1
|
Xia D, Shi Y, Jiang L, Li Y, Kong J. Recent advances in the radical cascade reaction for constructing nitrogen heterocycles using azides as radical acceptors. Org Biomol Chem 2024; 22:5511-5523. [PMID: 38904322 DOI: 10.1039/d4ob00732h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Due to the high conversion properties, azide compounds are widely utilized in organic synthesis. For instance, azide compounds readily release nitrogen to form a new N-C bond when they function as radical acceptors for the active intermediates in the reaction. Over the past decade, strategies employing azides as radical acceptors to construct nitrogen heterocycles have been extensively developed. This approach has emerged as a crucial method for synthesizing nitrogen heterocycles. Therefore, this paper provides a review of the research advancements in tandem cyclization reactions using azides as radical acceptors, summarizing the process of reaction design, exploration, reasoning of the mechanism, and prospects for further research of these reactions.
Collapse
Affiliation(s)
- Dong Xia
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, P. R. China.
| | - Yun Shi
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, P. R. China.
| | - Liying Jiang
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, P. R. China.
| | - Yang Li
- School of Bioengineering, Huainan Normal University, Huainan, 232038, P. R. China.
| | - Jianfei Kong
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, P. R. China.
| |
Collapse
|
2
|
Rodríguez DF, Lipez KJ, Stashenko E, Díaz I, Cobo J, Palma A. Alternative and efficient one-pot three-component synthesis of substituted 2-aryl-4-styrylquinazolines/4-styrylquinazolines from synthetically available 1-(2-aminophenyl)-3-arylprop-2-en-1-ones: characterization and evaluation of their antiproliferative activities. RSC Adv 2024; 14:20951-20965. [PMID: 38957579 PMCID: PMC11218040 DOI: 10.1039/d4ra03702b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/15/2024] [Indexed: 07/04/2024] Open
Abstract
In this study, an alternative and efficient one-pot three-component synthesis approach to develop a new series of (E)-2-aryl-4-styrylquinazolines and (E)-4-styrylquinazolines is described. According to this approach, the target compounds were synthesized straightforward in high yields and in short reaction times from substituted 1-(2-aminophenyl)-3-arylprop-2-en-1-ones via its well-Cu(OAc)2-mediated cyclocondensation reactions with aromatic aldehydes or its well-catalyst-free cyclocondensation reactions with trimethoxy methane (trimethyl orthoformate), and ammonium acetate under aerobic conditions. This is an operationally simple, valuable, and direct method to synthesize 2-aryl- and non-C2-substituted quinazolines containing a styryl framework at C4 position from cheap and synthetically available starting materials. All the synthesized compounds were submitted to the US National Cancer Institute for in vitro screening. The bromo- and chloro-substituted quinazolines 5c and 5d displayed a potent antitumor activity against all the tested subpanel tumor cell lines with IC50 (MG-MID) values of 5.25 and 5.50 μM, and a low cytotoxic effect with LC50 (MG-MID) values of 91.20 and 84.67 μM, respectively, indicating a low toxicity of these compounds to normal human cell lines, as required for potential antitumor agents.
