 DOI: 10.1016/j.envint.2022.107589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Parallel Artificial Membrane Permeability Assay (PAMPA) is an in vitro laboratory method for screening the transmembrane permeability of chemicals. Stemming from medicinal chemistry, PAMPA has the potential for use in the cost-effective high-throughput evaluation of chemicals of environmental concern. However, many chemicals of environmental concern differ substantially from pharmaceuticals in hydrophobicity and volatility. Here, we develop an in silico mass balance model to explore the impacts of chemical properties on chemical mass transfer in PAMPA and PAMPA's applicability to hydrophobic or volatile chemicals of environmental concern. The model's performance is evaluated by agreement between predicted and measured permeabilities of 1383 chemicals. The model predicts that the PAMPA measured permeability can be highly uncertain for hydrophobic chemicals because of considerable retention by the artificial membrane and for volatile chemicals because of substantial volatilization to the headspace. Notably, the permeabilities of hydrophobic chemicals are remarkably sensitive to specific experimental conditions, for example, the frequency of stirring and incubation time, challenging the comparison between measurements under different conditions. For hydrophobic chemicals, the PAMPA measured permeability may largely indicate the permeability of the unstirred water layer over the membrane, instead of the "intrinsic" permeability of the membrane, and therefore, may not be of interest for environmental exposure and risk assessments. The model also predicts that the time for mass transfer of highly hydrophobic chemicals to reach the steady state likely exceeds the incubation time, which violates the steady-state assumption used in calculating permeability from measured concentrations. Overall, our theoretical analysis underscores the importance to consider chemical properties when applying the current design of PAMPA to chemicals of environmental concern.
Collapse
Affiliation(s)
- Shenghong Wang
- School of Public Health, University of Nevada Reno, Reno, Nevada, 89557-274, USA
| | - Zhizhen Zhang
- School of Public Health, University of Nevada Reno, Reno, Nevada, 89557-274, USA
| | - Dingsheng Li
- School of Public Health, University of Nevada Reno, Reno, Nevada, 89557-274, USA
| | - Siena Elizabeth Illa
- School of Public Health, University of Nevada Reno, Reno, Nevada, 89557-274, USA
| | - Li Li
- School of Public Health, University of Nevada Reno, Reno, Nevada, 89557-274, USA.
| |
Collapse
|
5
|
Jeong YS, Kim MS, Chung SJ. Determination of the Number of Tissue Groups of Kinetically Distinct Transit Time in Whole-Body Physiologically Based Pharmacokinetic (PBPK) Models II: Practical Application of Tissue Lumping Theories for Pharmacokinetics of Various Compounds. AAPS J 2022; 24:91. [PMID: 36002779 DOI: 10.1208/s12248-022-00733-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/05/2022] [Indexed: 12/24/2022] Open
Abstract
In our companion paper, we described the theoretical basis for tissue lumping in whole-body physiologically based pharmacokinetic (WB-PBPK) models and found that Kdet, a coefficient for determining the number of tissue groups of distinct transit time in WB-PBPK models, was related to the fractional change in the terminal slope (FCT) when tissues were progressively lumped from the longest transit time to shorter ones. This study was conducted to identify the practical threshold of Kdet by applying the lumping theory to plasma/blood concentration-time relationships of 113 model compounds collected from the literature. We found that drugs having Kdet < 0.3 were associated with FCT < 0.1 even when all peripheral tissues were lumped, resulting in comparable plasma concentration-time profiles between one-tissue minimal PBPK (mPBPK) and WB-PBPK models. For drugs with Kdet ≥ 1, WB-PBPK profiles appeared similar with two-tissue mPBPK models by applying the rule of FCT < 0.1 for lumping slowly equilibrating tissues. The two-tissue mPBPK model also appeared appropriate in terms of concentration-time profiles for drugs with 0.3 ≤ Kdet < 1, although, some compounds (15.9% of the total cases), but not all, in this range showed a slight (maximum of 18.9% of the total AUC) deviation from WB-PBPK models, indicating that the two-tissue model, with caution, could still be used for those cases. Comparison of kinetic parameters between traditional (model-fitting) and current (theoretical calculation) mPBPK analyses revealed their significant correlations. Collectively, these observations suggest that the number of tissue groups could be determined based on the Kdet/FCT criteria, and plasma concentration-time profiles from WB-PBPK could be calculated using equations significantly less complex.
Collapse
Affiliation(s)
- Yoo-Seong Jeong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Min-Soo Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Suk-Jae Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
6
|
Shuklinova O, Dorożyński P, Kulinowski P, Polak S. Quality Control Dissolution Data Is Biopredictive for a Modified Release Ropinirole Formulation: Virtual Experiment with the Use of Re-Developed and Verified PBPK Model. Pharmaceutics 2022; 14:pharmaceutics14071514. [PMID: 35890408 PMCID: PMC9320685 DOI: 10.3390/pharmaceutics14071514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Physiologically based pharmacokinetic and absorption modeling are being used by industry and regulatory bodies to address various scientifically challenging questions. While there is high confidence in the prediction of exposure for the BCS class I drugs administered as immediate-release formulations, in the case of prolonged-release formulations, special attention should be given to the input dissolution data. Our goal was to develop and verify a PBPK model for a BCS class I compound, ropinirole, and check the biopredictiveness of the dissolution data for the prolonged-release formulation administered by Parkinson’s patients. The model was built based on quality control dissolution data reported in the certificates of analysis and verified with the use of data derived from five clinical trial reports. The simulated pharmacokinetic parameters being within a two-fold range of the observed values confirmed acceptable model performance, in vivo relevance of the in vitro dissolution profiles, and indirectly indicated ropinirole stable release from the formulation in the patients’ gastro-intestinal tract. Ropinirole PBPK model will be used for exploring potential clinical scenarios while developing a new formulation.
Collapse
Affiliation(s)
- Olha Shuklinova
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688 Kraków, Poland;
- Correspondence:
| | - Przemysław Dorożyński
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warszawa, Poland;
| | - Piotr Kulinowski
- Institute of Technology, Pedagogical University of Krakow, Podchorążych 2, 30-084 Kraków, Poland;
| | - Sebastian Polak
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688 Kraków, Poland;
- Simcyp Division, Certara UK Limited, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK
| |
Collapse
|
7
|
Ezuruike U, Zhang M, Pansari A, De Sousa Mendes M, Pan X, Neuhoff S, Gardner I. Guide to development of compound files for PBPK modeling in the Simcyp population-based simulator. CPT Pharmacometrics Syst Pharmacol 2022; 11:805-821. [PMID: 35344639 PMCID: PMC9286711 DOI: 10.1002/psp4.12791] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/08/2022] [Accepted: 03/18/2022] [Indexed: 01/19/2023] Open
Abstract
The Simcyp Simulator is a software platform for population physiologically‐based pharmacokinetic (PBPK) modeling and simulation. It links in vitro data to in vivo absorption, distribution, metabolism, excretion and pharmacokinetic/pharmacodynamic outcomes to explore clinical scenarios and support drug development decisions, including regulatory submissions and drug labels. This tutorial describes the different input parameters required, as well as the considerations needed when developing a PBPK model within the Simulator, for a small molecule intended for oral administration. A case study showing the development and application of a PBPK model for ondansetron is herein used to aid the understanding of different PBPK model development concepts.
Collapse
Affiliation(s)
| | - Mian Zhang
- Simcyp Division, Certara UK Limited, Sheffield, UK
| | | | | | - Xian Pan
- Simcyp Division, Certara UK Limited, Sheffield, UK
| | | | - Iain Gardner
- Simcyp Division, Certara UK Limited, Sheffield, UK
| |
Collapse
|
8
|
Zhang ZD, Tao Q, Qin Z, Liu XW, Li SH, Bai LX, Yang YJ, Li JY. Uptake and Transport of Naringenin and Its Antioxidant Effects in Human Intestinal Epithelial Caco-2 Cells. Front Nutr 2022; 9:894117. [PMID: 35685871 PMCID: PMC9173001 DOI: 10.3389/fnut.2022.894117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022] Open
Abstract
Naringenin, a flavanone, has been reported for a wide range of pharmacological activities. However, there are few reports on the absorption, transport and antioxidant effects of naringenin. The study was to explore the uptake, transport and antioxidant effects of naringenin in vitro. Cell transmembrane resistance, lucifer yellow transmission rate, and alkaline phosphatase activity were used to evaluate the successful construction of cell model. The results showed that the absorption and transport of naringenin by Caco-2 cells were time- and concentration-dependent. Different temperatures (37 and 4°C) had a significant effect on the uptake and transport of naringenin. Verapamil, potent inhibitor of P-glycoprotein, significantly inhibit naringenin transport in Caco-2 cells. The results revealed that naringenin was a moderately absorbed biological macromolecule and can penetrate Caco-2 cells, mainly mediated by the active transport pathway involved in P-glycoprotein. At the same time, naringenin pretreatment could significantly increase the viability of H2O2-induced Caco-2 cells. Twenty four differential metabolites were identified based on cellular metabolite analysis, mainly including alanine, aspartate and glutamate metabolism, histidine metabolism, taurine and hypotaurine metabolism, pyruvate metabolism, purine metabolism, arginine biosynthesis, citrate cycle, riboflavin metabolism, and D-glutamine and D-glutamate metabolism. We concluded that the transport of naringenin by Caco-2 cells is mainly involved in active transport mediated by P-glycoprotein and naringenin may play an important role in oxidative stress-induced intestinal diseases.