Collapse
Affiliation(s)
- Diego Fernando Rodríguez
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander AA 678 Bucaramanga Colombia
| | - Kelly Johanna Lipez
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander AA 678 Bucaramanga Colombia
| | - Elena Stashenko
- National Research Center for the Agroindustrialization of Aromatic and Medicinal Tropical Species (CENIVAM), Universidad Industrial de Santander Colombia
| | - Iván Díaz
- Departamento de Química Inorgánica y Orgánica, Universidad de Jaén Spain
| | - Justo Cobo
- Departamento de Química Inorgánica y Orgánica, Universidad de Jaén Spain
| | - Alirio Palma
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander AA 678 Bucaramanga Colombia
| |
Collapse
|
3
|
Nandi S, Jamatia R, Sarkar R, Sarkar FK, Alam S, Pal AK. One‐Pot Multicomponent Reaction: A Highly Versatile Strategy for the Construction of Valuable Nitrogen‐Containing Heterocycles. ChemistrySelect 2022. [DOI: 10.1002/slct.202201901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sibaji Nandi
- Department of Chemistry North-Eastern Hill University Shillong Meghalaya 793022 India
| | - Ramen Jamatia
- Department of Chemistry Rajiv Gandhi University, Rono Hills, Doimukh Arunachal Pradesh 791112 India
| | - Rajib Sarkar
- Department of Chemistry North-Eastern Hill University Shillong Meghalaya 793022 India
| | - Fillip Kumar Sarkar
- Department of Chemistry North-Eastern Hill University Shillong Meghalaya 793022 India
| | - Safiul Alam
- Department of Chemistry Aliah University, IIA/27, New Town Kolkata 700160 India
| | - Amarta Kumar Pal
- Department of Chemistry North-Eastern Hill University Shillong Meghalaya 793022 India
| |
Collapse
|
4
|
Sohail M, Bilal M, Maqbool T, Rasool N, Ammar M, Mahmood S, Malik A, Zubair M, Abbas Ashraf G. Iron-catalyzed synthesis of N-heterocycles via intermolecular and intramolecular cyclization reactions: A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
5
|
Wu J, Yu X, Zhong L, Jin K, Zhao G, Zhu J, Shi H, Wei Y. Dimethyl Sulfoxide as Methyl Source for the Synthesis of Quinazolinones under Metal‐Free Conditions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Xiaoxiao Yu
- Anhui Science and Technology University College of Chemistry and Materials Engineering CHINA
| | - Liangchen Zhong
- Anhui Science and Technology University College of Chemistry and Materials Engineering CHINA
| | - Kejun Jin
- Anhui Science and Technology University College of Chemistry and Materials Engineering CHINA
| | - Guoxu Zhao
- Anhui Science and Technology University College of Chemistry and Materials Engineering CHINA
| | - Jianye Zhu
- Anhui Science and Technology University College of Chemistry and Materials Engineering CHINA
| | - Haowen Shi
- Anhui Science and Technology University College of Chemistry and Materials Engineering CHINA
| | - Yuanyuan Wei
- Anhui Science and Technology University College of Chemistry and Materials Engineering CHINA
| |
Collapse
|
6
|
Sarkar R, Gajurel S, Gupta A, Kumar Pal A. Synergistic Catalysis by Copper Oxide/Graphene Oxide Nanocomposites: A Facile Approach to Prepare Quinazolines and Quinazoline Containing Triazole/Tetrazole Moieties under Mild Reaction Conditions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rajib Sarkar
- Department of Chemistry, Centre for Advanced Studies North-Eastern Hill University Shillong 793022 India
| | - Sushmita Gajurel
- Department of Chemistry, Centre for Advanced Studies North-Eastern Hill University Shillong 793022 India
| | - Ajay Gupta
- Department of Chemistry, Centre for Advanced Studies North-Eastern Hill University Shillong 793022 India
| | - Amarta Kumar Pal
- Department of Chemistry, Centre for Advanced Studies North-Eastern Hill University Shillong 793022 India
| |
Collapse
|
7
|
S. M, Narasaiah BP, B. H, G. L. B, Pradeepkiran JA, Padhy H. Sunflower-Assisted Bio-Derived ZnO-NPs as an Efficient Nanocatalyst for the Synthesis of Novel Quinazolines with Highly Antioxidant Activities. Antioxidants (Basel) 2022; 11:antiox11040688. [PMID: 35453373 PMCID: PMC9025409 DOI: 10.3390/antiox11040688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
The present report presents a green method for the rapid biogenic synthesis of nanoparticles that offers several advantages over the current chemical and physical procedures. It is easy and fast, eco-friendly, and does not involve any precious elements, hazardous chemicals, or harmful solvents. The synthesized ZnO nanoparticles were characterized using different techniques, such as UV-Visible spectroscopy. The surface plasmon resonance confirmed the formation of ZnO nanoparticles at 344 nm, using UV-Visible spectroscopy. The leaf extract acts as a source of phytochemicals and is primarily used for the reduction and then the formation of stable ZnO nanoparticles by the characteristic functional groups of the extract; the synthesized ZnO nanoparticles were identified using FTIR spectroscopy. The crystalline nature of ZnO-NPs was confirmed via powder X-ray diffraction (XRD). Size and morphology were measured via high resolution transmission electron microscopy (HR-TEM) analysis. The stability of the nanoparticles is established using dynamic light scattering (DLS) and thermogravimetric analysis (TGA). The synthesized ZnO nanoparticles have been found to be a good and efficient catalyst for the synthesis of novel 1,2-dihydro quinazoline derivatives under the green method via a one-pot reaction of 2-amino benzophenone, 1,3-diphenyl-1H-pyrazole carbaldehydes, and ammonium acetate. The synthesized compounds (4a–o) were characterized by the 1H NMR, 13C NMR, and HRMS spectra and were further validated for free-radical scavenging activity. The synthesized ZnO nanoparticles exhibited good antioxidant activity.
Collapse
Affiliation(s)
- Mahesh S.
- PG&Research Department of Chemistry, Thanthai Hans Roever Collage (Autonomous), Affiliated to Bharathidasan University, Perambalur 621220, India;
| | | | - Himabindu B.
- Department of Zoology, Sri Venkateswara University, Tirupati 517502, India;
| | - Balaji G. L.
- PG&Research Department of Chemistry, Thanthai Hans Roever Collage (Autonomous), Affiliated to Bharathidasan University, Perambalur 621220, India;
- Department of Chemistry, School of Advance Science and Languages, VIT Bhopal University, Bhopal 466114, India;
- Correspondence: (G.L.B.); (J.A.P.)
| | - Jangampalli Adi Pradeepkiran
- Department of Zoology, Sri Venkateswara University, Tirupati 517502, India;
- Department of Internal Medicine, Texas Tech University of Health Science Centre, Lubbock, TX 79415, USA
- Correspondence: (G.L.B.); (J.A.P.)
| | - Harihara Padhy
- Department of Chemistry, School of Advance Science and Languages, VIT Bhopal University, Bhopal 466114, India;
- Department of Chemistry, GITAM Institute of Science, GITAM (Deemed to be University), Visakapatnam 530045, India
| |
Collapse
|
8
|
Snizhko AD, Kyrychenko AV, Gladkov ES. Synthesis of Novel Derivatives of 5,6,7,8-Tetrahydroquinazolines Using α-Aminoamidines and In Silico Screening of Their Biological Activity. Int J Mol Sci 2022; 23:3781. [PMID: 35409144 PMCID: PMC8999073 DOI: 10.3390/ijms23073781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023] Open
Abstract
α-Aminoamidines are promising reagents for the synthesis of a diverse family of pyrimidine ring derivatives. Here, we demonstrate the use of α-aminoamidines for the synthesis of a new series of 5,6,7,8-tetrahydroquinazolines by their reaction with bis-benzylidene cyclohexanones. The reaction occurs in mild conditions and is characterized by excellent yields. It has easy workup, as compared to the existing methods of tetrahydroquinazoline preparation. Newly synthesized derivatives of 5,6,7,8-tetrahydroquinazoline bear protecting groups at the C2-tert-butyl moiety of a quinazoline ring, which can be easily cleaved, opening up further opportunities for their functionalization. Moreover, molecular docking studies indicate that the synthesized compounds reveal high binding affinity toward some essential enzymes of Mycobacterial tuberculosis, such as dihydrofolate reductase (DHFR), pantothenate kinase (MtPanK), and FAD-containing oxidoreductase DprE1 (MtDprE1), so that they may be promising candidates for the molecular design and the development of new antitubercular agents against multidrug-resistant strains of the Tubercle bacillus. Finally, the high inhibition activity of the synthesized compounds was also predicted against β-glucosidase, suggesting a novel tetrahydroquinazoline scaffold for the treatment of diabetes.