Collapse
Affiliation(s)
- Zhen-Dong Zhang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Qi Tao
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Shi-Hong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Li-Xia Bai
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| |
Collapse
|
9
|
Tao Q, Qin Z, Liu XW, Zhang ZD, Li SH, Bai LX, Li JY, Yang YJ. Investigation of the Uptake and Transport of Aspirin Eugenol Ester in the Caco-2 Cell Model. Front Pharmacol 2022; 13:887598. [PMID: 35600888 PMCID: PMC9114500 DOI: 10.3389/fphar.2022.887598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Aspirin eugenol ester (AEE) is a novel medicinal compound synthesized by esterification of aspirin with eugenol using the prodrug principle. AEE has the pharmacological activities of being anti-inflammatory, antipyretic, analgesic, anti-cardiovascular diseases, and anti-oxidative stress However, its oral bioavailability is poor, and its intestinal absorption and transport characteristics are still unknown. Objective: The purpose of this study was to investigate the uptake and transport mechanisms of AEE in Caco-2 cells. Methods: The effects of time, concentration, and temperature on the transport and uptake of AEE were studied. Results: The results showed that a higher concentration of salicylic acid (SA) was detected in the supernatant of cell lysates and cell culture medium, while AEE was not detected. Therefore, the content change of AEE was expressed as the content change of its metabolite SA. In the uptake experiment, when the factors of time, concentration, and temperature were examined, the uptake of SA reached the maximum level within 30 min, and there was concentration dependence. In addition, low temperature (4°C) could significantly reduce the uptake of SA in Caco-2 cells. In the transport experiment, under the consideration of time, concentration, and temperature, the transepithelial transport of SA from AP-BL and BL-AP sides was time-dependent. The amount of SA transported in Caco-2 cells increased with the increase of concentration, but the transmembrane transport rate had no correlation with the concentration. This phenomenon may be due to the saturation phenomenon of high concentration. The efflux ratio (ER) was less than 1, which indicated that their intestinal transport mechanism was passive transport. Moreover, the temperature had a significant effect on the transport of AEE. Conclusion: In summary, intestinal absorption of AEE through Caco-2 cell monolayers was related to passive transport. The uptake and transport of AEE were concentration-dependent, and temperature significantly affected their uptake and transport. The absorption and transport characteristics of AEE may contribute to the exploration of mechanisms of absorption and transport of chemosynthetic drugs in vitro.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ya-Jun Yang
- *Correspondence: Jian-Yong Li, ; Ya-Jun Yang,
| |
Collapse
|
10
|
Bae IY, Choi W, Oh SJ, Kim C, Kim S. TIMP-1-expressing breast tumor spheroids for the evaluation of drug penetration and efficacy. Bioeng Transl Med 2022; 7:e10286. [PMID: 35600659 PMCID: PMC9115709 DOI: 10.1002/btm2.10286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/22/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022] Open
Abstract
Abundance of stromal cells and extracellular matrix (ECM) is observed in breast cancer, acting as a barrier for drug penetration and presenting a key issue for developing efficient therapeutics. In this study, we aimed to develop a three-dimensional (3D) multicellular tumor model comprising cancer and stromal cells that could effectively mimic the drug resistance properties of breast cancer. Three different types of spheroid models were designed by co-culturing breast cancer cells (MDA-MB-231) with three different types of stromal cells: human adipose-derived stromal cells (hASCs), human bone marrow stromal cells, or human dermal fibroblasts. Compared with other models, in the hASC co-culture model, tissue inhibitor of metalloproteinases-1 (TIMP-1) was highly expressed and the activity of matrix metalloproteinases was decreased, resulting in a higher ECM deposition on the spheroid surfaces. This spheroid model showed less drug penetration and treatment efficacy than the other models. TIMP-1 silencing in hASCs reduced ECM protein expression and increased drug penetration and vulnerability. A quantitative structure-activity relationship study using multiple linear regression drew linear relationships between the chemical properties of drugs and experimentally determined permeability values. Drugs that did not match the drug-likeness rules exhibited lower permeability in the 3D tumor model. Taken together, our findings indicate that this 3D multicellular tumor model may be used as a reliable platform for efficiently screening therapeutics agents for solid tumors.
Collapse
Affiliation(s)
- In Yeong Bae
- Center for Biomaterials, Biomedical Research InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
| | - Wooshik Choi
- Center for Biomaterials, Biomedical Research InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
| | - Seung Ja Oh
- Center for Biomaterials, Biomedical Research InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Department of Biomedical Engineering, KIST schoolKorea University of Science and TechnologySeoulRepublic of Korea
| | - Chansoo Kim
- AI Laboratory, Computational Science Center and ESRIKorea Institute of Science and TechnologySeoulRepublic of Korea
| | - Sang‐Heon Kim
- Center for Biomaterials, Biomedical Research InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Department of Biomedical Engineering, KIST schoolKorea University of Science and TechnologySeoulRepublic of Korea
| |
Collapse
|
11
|
A physiologically based pharmacokinetic (PBPK) model exploring the blood-milk barrier in lactating species - A case study with oxytetracycline administered to dairy cows and goats. Food Chem Toxicol 2022; 161:112848. [DOI: 10.1016/j.fct.2022.112848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022]
|
12
|
Nilam M, Collin S, Karmacharya S, Hennig A, Nau WM. Membrane Permeability and Its Activation Energies in Dependence on Analyte, Lipid, and Phase Type Obtained by the Fluorescent Artificial Receptor Membrane Assay. ACS Sens 2021; 6:175-182. [PMID: 33347764 DOI: 10.1021/acssensors.0c02064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Time-resolved monitoring of the permeability of analytes is of utmost importance in membrane research. Existing methods are restricted to single-point determinations or flat synthetic membranes, limiting access to biologically relevant kinetic parameters (permeation rate constant, permeation coefficients). We now use the recently introduced fluorescent artificial receptor membrane assay (FARMA) as a method to monitor, in real time, the permeation of indole derivatives through liposomal membranes of different lipid compositions. This method is based on the liposomal encapsulation of a chemosensing ensemble or "fluorescent artificial receptor", consisting of 2,7-dimethyldiazapyrenium as a fluorescent dye and cucurbit[8]uril as the macrocyclic receptor, that responds to the complexation of a permeating aromatic analyte by fluorescence quenching. FARMA does not require a fluorescent labeling of the analytes and allows access to permeability coefficients in the range from 10-8 to 10-4 cm s-1. The effect of temperature on the permeation rate of a series of indole derivatives across the phospholipid membranes was studied. The activation energies for permeation through POPC/POPS phospholipid membranes were in the range of 28-96 kJ mol-1. To study the effect of different lipid phases on the membrane permeability, we performed experiments with DPPC/DOPS vesicles, which showed a phase transition from a gel phase to a liquid-crystalline phase, where the activation energies for the permeation process were expected to show a dramatic change. Accordingly, for the permeation of the indole derivatives into the DPPC/DOPS liposomes, discontinuities were observed in the Arrhenius plots, from which the permeation activation energies for the distinct phases could be determined, for example, for tryptamine 245 kJ mol-1 in the gel phase and 47 kJ mol-1 in the liquid-crystalline phase.
Collapse
Affiliation(s)
- Mohamed Nilam
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
- Institute for Chemistry of New Materials, University of Osnabrück, Barbarastraße 7, 49069 Osnabrück, Germany
| | - Solène Collin
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Shreya Karmacharya
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Andreas Hennig
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
- Institute for Chemistry of New Materials, University of Osnabrück, Barbarastraße 7, 49069 Osnabrück, Germany
| | - Werner M. Nau
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
13
|
Logoyda L, Piponski M, Kovalenko S, Denefil O, Dutchak O, Soroka Y, Pidruchna S, Popovych D, Susla O. Method development for the quantitative determination of captopril from Caco-2 cell monolayers by using LC-MS/MS. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e52077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aim. Caco-2 cells are a human colon epithelial cancer cell line used as a model of human intestinal absorption of drugs and other compounds. Although compounds were used in the original Caco-2 cells monolayer assays, compounds have been replaced in most laboratories by the use of liquid chromatography-mass spectrometry (LC-MS) and LC-tandem mass spectrometry (LC-MS/MS). Mass spectrometry not only eliminates the need for compounds, but permits the simultaneous measurement of multiple compounds. The measurement of multiple compounds per assay reduces the number of incubations that need to be carried out, thereby increasing the throughput of the experiments. Furthermore, LC-MS and LC-MS-MS add another dimension to Caco-2 assays by facilitating the investigation of the metabolism of compounds by Caco-2 cells. A simple, rapid LC-MS/MS method has been developed for determination of captopril from confluent Caco-2 monolayers and from aqueous solution.