Collapse
Affiliation(s)
- Arsenii D. Snizhko
- Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine; (A.D.S.); (A.V.K.)
| | - Alexander V. Kyrychenko
- Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine; (A.D.S.); (A.V.K.)
| | - Eugene S. Gladkov
- Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine; (A.D.S.); (A.V.K.)
- State Scientific Institution “Institute for Single Crystals”, National Academy of Sciences of Ukraine, 60 Nauky Ave, 61072 Kharkiv, Ukraine
| |
Collapse
|
9
|
Kumar P, Tomar V, Kumar D, Joshi RK, Nemiwal M. Magnetically active iron oxide nanoparticles for catalysis of organic transformations: A review. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Wang F, Zhu F, Ren E, Zhang Q, Lu GP, Lin Y. Fe–FeO x nanoparticles encapsulated in N-doped carbon material: a facile catalyst for selective synthesis of quinazolines from alcohols in water. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01562e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Fe–FeOx@NC catalyst with N-doped carbon encapsulated Fe–FeOx nanoparticles has excellent performance in the synthesis of quinazolines.
Collapse
Affiliation(s)
- Fei Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Fuying Zhu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Enxiang Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Qiang Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Guo-Ping Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China
| | - Yamei Lin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
11
|
Fan W, Huang Z, Xu X, Tu G, Geng J, Ji S, Zhao Y. Efficient Synthesis of Quinazolines from Aryl Imidates and
N
‐Alkoxyamide by Ir(III)‐Catalyzed C−H Amidation/Cyclization. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Wei‐Tai Fan
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry, Chemical, Engineering and Materials Science Soochow University 199 Renai Street Suzhou Jiangsu 215123 China
| | - Zhibin Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry, Chemical, Engineering and Materials Science Soochow University 199 Renai Street Suzhou Jiangsu 215123 China
| | - Xu Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry, Chemical, Engineering and Materials Science Soochow University 199 Renai Street Suzhou Jiangsu 215123 China
| | - Guangliang Tu
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry, Chemical, Engineering and Materials Science Soochow University 199 Renai Street Suzhou Jiangsu 215123 China
| | - Jingyao Geng
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry, Chemical, Engineering and Materials Science Soochow University 199 Renai Street Suzhou Jiangsu 215123 China
| | - Shun‐Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry, Chemical, Engineering and Materials Science Soochow University 199 Renai Street Suzhou Jiangsu 215123 China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry, Chemical, Engineering and Materials Science Soochow University 199 Renai Street Suzhou Jiangsu 215123 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453000 China
| |
Collapse
|
12
|
Palladium-catalyzed carbonylative synthesis of quinazolines: Silane act as better nucleophile than amidine. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Malamiri F, Khaksar S, Badri R, Tahanpesar E. Organocatalytic Combinatorial Synthesis of Quinazoline, Quinoxaline and Bis(indolyl)methanes. Comb Chem High Throughput Screen 2021; 23:83-88. [PMID: 31838991 DOI: 10.2174/1386207323666191213123026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/24/2019] [Accepted: 11/29/2019] [Indexed: 11/22/2022]
Abstract
AIMS AND OBJECTIVE An efficient and practical procedure for the synthesis of heterocyclic compounds such as quinazolines, quinoxalines and bis(indolyl)methanes was developed using 3,5-bis(trifluoromethyl) phenyl ammonium hexafluorophosphate (BFPHP) as a novel organocatalyst. MATERIALS AND METHODS All of the obtained products are known compounds and identified by IR, 1HNMR, 13CNMR and melting points. RESULT Various products were obtained in good to excellent yields under reaction conditions. CONCLUSION The BFPHP organocatalyst demonstrates a novel class of non-asymmetric organocatalysts, which has gained much attention in green chemistry.
Collapse
Affiliation(s)
- Fatemeh Malamiri
- Department of Chemistry, Khouzestan Science and Research Branch, Islamic Azad University, Ahvaz, Iran
| | - Samad Khaksar
- Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.,School of Science and Technology, The University of Georgia, Tbilisi, Georgia
| | - Rashid Badri
- Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Elham Tahanpesar
- Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| |
Collapse
|
14
|
Cuthbertson CR, Arabzada Z, Bankhead A, Kyani A, Neamati N. A Review of Small-Molecule Inhibitors of One-Carbon Enzymes: SHMT2 and MTHFD2 in the Spotlight. ACS Pharmacol Transl Sci 2021; 4:624-646. [PMID: 33860190 DOI: 10.1021/acsptsci.0c00223] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 02/06/2023]
Abstract
Metabolic reprogramming is a key hallmark of cancer and shifts cellular metabolism to meet the demands of biomass production necessary for abnormal cell reproduction. One-carbon metabolism (1CM) contributes to many biosynthetic pathways that fuel growth and is comprised of a complex network of enzymes. Methotrexate and 5-fluorouracil were pioneering drugs in this field and are still widely used today as anticancer agents as well as for other diseases such as arthritis. Besides dihydrofolate reductase and thymidylate synthase, two other enzymes of the folate cycle arm of 1CM have not been targeted clinically: serine hydroxymethyltransferase (SHMT) and methylenetetrahydrofolate dehydrogenase (MTHFD). An increasing body of literature suggests that the mitochondrial isoforms of these enzymes (SHMT2 and MTHFD2) are clinically relevant in the context of cancer. In this review, we focused on the 1CM pathway as a target for cancer therapy and, in particular, SHMT2 and MTHFD2. The function, regulation, and clinical relevance of SHMT2 and MTHFD2 are all discussed. We expand on previous clinical studies and evaluate the prognostic significance of these critical enzymes by performing a pan-cancer analysis of patient data from the The Cancer Genome Atlas and a transcriptional coexpression network enrichment analysis. We also provide an overview of preclinical and clinical inhibitors targeting the folate pathway, the methionine cycle, and folate-dependent purine biosynthesis enzymes.
Collapse
Affiliation(s)
- Christine R Cuthbertson
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Zahra Arabzada
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Armand Bankhead
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan 48109, United States.,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Armita Kyani
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
15
|
Wang C, Fan X, Chen F, Qian PC, Cheng J. Vinylene carbonate: beyond the ethyne surrogate in rhodium-catalyzed annulation with amidines toward 4-methylquinazolines. Chem Commun (Camb) 2021; 57:3929-3932. [DOI: 10.1039/d1cc00882j] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Vinylene carbonate: acetylation reagent rather than ethyne surrogate in rhodium-catalyzed annulation with amidines toward 4-methylquinazolines.
Collapse
Affiliation(s)
- Chang Wang
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University
- Wenzhou
- P. R. China
| | - Xiaodong Fan
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University
- Wenzhou
- P. R. China
| | - Fan Chen
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University
- Wenzhou
- P. R. China
| | - Peng-Cheng Qian
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University
- Wenzhou
- P. R. China
| | - Jiang Cheng
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University
- Wenzhou
- P. R. China
| |
Collapse
|
16
|
Jang Y, Lee SB, Hong J, Chun S, Lee J, Hong S. Synthesis of 2-aryl quinazolinones via iron-catalyzed cross-dehydrogenative coupling (CDC) between N-H and C-H bonds. Org Biomol Chem 2020; 18:5435-5441. [PMID: 32633314 DOI: 10.1039/d0ob00866d] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Herein, we describe the direct synthesis of quinazolinones via cross-dehydrogenative coupling between methyl arenes and anthranilamides. The C-H functionalization of the benzylic sp3 carbon is achieved by di-t-butyl peroxide under air, and the subsequent amination-aerobic oxidation process completes the annulation process. Iron catalyzed the whole reaction process and various kinds of functional groups were tolerated under the reaction conditions, providing 31 examples of 2-aryl quinazolinones using methyl arene derivatives in yields of 57-95%. The synthetic potential has been demonstrated by the additional synthesis of aryl-containing heterocycles.