Materials and methods. Chromatography was achieved on Discovery C18, 50 × 2.1 mm, 5 μm column. Samples were chromatographed in a gradient mode (eluent A (acetonitrile – water – formic acid, 5 : 95 : 0.1 v/v), eluent B (acetonitrile – formic acid, 100 : 0.1 v/v)). The initial content of the eluent B is 0%, which increases linearly by 1.0 min to 100% and to 1.01 min returns to the initial 0%. The mobile phase was delivered at a flow rate of 0.4 mL/min into the mass spectrometer ESI chamber. The sample volume was 5 μl.
Results. Under these conditions, captopril was eluted at 1.42 min. A linear response function was established at 2 – 200 ng/mL. The regression equation for the analysis was y =0.0187x+0.000248 with coefficient of correction (r2) = 0.9993. According to the Caco-2 test results, captopril showed low permeability. It should be noted that the recovery value is 103.20%. The within-run coefficients of variation ranged between 0.321% and 0.541%. The within-run percentages of nominal concentrations ranged between 99.13% and 101.12%. The between-run coefficients of variation ranged between 0.314% and 0.663%. The between-run percentages of nominal concentrations ranged between 99.17% and 101.03%.The assay values on both the occasions (intra- and inter-day) were found to be within the accepted limits.
Conclusion. From results of analysis, it can be concluded that developed method is simple and rapid for determination of captopril from confluent Caco-2 monolayers and from aqueous solution. Acquired results demonstrate that proposed strategy can be effortlessly and advantageously applied for examination of captopril from Caco-2 cell monolayers.
Collapse
|
14
|
Roy D, Dutta D, Wishart DS, Kovalenko A. Predicting PAMPA permeability using the 3D-RISM-KH theory: are we there yet? J Comput Aided Mol Des 2021; 35:261-269. [PMID: 33392947 DOI: 10.1007/s10822-020-00364-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022]
Abstract
The parallel artificial membrane permeability assay (PAMPA), a non-cellular lab-based assay, is extensively used to measure the permeability of pharmaceutical compounds. PAMPA experiments provide a working mimic of a molecule passing through cells and PAMPA values are widely used to estimate drug absorption parameters. There is an increased interest in developing computational methods to predict PAMPA permeability values. We developed an in silico model to predict the permeability of compounds based on the PAMPA assay. We used the three-dimensional reference interaction site model (3D-RISM) theory with the Kovalenko-Hirata (KH) closure to calculate the excess chemical potentials of a large set of compounds and predicted their apparent permeability with good accuracy (mean absolute error or MAE = 0.69 units) when compared to a published experimental data set. Furthermore, our in silico PAMPA protocol performed very well in the binary prediction of 288 compounds as being permeable or impermeable (precision = 94%, accuracy = 93%). This suggests that our in silico protocol can mimic the PAMPA assay and could aid in the rapid discovery or screening of potentially therapeutic drug leads that can be delivered to a desired tissue.
Collapse
Affiliation(s)
- Dipankar Roy
- Department of Mechanical Engineering, University of Alberta, 10-203 Donadeo Innovation Centre for Engineering, 9211-116 Street NW, Edmonton, AB, T6G 1H9, Canada
| | - Devjyoti Dutta
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, AB, T6G 2E8, Canada
| | - David S Wishart
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, AB, T6G 2E8, Canada
| | - Andriy Kovalenko
- Department of Mechanical Engineering, University of Alberta, 10-203 Donadeo Innovation Centre for Engineering, 9211-116 Street NW, Edmonton, AB, T6G 1H9, Canada. .,Nanotechnology Research Centre, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, AB, T6G 2M9, Canada.
| |
Collapse
|
15
|
Zhu M, Wang Z, Chen J, Xie H, Zhao H, Yuan X. Bioaccumulation, Biotransformation, and Multicompartmental Toxicokinetic Model of Antibiotics in Sea Cucumber ( Apostichopus japonicus). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13175-13185. [PMID: 32985863 DOI: 10.1021/acs.est.0c04421] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Extensive application of antibiotics leads to their ubiquitous occurrence in coastal aquatic environments. However, it remains largely unknown whether antibiotics can be bioaccumulated and biotransformed in major mariculture organisms such as sea cucumbers and toxicokinetic models for Echinodermata are lacking. In this study, laboratory exposure experiments on juvenile sea cucumber (Apostichopus japonicus) were performed for seven antibiotics (sulfadiazine, sulfamethoxazole, trimethoprim, enrofloxacin, ofloxacin, clarithromycin, and azithromycin). Field sea cucumber and surrounding seawater samples were also analyzed. Results show that the sea cucumbers tend to accumulate high concentrations of the antibiotics with kinetic bioconcentration factors (BCFs) up to 1719.7 L·kg-1 for ofloxacin. The BCFs determined in the laboratory agree well with those estimated from the field measurements. Seven biotransformation products (BTPs) of the antibiotics were identified, four of which were not reported previously in aquatic organisms. The BTPs were mainly found in the digestive tract, indicating its high capacity in the biotransformation. A multicompartmental toxicokinetic model based on the principles of passive diffusion was developed, which can successfully predict time-course concentrations of the antibiotics in different compartments of the juvenile sea cucumbers. The findings may offer a scientific basis for assessing health risks and guiding healthy mariculture of sea cucumbers.
Collapse
Affiliation(s)
- Minghua Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhongyu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Huaijun Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiutang Yuan
- National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| |
Collapse
|
16
|
Logoyda L. HPLC-MS/MS method development for the quantitative determination of nifedipine for Caco-2 permeability assay. PHARMACIA 2020. [DOI: 10.3897/pharmacia.67.e50159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aim. Poorly water-soluble drugs such as nifedipineoffer challenging problems in drug formulation as poor solubility is generally associated with poor dissolution characteristics and thus with poor oral bioavailability (BCS class II drugs). Methods of quantitative determination of nifedipine by methods of spectrophotometry and chromatography are described in the scientific literature. However, methods are not developedfor examination of nifedipine from Caco-2 cell monolayers. Caco-2 cell monolayers have been extensively used for years as a tool to test permeability, assess the oral absorption potential and study the absorption mechanism of compounds. Therefore, the aim of this study was to develop and validate an efficient HPLC MS/MS method for determination of nifedipine from Caco-2 cell monolayers.
Materials and methods. Chromatography was achieved on DiscoveryC18, 50 × 2.1 mm, 5 μm column. Samples were chromatographed in a gradient mode (eluent A (acetonitrile – water – formic acid, 5 : 95 : 0.1 v/v), eluent B (acetonitrile – formic acid, 100 : 0.1 v/v)). The initial content of the eluent B is 0%, which increases linearly by 1.0 min to 100% and to 1.01 min returns to the initial 0%. The mobile phase was delivered at a flow rate of 0.4 mL/min into the mass spectrometer ESI chamber. The sample volume was 5 μl.
Results. Under these conditions, nifedipine was eluted at 1.83 min. A linear response function was established at 1 – 100 ng/mL. The regression equation for the analysis was Y = 0.0323x-0.00121 with coefficient of correction (R2) = 0.9987. According to the Caco-2 test results, nifedipine showed high permeability. The within-run coefficients of variation ranged between 0.331% and 0.619% for nifedipine. The within-run percentages of nominal concentrations ranged between 98.80% and 100.63% for nifedipine. The between-run coefficients of variation ranged between 0.332% and 0.615% for nifedipine. The between-run percentages of nominal concentrations ranged between 98.98% and 101.71% for nifedipine. The assay values on both the occasions (intra- and inter-day) were found to be within the accepted limits.
Conclusion. From results of analysis, it can be concluded that developed method is simple and rapid for determination of nifedipine from confluent Caco-2 monolayers and from aqueous solution. Acquired results demonstrate that proposed strategy can be effortlessly and advantageously applied for examination of nifedipine from Caco-2 cell monolayers.
Collapse
|
17
|
Logoyda L, Herasymiuk M, Popovych D, Pidruchna S, Hlushok V, Herasymiuk N, Zarivna N. HPLC MS/MS method development for the quantitative determination of verapamil hydrochloride from Caco-2 cell monolayers. PHARMACIA 2020. [DOI: 10.3897/pharmacia.67.e48896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aim. An understanding of the role that transporters, in particular P-glycoprotein (P-gp), can play in the absorption, distribution, metabolism and excretion (ADME) of candidate drugs, and an assessment of how these processes might impact on toxicity and the potential for drug-drug interactions in the clinic, is required to support drug development and registration. It is therefore necessary to validate preclinical assays for the in vitro evaluation of candidate drugs as substrates or inhibitors of human P-gp. 2. A simple, rapid HPLC MS/MS method was developed for determination of verapamil hydrochloride from confluent Caco-2 monolayers and from aqueous solution.