Collapse
Affiliation(s)
- Yoonkyung Jang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Seok Beom Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Junhwa Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Simin Chun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Jeeyeon Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Suckchang Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
17
|
Bose DS, Ramesh N. A convenient access to 2,4-disubstituted quinazolines via one-pot three-component reaction under mild conditions †. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1744014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- D. Subhas Bose
- Organic and Biomolecular Chemistry Division, Department of Energy and Environmental Engineering, Fine Chemicals Lab, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Nukala Ramesh
- Organic and Biomolecular Chemistry Division, Department of Energy and Environmental Engineering, Fine Chemicals Lab, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| |
Collapse
|
18
|
Kovalenko SM, Drushlyak OG, Mariutsa IO. One-pot synthesis of novel fused mesoionic compounds: 1-substituted-5-thioxo-5,6-dihydro-[1,2,4]triazolo[1,5-c]quinazolin-1-ium-2-thiolates. J Sulphur Chem 2020. [DOI: 10.1080/17415993.2020.1742714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Sergiy M. Kovalenko
- Department of Organic Chemistry, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | | | - Illia O. Mariutsa
- Faculty of Pharmacy, The National University of Pharmacy, Kharkiv, Ukraine
| |
Collapse
|
19
|
Solvent-free synthesis of isoindolo[2,1-c]pyrazolo[1,5-a]quinazoline and pyrazolo[5',1':2,3]pyrimido[6,1-a]isoindol derivatives through a one-pot three-component reaction. Mol Divers 2020; 25:1123-1130. [PMID: 32076910 DOI: 10.1007/s11030-020-10052-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/07/2020] [Indexed: 12/24/2022]
Abstract
Some 5-substituted 3-aminopyrazoles were used for the synthesis of isoindolo[2,1-c]pyrazolo[1,5-a]quinazoline and pyrazolo[5',1':2,3]pyrimido[6,1-a]isoindol derivatives via a mild and efficient one-pot three-component reaction with 2-formylbenzoic acid and different CH-acids under solvent-free condition.
Collapse
|
20
|
Gujjarappa R, Vodnala N, Reddy VG, Malakar CC. Niacin as a Potent Organocatalyst towards the Synthesis of Quinazolines Using Nitriles as C-N Source. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901651] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Raghuram Gujjarappa
- Department of Chemistry; National Institute of Technology Manipur, Langol; 795004 Imphal Manipur India
| | - Nagaraju Vodnala
- Department of Chemistry; National Institute of Technology Manipur, Langol; 795004 Imphal Manipur India
| | - Velma Ganga Reddy
- Centre for Advanced Materials & Industrial Chemistry (CAMIC); School of Science; RMIT University; GPO Box 2476 3001 Melbourne Australia
| | - Chandi C. Malakar
- Department of Chemistry; National Institute of Technology Manipur, Langol; 795004 Imphal Manipur India
| |
Collapse
|
21
|
Synthesis of a structure containing three N-fused heterocycles with very high bond-forming through a one-pot reaction. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.130923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Yogesh Kumar GR, Begum NS, Mohammed Imran K. Mn-mediated oxidative radical cyclization of 2-(azidomethyl)phenyl isocyanides with carbazate: access to quinazoline-2-carboxylates. NEW J CHEM 2020. [DOI: 10.1039/d0nj00479k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mn-TBHP mediated oxidative radical cyclization of 2-(azidomethyl)phenyl isocyanides using methyl carbazate has been described.
Collapse
Affiliation(s)
| | - Noor Shahina Begum
- Department of Studies in Chemistry
- Bangalore University
- Jnana Bharathi Campus
- Bangalore 560056
- India
| | - Khan Mohammed Imran
- Department of Studies in Chemistry
- Bangalore University
- Jnana Bharathi Campus
- Bangalore 560056
- India
| |
Collapse
|
23
|
Chan CK, Lai CY, Wang CC. TMSOTf-catalyzed synthesis of substituted quinazolines using hexamethyldisilazane as a nitrogen source under neat and microwave irradiation conditions. Org Biomol Chem 2020; 18:7201-7212. [DOI: 10.1039/d0ob01507e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An efficient synthetic route for the synthesis of substituted quinazolines under neat, metal-free and microwave irradiation conditions has been developed by using TMSOTf as an acid catalyst and HMDS as a nitrogen source.
Collapse
Affiliation(s)
| | - Chien-Yu Lai
- Institute of Chemistry
- Academia Sinica
- Taipei 115
- Taiwan
| | | |
Collapse
|
24
|
Mehta S, Kumar S, Marwaha RK, Narasimhan B, Ramasamy K, Lim SM, Shah SAA, Mani V. Synthesis, molecular docking and biological potentials of new 2-(4-(2-chloroacetyl) piperazin-1-yl)- N-(2-(4-chlorophenyl)-4-oxoquinazolin-3(4 H)-yl)acetamide derivatives. BMC Chem 2019; 13:113. [PMID: 31517312 PMCID: PMC6727350 DOI: 10.1186/s13065-019-0629-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/24/2019] [Indexed: 12/04/2022] Open
Abstract
In the present study, a series of 2-(4-(2-chloroacetyl)piperazin-1-yl)-N-(2-(4-chlorophenyl)-4-oxoquinazolin-3(4H)-yl)acetamide derivatives was synthesized and its chemical structures were confirmed by physicochemical and spectral characteristics. The synthesized compounds were evaluated for their in vitro antimicrobial (tube dilution technique) and anticancer (MTT assay) activities along with molecular docking study by Schrodinger 2018-1, maestro v11.5. The antimicrobial results indicated that compounds 3, 8, 11 and 12 displayed the significant antimicrobial activity and comparable to the standards drugs (ciprofloxacin and fluconazole). The anticancer activity results indicated that compound 5 have good anticancer activity among the synthesized compounds but lower active than the standard drugs (5-fluorouracil and tomudex). Molecular docking study demonstrated that compounds 5 and 7 displayed the good docking score with better anticancer potency within the binding pocket and these compounds may be used as a lead for rational drug designing for the anticancer molecules.
Collapse
Affiliation(s)
- Shinky Mehta
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001 India
| | - Sanjiv Kumar
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001 India
| | - Rakesh Kumar Marwaha
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001 India
| | | | - Kalavathy Ramasamy
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor Darul Ehsan Malaysia
- Collaborative Drug Discovery Research (CDDR) Group, Pharmaceutical Life Sciences Community of Research, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor Darul Ehsan Malaysia
| | - Siong Meng Lim
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor Darul Ehsan Malaysia
- Collaborative Drug Discovery Research (CDDR) Group, Pharmaceutical Life Sciences Community of Research, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor Darul Ehsan Malaysia
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor Darul Ehsan Malaysia
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA, 42300 Bandar Puncak Alam, Selangor Darul Ehsan Malaysia
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, 51452 Kingdom of Saudi Arabia
| |
Collapse
|
25
|
Efficient and green sulfamic acid catalyzed synthesis of new 1,2-dihydroquinazoline derivatives with antibacterial potential. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
26
|
Synthesis of substituted tryptanthrin via aryl halides and amines as antitumor and anti-MRSA agents. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.05.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Ren J, Pi C, Wu Y, Cui X. Copper-Catalyzed Oxidative [4 + 2]-Cyclization Reaction of Glycine Esters with Anthranils: Access to 3,4-Dihydroquinazolines. Org Lett 2019; 21:4067-4071. [DOI: 10.1021/acs.orglett.9b01246] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jie Ren
- Department of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Chao Pi
- Department of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Yangjie Wu
- Department of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiuling Cui
- Department of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, P. R. China
| |
Collapse
|
28
|
Srivastava V. Hydrotalcite Clay+[TBA][OH] Ionic Liquid Combination for Selective Dihydroquinazolines. CURRENT ORGANOCATALYSIS 2019. [DOI: 10.2174/2213337206666190228111913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
We are submitting an easy, effective and environmentally benign protocol
for the synthesis of 18 different 1,2-dihydroquinazoline derivatives.
Methods:
We implemented [TMA][OH] ionic liquid mediated hydrotalcite clay catalytic system as a
green catalyst to perform this reaction.
Results:
Three-component reaction pathway was utilized to synthesize 1,2-dihydroquinazoline derivatives
using aromatic aldehydes, 2-amino benzophenones, and ammonium acetate with green and recyclable
ionic liquid mediated hydrotalcite clay catalytic system.