Materials and methods. Chromatography was achieved on Discovery C18, 50 × 2.1 mm, 5 μm column. Samples were chromatographed in a gradient mode (eluent A (acetonitrile – water – formic acid, 5 : 95 : 0.1 v/v), eluent B (acetonitrile – formic acid, 100 : 0.1 v/v)). The initial content of the eluent B is 0%, which increases linearly by 1.0 min to 100% and to 1.01 min returns to the initial 0%. The mobile phase was delivered at a flow rate of 0.4 mL/min into the mass spectrometer ESI chamber. The sample volume was 5 μl.
Results. Under these conditions, verapamil hydrochloride was eluted at 1.08 min. A linear response function was established at 1 – 100 ng/mL. The regression equation for the analysis was Y = 0.0162x + 0.00391 with coefficient of correction (R2) = 0.9992. According to the Caco-2 test results, verapamil showed low permeability. It should be noted that the recovery value for verapamil hydrochloride is 102.69%. The within-run coefficients of variation ranged between 0.336% and 0.617% for verapamil. The within-run percentages of nominal concentrations ranged between 98.82% and 100.62% for verapamil. The between-run coefficients of variation ranged between 0.334% and 0.612% for verapamil. The between-run percentages of nominal concentrations ranged between 98.97% and 101.76% for verapamil. The assay values on both the occasions (intra- and inter-day) were found to be within the accepted limits.
Conclusion. From results of analysis, it can be concluded that developed method is simple and rapid for determination of verapamil hydrochloride from confluent Caco-2 monolayers and from aqueous solution. Acquired results demonstrate that proposed strategy can be effortlessly and advantageously applied for examination of verapamil hydrochloride from Caco-2 cell monolayers.
Collapse
|
18
|
Biedermann F, Ghale G, Hennig A, Nau WM. Fluorescent artificial receptor-based membrane assay (FARMA) for spatiotemporally resolved monitoring of biomembrane permeability. Commun Biol 2020; 3:383. [PMID: 32669621 PMCID: PMC7363885 DOI: 10.1038/s42003-020-1108-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
The spatiotemporally resolved monitoring of membrane translocation, e.g., of drugs or toxins, has been a long-standing goal. Herein, we introduce the fluorescent artificial receptor-based membrane assay (FARMA), a facile, label-free method. With FARMA, the permeation of more than hundred organic compounds (drugs, toxins, pesticides, neurotransmitters, peptides, etc.) through vesicular phospholipid bilayer membranes has been monitored in real time (µs-h time scale) and with high sensitivity (nM-µM concentration), affording permeability coefficients across an exceptionally large range from 10-9-10-3 cm s-1. From a fundamental point of view, FARMA constitutes a powerful tool to assess structure-permeability relationships and to test biophysical models for membrane passage. From an applied perspective, FARMA can be extended to high-throughput screening by adaption of the microplate reader format, to spatial monitoring of membrane permeation by microscopy imaging, and to the compartmentalized monitoring of enzymatic activity.
Collapse
Affiliation(s)
- Frank Biedermann
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany.
| | - Garima Ghale
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
| | - Andreas Hennig
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
| | - Werner M Nau
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany.
| |
Collapse
|
19
|
Xiang Q, Zhang W, Li Q, Zhao J, Feng W, Zhao T, Mao G, Chen Y, Wu X, Yang L, Chen G. Investigation of the uptake and transport of polysaccharide from Se-enriched Grifola frondosa in Caco-2 cells model. Int J Biol Macromol 2020; 158:S0141-8130(20)33021-X. [PMID: 32339585 DOI: 10.1016/j.ijbiomac.2020.04.160] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 02/02/2023]
Abstract
A variety of beneficial pharmacological activities have been reported for Se-enriched Grifola frondosa polysaccharides. However, little has been reported on its absorption, and its intestinal uptake and transport profiles remain unknown. Based on our previous research, the aim of this study was to investigate its absorption from two aspects - the polysaccharides and selenium of Se-enriched Grifola frondosa polysaccharides (Se-GFP-22) across Caco-2 cells in vitro. The Caco-2 cells monolayer culture model was successfully constructed to study the transport and uptake of Se-GFP-22. The results revealed that the uptake and transport of Se-GFP-22 were time- and concentration- dependent. Transport studies illustrated that Se-GFP-22 could penetrate Caco-2 cells, mainly mediated through the same routes as endocytosis and selenium in the organic selenium (Se-GFP-22) was more easily absorbed than that in the inorganic selenium control group (sodium selenite). The uptake of Se-GFP-22 may be a macropinocytosis pathway, which was an accumulation from cytoplasm to nucleus process. Se-GFP-22 was a moderately absorbed biological macromolecule testified by the apparent permeability coefficients (Papp) value and transport rates. This work illustrates the characteristics on uptake and transport of Se-GFP-22 and all these results may help to explore the mechanism of polysaccharide absorption in vitro.
Collapse
Affiliation(s)
- Qingfang Xiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Weijie Zhang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Qian Li
- School of Food Science and Engineering, Yangzhou University, Huayangxi Rd. 196, Yangzhou 225127, Jiangsu, China
| | - Jie Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Weiwei Feng
- School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Guanghua Mao
- School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Yao Chen
- School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China.
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, Hainan Normal University, Longkun Rd. 99, Hainan 570100, China.
| |
Collapse
|
20
|
Lomize AL, Pogozheva ID. Physics-Based Method for Modeling Passive Membrane Permeability and Translocation Pathways of Bioactive Molecules. J Chem Inf Model 2019; 59:3198-3213. [PMID: 31259555 DOI: 10.1021/acs.jcim.9b00224] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Assessment of permeability is a critical step in the drug development process for selection of drug candidates with favorable ADME properties. We have developed a novel physics-based method for fast computational modeling of passive permeation of diverse classes of molecules across lipid membranes. The method is based on heterogeneous solubility-diffusion theory and operates with all-atom 3D structures of solutes and the anisotropic solvent model of the lipid bilayer characterized by transbilayer profiles of dielectric and hydrogen bonding capacity parameters. The optimal translocation pathway of a solute is determined by moving an ensemble of representative conformations of the molecule through the dioleoyl-phosphatidylcholine (DOPC) bilayer and optimizing their rotational orientations in every point of the transmembrane trajectory. The method calculates (1) the membrane-bound state of the solute molecule; (2) free energy profile of the solute along the permeation pathway; and (3) the permeability coefficient obtained by integration over the transbilayer energy profile and assuming a constant size-dependent diffusivity along the membrane normal. The accuracy of the predictions was evaluated against experimental permeability coefficients measured in pure lipid membranes (for 78 compounds, R2 was 0.88 and rmse was 1.15 log units), PAMPA-DS (for 280 compounds, R2 was 0.75 and rmse was 1.59 log units), BBB (for 182 compounds, R2 was 0.69 and rmse was 0.87 log units), and Caco-2/MDCK assays (for 165 compounds, R2 was 0.52 and rmse was 0.89 log units).
Collapse
Affiliation(s)
- Andrei L Lomize
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 428 Church Street , Ann Arbor , Michigan 48109-1065 , United States
| | - Irina D Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 428 Church Street , Ann Arbor , Michigan 48109-1065 , United States
| |
Collapse
|
21
|
In Silico Prediction of PAMPA Effective Permeability Using a Two-QSAR Approach. Int J Mol Sci 2019; 20:ijms20133170. [PMID: 31261723 PMCID: PMC6651837 DOI: 10.3390/ijms20133170] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/12/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022] Open
Abstract
Oral administration is the preferred and predominant route of choice for medication. As such, drug absorption is one of critical drug metabolism and pharmacokinetics (DM/PK) parameters that should be taken into consideration in the process of drug discovery and development. The cell-free in vitro parallel artificial membrane permeability assay (PAMPA) has been adopted as the primary screening to assess the passive diffusion of compounds in the practical applications. A classical quantitative structure–activity relationship (QSAR) model and a machine learning (ML)-based QSAR model were derived using the partial least square (PLS) scheme and hierarchical support vector regression (HSVR) scheme to elucidate the underlying passive diffusion mechanism and to predict the PAMPA effective permeability, respectively, in this study. It was observed that HSVR executed better than PLS as manifested by the predictions of the samples in the training set, test set, and outlier set as well as various statistical assessments. When applied to the mock test, which was designated to mimic real challenges, HSVR also showed better predictive performance. PLS, conversely, cannot cover some mechanistically interpretable relationships between descriptors and permeability. Accordingly, the synergy of predictive HSVR and interpretable PLS models can be greatly useful in facilitating drug discovery and development by predicting passive diffusion.
Collapse
|
22
|
Diukendjieva A, Tsakovska I, Alov P, Pencheva T, Pajeva I, Worth AP, Madden JC, Cronin MT. Advances in the prediction of gastrointestinal absorption: Quantitative Structure-Activity Relationship (QSAR) modelling of PAMPA permeability. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.comtox.2018.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Osakai T. Is the Oil | Water Interface the Simplest and Best Suited Model for Understanding Biomembranes? ANAL SCI 2019; 35:361-366. [PMID: 30606904 DOI: 10.2116/analsci.18r005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Many studies have been conducted by using the oil (O) | water (W) interface as a simple model for understanding ion transfer (IT) or electron transfer (ET) across biomembranes. In this review, we revisit the usability of the O | W interface as a biomembrane model. For understanding biomembrane IT, the O | W interface is the simplest and best suited model. For example, the standard Gibbs transfer energy of drug ions at the O | W interface is a useful measure for evaluating their membrane permeability in a conventional in vitro assay, called PAMPA. However, the O | W interface is not necessarily a good model for understanding biomembrane ET. This is because no net current can be observed with the O | W interface, owing to the ET-coupled proton transfer. In such a case, the self-assembled monolayer (SAM) formed on a metal electrode serves as a better model for understanding biomembrane ET.
Collapse
Affiliation(s)
- Toshiyuki Osakai
- Department of Chemistry, Graduate School of Science, Kobe University
| |
Collapse
|
24
|
Kimura S, Kiriyama A, Nishimura E, Sakata S, Inoue D, Furubayashi T, Yutani R, Tanaka A, Kusamori K, Katsumi H, Iga K, Yamamoto A, Sakane T. Novel Strategy for the Systemic Delivery of Furosemide Based on a New Drug Transport Mechanism. Biol Pharm Bull 2018; 41:1769-1777. [DOI: 10.1248/bpb.b18-00315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shunsuke Kimura
- Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Akiko Kiriyama
- Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Erika Nishimura
- Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Shiori Sakata
- Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | | | | | - Reiko Yutani
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University
| | - Akiko Tanaka
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University
| | - Kosuke Kusamori
- Department of Biopharmaceutics, Kyoto Pharmaceutical University
| | | | - Katsumi Iga
- Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University
| | - Toshiyasu Sakane
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University
| |
Collapse
|
25
|
Fujii Y, Yoshida E, Osakai T. A Strategy for in Silico Prediction of the Membrane Permeability of Drugs. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yu Fujii
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe, Hyogo 657-8501, Japan
| | - Erina Yoshida
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe, Hyogo 657-8501, Japan
| | - Toshiyuki Osakai
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
26
|
Yamada A, Yoshida E, Eda K, Osakai T. Prediction of the Standard Gibbs Energy of Ion Transfer across the 1,2-Dichloroethane/Water Interface. ANAL SCI 2018; 34:919-924. [PMID: 29962373 DOI: 10.2116/analsci.18p088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The standard Gibbs energy of ion transfer at the 1,2-dichloroethane/water interface (ΔGtr°,W→O) was determined for 26 organic cations and 24 anions by means of ion-transfer voltammetry with a micro oil/water interface. Based on the data sets, a theoretical analysis was performed with the non-Bornian solvation model, in which the solvation energy of an organic ion is evaluated from local electric fields on the surface of the ion. The semi-empirical equations thus obtained are available for relatively accurate prediction of ΔGtr°,W→O for organic ions. The mean absolute error was 1.9 or 3.1 kJ mol-1 for cations or anions, respectively, corresponding to the error of ∼20 or ∼30 mV in the standard ion-transfer potential. In this paper, energy decomposition has been performed to discuss different contributions to ΔGtr°,W→O from the "hydrated" (strongly charged) and positively and negatively charged "non-hydrated" (moderately charged) surfaces as well as from the hydrophobic interaction (cavity formation energy).
Collapse
Affiliation(s)
- Akiyoshi Yamada
- Department of Chemistry, Graduate School of Science, Kobe University
| | - Erina Yoshida
- Department of Chemistry, Graduate School of Science, Kobe University
| | - Kazuo Eda
- Department of Chemistry, Graduate School of Science, Kobe University
| | - Toshiyuki Osakai
- Department of Chemistry, Graduate School of Science, Kobe University
| |
Collapse
|
27
|
Aloisio C, Ponce-Ponte M, Granero GE, Longhi MR. Effect of Complexes and Microemulsions on the Permeability of Drugs: Determination Using a New Biomimetic Artificial Membrane. AAPS PharmSciTech 2018; 19:2629-2638. [PMID: 29922876 DOI: 10.1208/s12249-018-1096-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/02/2018] [Indexed: 11/30/2022] Open
Abstract
The aim of this work was to predict the permeability of two model drugs, sulfamerazine (SMR) and indomethacin (INM), and to determine the effect on their apparent permeabilities by complexation with cyclodextrins and/or meglumine or incorporation in microemulsions. Permeation experiments were performed using two-chamber diffusion cells with a new composition of bio-mimetic membrane composed of 80% of Lipoid® S100 and 20% of cholesterol in n-octanol 10% w/w solution, at 37 ± 0.5°C and 14,000 rpm. The predictive capacity of the permeability of passive diffusion absorbed compounds was evaluated using 20 drug standards and showed an exponential correlation between the apparent permeability coefficients (Papp) and the fraction absorbed percentages in humans (Fa%), with an R2 value of 0.67942 and a constant value of - 4.1 ± 0.8. SMR and INM were classified as Class II and I, respectively, according to the Biopharmaceutical Classification System. These drugs were complexed and incorporated in microemulsions. The Fa% from all the drug products was higher than 90%. SMR in the complexes and both drugs in microemulsions were classified as highly soluble. Thus, SMR and INM incorporated in these pharmaceutical products could be classified as Class I.
Collapse
|
28
|
Improving oral bioavailability of cyclic peptides by N-methylation. Bioorg Med Chem 2018; 26:2766-2773. [DOI: 10.1016/j.bmc.2017.08.031] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 01/19/2023]
|
29
|
Wesche F, Adihou H, Kaiser A, Wurglics M, Schubert-Zsilavecz M, Kaiser M, Bode HB. Combined Approach of Backbone Amide Linking and On-Resin N-Methylation for the Synthesis of Bioactive and Metabolically Stable Peptides. J Med Chem 2018; 61:3930-3938. [DOI: 10.1021/acs.jmedchem.7b01809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Frank Wesche
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Hélène Adihou
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Astrid Kaiser
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Mario Wurglics
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Manfred Schubert-Zsilavecz
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Marcel Kaiser
- Parasite Chemotherapy, Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4051 Basel, Switzerland
- University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland
| | - Helge B. Bode
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Strasse 15, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
30
|
Nitsche JM, Kasting GB. A Universal Correlation Predicts Permeability Coefficients of Fluid- and Gel-Phase Phospholipid and Phospholipid-Cholesterol Bilayers for Arbitrary Solutes. J Pharm Sci 2017; 105:1762-1771. [PMID: 27112406 DOI: 10.1016/j.xphs.2016.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/26/2016] [Accepted: 02/02/2016] [Indexed: 11/24/2022]
Abstract
The permeability of gel-phase phospholipids is typically about an order of magnitude lower than that of the same compositions in the fluid phase, yet a quantitative description of the ordering factors leading to this difference has been elusive. The present analysis examines these factors with particular focus on the area per phospholipid chain, Ac, and its relationship to the minimum area per molecule in the crystalline state, A0. It is shown that fluid- and gel-phase phospholipid permeabilities can be reconciled by postulating a minimum area per chain Ac,0 = 17.1 Å(2), substantially less than one would estimate by dividing the accepted value A0 = 40.8 Å(2) by 2. An extended data set of phospholipid and phospholipid-cholesterol bilayer permeability data extending over 9 orders of magnitude is analyzed and correlated according to the developed relationship (N = 85, s = 0.3024, r(2) = 0.9332). Individual permeability values are consequently predicted to within an average deviation of 10(0.3024) or about a factor of 2. The analysis is broadly applicable in the fluid phase but is restricted to gel-phase phospholipid compositions that do not contain cholesterol. Guidance for the latter scenario is provided.
Collapse
Affiliation(s)
- Johannes M Nitsche
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200.
| | - Gerald B Kasting
- James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, Ohio 45267-0004
| |
Collapse
|
31
|
Wei C, Pohorille A. Sequence-Dependent Interfacial Adsorption and Permeation of Dipeptides across Phospholipid Membranes. J Phys Chem B 2017; 121:9859-9867. [PMID: 28982244 DOI: 10.1021/acs.jpcb.7b08238] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We investigate permeation of three blocked dipeptides with different side chain polarity across a phospholipid membrane and their behavior at the water-membrane interface by way of molecular dynamics simulations. Hydrophilic serine-serine dipeptide is found to desorb from the interface to aqueous phase, whereas hydrophobic phenylalanine-leucine and amphiphilic serine-leucine tend to accumulate at the interface with a free energy minimum of -3 kcal/mol. All three dipeptides exhibit free energy barriers to permeation across the membrane located at the center of the bilayer. The height of the barrier is strongly sequence dependent and increases with the dipeptide polarity. It is equal to 3.5, 6.4, and 10.0 kcal/mol for phenylalanine-leucine, serine-leucine, and serine-serine, respectively. The corresponding permeability coefficients are equal to 4.6 × 10-3, 4.5 × 10-5, and 8.7 × 10-8 cm/s. The apparent insensitivity of membrane permeability to hydrophobicity of dipeptides, found in some experiments, is attributed to neglecting corrections for unstirred water layers near membrane surface, which are significant for hydrophobic species. Different hydrophobicity of the dipeptides also influences their conformations and orientations, both at the interface and inside the membrane. In particular, penetration of hydrophilic serine-serine dipeptide causes the formation of water-filled defects in the bilayer. These results are relevant to the delivery of peptide-based therapeutic agents.
Collapse
Affiliation(s)
- Chenyu Wei
- NASA Ames Research Center, Mail Stop 239-4, Moffett Field, California 94035, United States.,Department of Pharmaceutical Chemistry, University of California, San Francisco , San Francisco, California 94143, United States
| | - Andrew Pohorille
- NASA Ames Research Center, Mail Stop 239-4, Moffett Field, California 94035, United States.,Department of Pharmaceutical Chemistry, University of California, San Francisco , San Francisco, California 94143, United States
| |
Collapse
|
32
|
Jeong YS, Yim CS, Ryu HM, Noh CK, Song YK, Chung SJ. Estimation of the minimum permeability coefficient in rats for perfusion-limited tissue distribution in whole-body physiologically-based pharmacokinetics. Eur J Pharm Biopharm 2017; 115:1-17. [DOI: 10.1016/j.ejpb.2017.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/25/2017] [Accepted: 01/28/2017] [Indexed: 01/12/2023]
|
33
|
Sun H, Nguyen K, Kerns E, Yan Z, Yu KR, Shah P, Jadhav A, Xu X. Highly predictive and interpretable models for PAMPA permeability. Bioorg Med Chem 2016; 25:1266-1276. [PMID: 28082071 DOI: 10.1016/j.bmc.2016.12.049] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/22/2016] [Accepted: 12/27/2016] [Indexed: 11/28/2022]
Abstract
Cell membrane permeability is an important determinant for oral absorption and bioavailability of a drug molecule. An in silico model predicting drug permeability is described, which is built based on a large permeability dataset of 7488 compound entries or 5435 structurally unique molecules measured by the same lab using parallel artificial membrane permeability assay (PAMPA). On the basis of customized molecular descriptors, the support vector regression (SVR) model trained with 4071 compounds with quantitative data is able to predict the remaining 1364 compounds with the qualitative data with an area under the curve of receiver operating characteristic (AUC-ROC) of 0.90. The support vector classification (SVC) model trained with half of the whole dataset comprised of both the quantitative and the qualitative data produced accurate predictions to the remaining data with the AUC-ROC of 0.88. The results suggest that the developed SVR model is highly predictive and provides medicinal chemists a useful in silico tool to facilitate design and synthesis of novel compounds with optimal drug-like properties, and thus accelerate the lead optimization in drug discovery.
Collapse
Affiliation(s)
- Hongmao Sun
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD 20892, USA.
| | - Kimloan Nguyen
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Edward Kerns
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhengyin Yan
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Kyeong Ri Yu
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Pranav Shah
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Xin Xu
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
34
|
Hu K, Li W, Yu M, Sun C, Li Z. Investigation of Cellular Uptakes of the In-Tether Chiral-Center-Induced Helical Pentapeptides. Bioconjug Chem 2016; 27:2824-2827. [PMID: 27998077 DOI: 10.1021/acs.bioconjchem.6b00492] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We recently reported that a precisely positioned in-tether chiral center can modulate backbone peptides' secondary structures, which provides an unbiased platform to evaluate peptides' biophysical properties solely imposed by secondary structure differences. In this work, we studied the cellular uptake efficiency and mechanism of epimer pairs of a panel of chirality-induced helical peptides (CIH peptides). Although the peptides' cellular uptake is a synergetic result of various factors, our results unambiguously indicate that helical content is an important factor for the cellular uptake of CIH peptides.
Collapse
Affiliation(s)
- Kuan Hu
- Department of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University , Shenzhen, Guangdong 518055, China
| | - Wenjun Li
- Department of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University , Shenzhen, Guangdong 518055, China
| | - Mengying Yu
- Department of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University , Shenzhen, Guangdong 518055, China
| | - Chengjie Sun
- Department of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University , Shenzhen, Guangdong 518055, China
| | - Zigang Li
- Department of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University , Shenzhen, Guangdong 518055, China
| |
Collapse
|
35
|
Nakamura M, Osakai T. Evaluation of the membrane permeability of drugs by ion-transfer voltammetry with the oil | water interface. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Nakamura M, Osakai T. Evaluation of the artificial membrane permeability of drugs by digital simulation. Eur J Pharm Sci 2016; 91:154-61. [PMID: 27334569 DOI: 10.1016/j.ejps.2016.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
Abstract
A digital simulation method has been developed for evaluating the membrane permeability of drugs in the parallel artificial membrane permeation assay (PAMPA). The simulation results have shown that the permeability coefficient (log Ppampa) of drugs is linearly increased with increasing their distribution coefficient (log KD,M) to the lipid membrane, i.e., the hydrophobicity of the drug molecules. However, log Ppampa shows signs of leveling off for highly hydrophobic drugs. Such a dependence of log Ppampa is in harmony with the reported experimental data, and has been well explained in terms of the change in the rate-determining step from the diffusion in the membrane to that in the unstirred water layer (UWL) on both sides of the membrane. Additionally, the effects of several factors, including lag time, diffusion coefficient, pH, and pKa, on the permeability coefficient have been well simulated. It has thus been suggested that the proposed method should be promising for in silico evaluation of the membrane permeability of drugs.
Collapse
Affiliation(s)
- Mayumi Nakamura
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan.
| | - Toshiyuki Osakai
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
37
|
Xin D, Burgess K. Anthranilic acid-containing cyclic tetrapeptides: at the crossroads of conformational rigidity and synthetic accessibility. Org Biomol Chem 2016; 14:5049-58. [PMID: 27173439 PMCID: PMC4916954 DOI: 10.1039/c6ob00693k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Each amino acid in a peptide contributes three atom units to main-chains, hence natural cyclic peptides can be 9, 12, 15, …. i.e. 3n membered-rings, where n is the number of amino acids. Cyclic peptides that are 9 or 12-membered ring compounds tend to be hard to prepare because of strain, while their one amino acid homologs (15-membered cyclic pentapeptides) are not conformationally homogeneous unless constrained by strategically placed proline or d-amino acid residues. We hypothesized that replacing one genetically encoded amino acid in a cyclic tetrapeptide with a rigid β-amino acid would render peptidomimetic designs that rest at a useful crossroads between synthetic accessibility and conformational rigidity. Thus this research explored non-proline containing 13-membered ring peptides 1 featuring one anthranilic acid (Anth) residue. Twelve cyclic peptides of this type were prepared, and in doing so the viability of both solution- and solid-phase methods was demonstrated. The library produced contained a complete set of four diastereoisomers of the sequence 1aaf (i.e. cyclo-AlaAlaPheAnth). Without exception, these four diastereoisomers each adopted one predominant conformation in solution; basically these conformations feature amide N-H vectors puckering above and below the equatorial plane, and approximately oriented their N-H[combining low line] atoms towards the polar axis. Moreover, the shapes of these conformers varied in a logical and predictable way (NOE, temperature coefficient, D/H exchange, circular dichroism). Comparisons were made of the side-chain orientations presented by compounds 1aaa in solution with ideal secondary structures and protein-protein interaction interfaces. Various 1aaa stereoisomers in solution present side-chains in similar orientations to regular and inverse γ-turns, and to the most common β-turns (types I and II). Consistent with this, compounds 1aaa have a tendency to mimic various turns and bends at protein-protein interfaces. Finally, proteolytic- and hydrolytic stabilities of the compounds at different pHs indicate they are robust relative to related linear peptides, and rates of permeability through an artificial membrane indicate their structures are conducive to cell permeability.
Collapse
Affiliation(s)
- Dongyue Xin
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842, USA.
| | | |
Collapse
|
38
|
Oja M, Maran U. Quantitative structure-permeability relationships at various pH values for acidic and basic drugs and drug-like compounds. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2015; 26:701-719. [PMID: 26383235 DOI: 10.1080/1062936x.2015.1085896] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/19/2015] [Indexed: 06/05/2023]
Abstract
Absorption in gastrointestinal tract compartments varies and is largely influenced by pH. Therefore, considering pH in studies and analyses of membrane permeability provides an opportunity to gain a better understanding of the behaviour of compounds and to obtain good permeability estimates for prediction purposes. This study concentrates on relationships between the chemical structure and membrane permeability of acidic and basic drugs and drug-like compounds. The membrane permeability of 36 acidic and 61 basic compounds was measured using the parallel artificial membrane permeability assay (PAMPA) at pH 3, 5, 7.4 and 9. Descriptive and/or predictive single-parameter quantitative structure-permeability relationships were derived for all pH values. For acidic compounds, membrane permeability is mainly influenced by hydrogen bond donor properties, as revealed by models with r(2) > 0.8 for pH 3 and pH 5. For basic compounds, the best (r(2) > 0.7) structure-permeability relationships are obtained with the octanol-water distribution coefficient for pH 7.4 and pH 9, indicating the importance of partition properties. In addition to the validation set, the prediction quality of the developed models was tested with folic acid and astemizole, showing good matches between experimental and calculated membrane permeabilities at key pHs. Selected QSAR models are available at the QsarDB repository ( http://dx.doi.org/10.15152/QDB.166 ).
Collapse
Affiliation(s)
- M Oja
- a Institute of Chemistry , University of Tartu , Ravila 14A, Tartu 50411 , Estonia
| | - U Maran
- a Institute of Chemistry , University of Tartu , Ravila 14A, Tartu 50411 , Estonia
| |
Collapse
|
39
|
Zayas J, Annoual M, Das JK, Felty Q, Gonzalez WG, Miksovska J, Sharifai N, Chiba A, Wnuk SF. Strain Promoted Click Chemistry of 2- or 8-Azidopurine and 5-Azidopyrimidine Nucleosides and 8-Azidoadenosine Triphosphate with Cyclooctynes. Application to Living Cell Fluorescent Imaging. Bioconjug Chem 2015; 26:1519-32. [PMID: 26086070 DOI: 10.1021/acs.bioconjchem.5b00300] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Strain-promoted click chemistry of nucleosides and nucleotides with an azido group directly attached to the purine and pyrimidine rings with various cyclooctynes in aqueous solution at ambient temperature resulted in efficient formation (3 min to 3 h) of fluorescent, light-up, triazole products. The 2- and 8-azidoadenine nucleosides reacted with fused cyclopropyl cyclooctyne, dibenzylcyclooctyne, or monofluorocyclooctyne to produce click products functionalized with hydroxyl, amino, N-hydroxysuccinimide, or biotin moieties. The 5-azidouridine and 5-azido-2'-deoxyuridine were similarly converted to the analogous triazole products in quantitative yields in less than 5 min. The 8-azido-ATP quantitatively afforded the triazole product with fused cyclopropyl cyclooctyne in aqueous acetonitrile (3 h). The novel triazole adducts at the 2- or 8-position of adenine or 5-position of uracil rings induce fluorescence properties which were used for direct imaging in MCF-7 cancer cells without the need for traditional fluorogenic reporters. FLIM of the triazole click adducts demonstrated their potential utility for dynamic measuring and tracking of signaling events inside single living cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nima Sharifai
- §Department of Biology, University of Miami, Coral Gables, Florida 33146, United States
| | - Akira Chiba
- §Department of Biology, University of Miami, Coral Gables, Florida 33146, United States
| | | |
Collapse
|
40
|
Bujard A, Voirol H, Carrupt PA, Schappler J. Modification of a PAMPA model to predict passive gastrointestinal absorption and plasma protein binding. Eur J Pharm Sci 2015; 77:273-8. [PMID: 26118348 DOI: 10.1016/j.ejps.2015.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/05/2015] [Accepted: 06/24/2015] [Indexed: 01/17/2023]
Abstract
The Parallel Artificial Membrane Permeability Assay (PAMPA) is a well-known high throughput screening (HTS) technique for predicting in vivo passive absorption. In this technique, two compartments are separated by an artificial membrane that mimics passive permeability through biological membranes such as the dermal layer, the gastrointestinal tract (GIT), and the blood brain barrier (BBB). In the present study, a hexadecane artificial membrane (HDM)-PAMPA was used to predict the binding of compounds towards the human plasma using a mixture of human serum albumin (HSA) and alpha-1-acid glycoprotein (AGP). The ratio of HSA and AGP was equivalent to that found in the human plasma for both proteins (∼20:1). A pH gradient (5.0-7.4) was performed to increase the screening capacity and overcome the issue of passive permeability for acidic and amphoteric compounds. With this assay, the prediction of passive GIT absorption was maintained and the compounds were discriminated according to their permeability (on a no-to-high scale). The plasma protein binding (PPB) was estimated via the correlation of the differences between the amount of compound crossing the artificial membrane in assays conducted with and without protein using only a two end-point measurement. The use of a mixture of HSA and AGP to modulate drug permeation was compared to the use of the same concentrations of HSA and AGP used separately. The addition of HSA alone in the acceptor compartment was sufficient for estimating PPB, while it was demonstrated that AGP alone could enable the estimation of AGP binding.
Collapse
Affiliation(s)
- Alban Bujard
- School of Pharmaceutical Sciences, EPGL, University of Geneva, 30 Quai Ernest Ansermet, CH 1211 Geneva 4, Switzerland
| | - Hervé Voirol
- School of Pharmaceutical Sciences, EPGL, University of Geneva, 30 Quai Ernest Ansermet, CH 1211 Geneva 4, Switzerland
| | - Pierre-Alain Carrupt
- School of Pharmaceutical Sciences, EPGL, University of Geneva, 30 Quai Ernest Ansermet, CH 1211 Geneva 4, Switzerland
| | - Julie Schappler
- School of Pharmaceutical Sciences, EPGL, University of Geneva, 30 Quai Ernest Ansermet, CH 1211 Geneva 4, Switzerland.
| |
Collapse
|
41
|
Oja M, Maran U. The Permeability of an Artificial Membrane for Wide Range of pH in Human Gastrointestinal Tract: Experimental Measurements and Quantitative StructureActivity Relationship. Mol Inform 2015; 34:493-506. [PMID: 27490393 DOI: 10.1002/minf.201400147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 05/06/2015] [Indexed: 11/08/2022]
Abstract
In silico models for membrane permeability have been based on values measured for single pH. Depending on the diet (fasted/fed state) and part of human intestine the range of pH varies approximately from 2.4 to 8.0. This motivated to study and model the membrane permeability of chemicals considering the whole range of pH in the human intestine. For this, effective membrane permeability values were measured for 65 drugs and drug-like compounds using PAMPA method at four pHs (3, 5, 7.4, 9) over 48 h, introducing technological innovations for the time-dependence measurement. The highest permeability value of a compound from four pHs was used to derive QSAR analyzing a large pool of molecular descriptors and introducing new descriptor. Using stepwise forward selection approach a significant QSAR model was derived that included only two mechanistically relevant descriptors, the logarithmic octanol-water partition coefficient and hydrogen bonding surface area. Prediction confidence of the model was blind tested with a true external validation set of 15 compounds. The resulting QSAR model shows potential to combine permeability values from various pH-s into one descriptive and predictive model for estimating maximum permeability in human gastrointestinal tract. The QSAR model and data are available through the QsarDB repository (http://dx.doi.org/10.15152/QDB.137).
Collapse
Affiliation(s)
- Mare Oja
- Institute of Chemistry, University of Tartu, Ravila 14A, Tartu 50411, Estonia phone +372 7 375 254, fax +372 7 375 264
| | - Uko Maran
- Institute of Chemistry, University of Tartu, Ravila 14A, Tartu 50411, Estonia phone +372 7 375 254, fax +372 7 375 264.
| |
Collapse
|
42
|
New biomimetic barrier Permeapad™ for efficient investigation of passive permeability of drugs. Eur J Pharm Sci 2015; 73:29-34. [DOI: 10.1016/j.ejps.2015.03.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/18/2015] [Accepted: 03/24/2015] [Indexed: 12/28/2022]
|
43
|
Wang CK, Northfield SE, Swedberg JE, Colless B, Chaousis S, Price DA, Liras S, Craik DJ. Exploring experimental and computational markers of cyclic peptides: Charting islands of permeability. Eur J Med Chem 2015; 97:202-13. [PMID: 25974856 DOI: 10.1016/j.ejmech.2015.04.049] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 12/25/2022]
Abstract
An increasing number of macrocyclic peptides that cross biological membranes are being reported, suggesting that it might be possible to develop peptides into orally bioavailable therapeutics; however, current understanding of what makes macrocyclic peptides cell permeable is still limited. Here, we synthesized 62 cyclic hexapeptides and characterized their permeability using in vitro assays commonly used to predict in vivo absorption rates, i.e. the Caco-2 and PAMPA assays. We correlated permeability with experimentally measured parameters of peptide conformation obtained using rapid methods based on chromatography and nuclear magnetic resonance spectroscopy. Based on these correlations, we propose a model describing the interplay between peptide permeability, lipophilicity and hydrogen bonding potential. Specifically, peptides with very high permeability have high lipophilicity and few solvent hydrogen bond interactions, whereas peptides with very low permeability have low lipophilicity or many solvent interactions. Our model is supported by molecular dynamics simulations of the cyclic peptides calculated in explicit solvent, providing a structural basis for the observed correlations. This prospective exploration into biomarkers of peptide permeability has the potential to unlock wider opportunities for development of peptides into drugs.
Collapse
Affiliation(s)
- Conan K Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Susan E Northfield
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Joakim E Swedberg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Barbara Colless
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stephanie Chaousis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David A Price
- Worldwide Medicinal Chemistry, CVMED, Pfizer, 610 Main Street, Cambridge, MA 02139, USA
| | - Spiros Liras
- Worldwide Medicinal Chemistry, CVMED, Pfizer, 610 Main Street, Cambridge, MA 02139, USA
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
44
|
Yu H, Wang Q, Sun Y, Shen M, Li H, Duan Y. A new PAMPA model proposed on the basis of a synthetic phospholipid membrane. PLoS One 2015; 10:e0116502. [PMID: 25647086 PMCID: PMC4315410 DOI: 10.1371/journal.pone.0116502] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/10/2014] [Indexed: 11/22/2022] Open
Abstract
The purpose of this work was to investigate the synthetic phospholipid dependence of permeability measured by parallel artificial membrane permeability assay (PAMPA) method. Three phospholipids with hydrophobic groups of different lengths and phosphorylcholine as the hydrophilic group were concisely synthesized. Ten model drug molecules were selected because of their distinct human fraction absorbed (%FA) values and various pKa characteristics. In vitro drug permeation experiments were designed to determine the effect of the incubation time (4–20 h), pH gradient (4.6–9.32) and carbon chain length (8, 10, 12) on the drug permeability through the synthetic phospholipid membrane in the PAMPA system. The results showed that intensive and significant synthetic phospholipids dependence of permeability influenced by the length of lipid’s hydrophobic carbon chain. The effective permeability constant (Pe) of each drug increased rapidly with time, then decreased slightly after reaching the maximum; the pH gradient changed the drug permeability according to the pH-partition hypothesis for drugs with diverse pKa values; and longer hydrophobic chains in the synthetic phospholipid membrane improved the drug permeability, as observed for all test drugs at almost all incubation time points. This newly proposed PAMPA model considered the synthetic phospholipid membrane and showed good Pe-%FA correlation for the passive transport of drugs, making it a helpful supplementary method for PAMPA systems.
Collapse
Affiliation(s)
- Hui Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
- The Engineering Technology Research Center for Functional Textiles in Higher Education of Guangdong Province, College of Textiles and Clothing, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Qi Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Ming Shen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - He Li
- Traditional Chinese Medicine Department, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- * E-mail: (HL); (YD)
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
- * E-mail: (HL); (YD)
| |
Collapse
|
45
|
Bujard A, Sol M, Carrupt PA, Martel S. Predicting both passive intestinal absorption and the dissociation constant toward albumin using the PAMPA technique. Eur J Pharm Sci 2014; 63:36-44. [DOI: 10.1016/j.ejps.2014.06.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/24/2014] [Accepted: 06/30/2014] [Indexed: 01/16/2023]
|
46
|
Alvarez-Figueroa MJ, Contreras-Garrido BC, Soto-Arriaza MA. Use of DMPC and DSPC lipids for verapamil and naproxen permeability studies by PAMPA. Drug Dev Ind Pharm 2014; 41:658-62. [PMID: 24568608 DOI: 10.3109/03639045.2014.892954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Verapamil and naproxen Parallel Artificial Membrane Permeability Assay (PAMPA) permeability was studied using lipids not yet reported for this model in order to facilitate the quantification of drug permeability. These lipids are 1,2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and an equimolar mixture of DMPC/DSPC, both in the absence and in the presence of 33.3 mol% of cholesterol. PAMPA drug permeability using the lipids mentioned above was compared with lecithin-PC. The results show that verapamil permeability depends on the kind of lipid used, in the order DMPC > DMPC/DSPC > DSPC. The permeability of the drugs was between 1.3 and 3.5-times larger than those obtained in lecithin-PC for all the concentrations of the drug used. Naproxen shows similar permeability than verapamil; however, the permeability increased with respect to lecithin-PC only when DMPC and DMPC/DSPC were used. This behavior could be explained by a difference between the drug net charge at pH 7.4. On the other hand, in the presence of cholesterol, verapamil permeability increases in all lipid systems; however, the relative verapamil permeability respect to lecithin-PC did not show any significant increase. This result is likely due to the promoting effect of cholesterol, which is not able to compensate for the large increase in verapamil permeability observed in lecithin-PC. With respect to naproxen, its permeability value and relative permeability respect lecithin-PC not always increased in the presence of cholesterol. This result is probably attributed to the negative charge of naproxen rather than its molecular weight. The lipid systems studied have an advantage in drug permeability quantification, which is mainly related to the charge of the molecule and not to its molecular weight or to cholesterol used as an absorption promoter.
Collapse
|
47
|
Nitsche JM, Kasting GB. Permeability of fluid-phase phospholipid bilayers: assessment and useful correlations for permeability screening and other applications. J Pharm Sci 2013; 102:2005-2032. [PMID: 23605505 DOI: 10.1002/jps.23471] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 12/20/2012] [Accepted: 01/18/2013] [Indexed: 12/14/2022]
Abstract
Permeability data (P(lip/w) ) for liquid crystalline phospholipid bilayers composed of egg lecithin and dimyristoylphosphatidylcholine (DMPC) are analyzed in terms of a mathematical model that accounts for free surface area and chain-ordering effects in the bilayer as well as size and lipophilicity of the permeating species. Free surface area and chain ordering are largely determined by temperature and cholesterol content of the membrane, molecular size is represented by molecular weight, and lipophilicity of the barrier region is represented by the 1,9-decadiene/water partition coefficient, following earlier work by Xiang, Anderson, and coworkers. A correlating variable χ = MW(n) σ/(1 -σ) is used to link the results from different membrane systems, where different values of n are tried, and σ denotes a reduced phospholipid density. The group (1 -σ)/σ is a measure of free surface area, but can also be interpreted in terms of free volume. A single exponential function of χ is developed that is able to correlate 39 observations of P(lip/w) for different compounds in egg lecithin at low density, and 22 observations for acetic acid in DMPC at higher densities, spanning nine orders of magnitude to within an rms error for log 10 P(lip/w) of 0.20. The best fit found for n = 0.87 ultimately makes χ much closer to the ratio of molecular to free volumes than surface areas. The results serve as a starting point for estimating passive permeability of cell membranes to nonionized solutes as a function of temperature and cholesterol content of the membrane.
Collapse
Affiliation(s)
- Johannes M Nitsche
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, 14260-4200.
| | - Gerald B Kasting
- James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, Ohio, 45267-0004
| |
Collapse
|
48
|
Reis J, Dezani A, Pereira T, Avdeef A, Serra C. Lamivudine permeability study: A comparison between PAMPA, ex vivo and in situ Single-Pass Intestinal Perfusion (SPIP) in rat jejunum. Eur J Pharm Sci 2013; 48:781-9. [DOI: 10.1016/j.ejps.2012.12.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 11/27/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
|
49
|
Liu Y, Zhang W, Li L, Salvador LA, Chen T, Chen W, Felsenstein KM, Ladd TB, Price AR, Golde TE, He J, Xu Y, Li Y, Luesch H. Cyanobacterial Peptides as a Prototype for the Design of Potent β-Secretase Inhibitors and the Development of Selective Chemical Probes for Other Aspartic Proteases. J Med Chem 2012. [DOI: 10.1021/jm301630s] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yanxia Liu
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610,
United States
| | - Wei Zhang
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610,
United States
- School of
Pharmacy, Fudan University, Shanghai 201203,
China
| | - Li Li
- Drug Discovery and
Design Center, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Lilibeth A. Salvador
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610,
United States
| | - Tiantian Chen
- Drug Discovery and
Design Center, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Wuyan Chen
- Drug Discovery and
Design Center, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Kevin M. Felsenstein
- Department of Neuroscience,
Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida 32610,
United States
| | - Thomas B. Ladd
- Department of Neuroscience,
Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida 32610,
United States
| | - Ashleigh R. Price
- Department of Neuroscience,
Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida 32610,
United States
| | - Todd E. Golde
- Department of Neuroscience,
Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida 32610,
United States
| | - Jianhua He
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai
201800, China
| | - Yechun Xu
- Drug Discovery and
Design Center, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yingxia Li
- School of
Pharmacy, Fudan University, Shanghai 201203,
China
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610,
United States
| |
Collapse
|
50
|
Chatterjee J, Rechenmacher F, Kessler H. N-methylation of peptides and proteins: an important element for modulating biological functions. Angew Chem Int Ed Engl 2012; 52:254-69. [PMID: 23161799 DOI: 10.1002/anie.201205674] [Citation(s) in RCA: 360] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Indexed: 11/06/2022]
Abstract
N-Methylation is one of the simplest chemical modifications often occurring in peptides and proteins of prokaryotes and higher eukaryotes. Over years of evolution, nature has employed N-methylation of peptides as an ingenious technique to modulate biological function, often as a mode of survival through the production of antibiotics. This small structural change can not only mobilize large protein complexes (as in the histone methylation), but also inhibits the action of enzymes by selective recognition of protein-protein interaction surfaces. In recent years through the advancement in synthetic approaches, the potential of N-methylation has begun to be revealed, not only in modulating biological activity and selectivity as well as pharmacokinetic properties of peptides, but also in delivering novel drugs. Herein, we summarize the current knowledge of the versatility of N-methylation in modulating biological, structural, and pharmacokinetic properties of peptides.
Collapse
Affiliation(s)
- Jayanta Chatterjee
- Genome biology unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|