Conclusion:
The notable highlights of this method comprise short reaction time, operational simplicity,
high yields, and high selectivity. Additionally, the catalyst can be recovered and recycled for up
to eight cycles without any loss in catalytic activity.
Collapse
Affiliation(s)
- Vivek Srivastava
- Basic Sciences: Chemistry, NIIT University, NH-8 Jaipur/Delhi Highway, Neemrana (Rajasthan), India
| |
Collapse
|
29
|
Shariati M, Imanzadeh G, Rostami A, Ghoreishy N, Kheirjou S. Application of laccase/DDQ as a new bioinspired catalyst system for the aerobic oxidation of tetrahydroquinazolines and Hantzsch 1,4-dihydropyridines. CR CHIM 2019. [DOI: 10.1016/j.crci.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Hada S, Khan Zai MS, Roat P, Verma VP, Shah AK, Yadav DK, Kumari N. Metal-Free Graphene Oxide Promoted a Novel Multicomponent Reaction for the Synthesis of 3-Substituted Quinazolinones Using DMSO as One Carbon Synthon. ChemistrySelect 2019. [DOI: 10.1002/slct.201803623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sonal Hada
- Department of Chemistry; Mohanlal Sukhadia University; Udaipur 313001 India
| | | | - Priyanka Roat
- Department of Chemistry; Mohanlal Sukhadia University; Udaipur 313001 India
| | - Ved Prakash Verma
- Department of Chemistry; Banasthali University; Newai-Jodhpuriya Road Vanasthali 304022 India
| | - Anuj Kumar Shah
- School of Engineering and Technology; Jaipur National University; Jaipur 302017 India
| | - Dinesh Kumar Yadav
- Department of Chemistry; Mohanlal Sukhadia University; Udaipur 313001 India
| | - Neetu Kumari
- Department of Chemistry; Mohanlal Sukhadia University; Udaipur 313001 India
| |
Collapse
|
31
|
PI3K Inhibitors of Novel Hydrazide Analogues Linked 2-Pyridinyl Quinazolone Scaffold as Anticancer Agents. J CHEM-NY 2019. [DOI: 10.1155/2019/6321573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A series of novel 2-(pyridin-4-yl)quinazolin-4(3H)-ones bearing different heterocycle cores as potential PI3K inhibitors have been synthesized and evaluated via the MTT assay for their antiproliferative properties against selected HePG-2, MCF-7, and HCT116 cancer cell lines. Among them, compound 9 displayed significant activity against HePG-2 (IC50 = 60.29 ± 1.06 μM) comparable to doxorubicin as a reference anticancer drug (IC50 = 69.60 ± 1.50 μM). Kinase inhibitory assessment of target products against PI3K and docking studies revealed the promising binding affinities which match with the binding mode of the ligand, SW13 towards the active site of PI3K. Therefore, this work represents a promising matrix for developing novel potential anticancer candidates.
Collapse
|
32
|
Guo W, Zhao M, Tan W, Zheng L, Tao K, Fan X. Developments towards synthesis of N-heterocycles from amidines via C–N/C–C bond formation. Org Chem Front 2019. [DOI: 10.1039/c9qo00283a] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review focuses on the synthesis of N-heterocycles using amidines as starting materials, with an emphasis on the mechanisms of these reactions via C–N/C–C bond formation.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Mingming Zhao
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Wen Tan
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Lvyin Zheng
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Kailiang Tao
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Xiaolin Fan
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| |
Collapse
|
33
|
Radhakrishnan K, Das S, Kundu LM. Synthesis of Size‐Expanded Nucleobase Analogues for Artificial Base‐Pairing Using a Ligand‐Free, Microwave‐Assisted Copper(I)‐Catalyzed Reaction. ChemistrySelect 2018. [DOI: 10.1002/slct.201802455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- K Radhakrishnan
- Department of ChemistryIndian Institute of Technology Guwahati 781039 Assam India
| | - Soumi Das
- Department of ChemistryIndian Institute of Technology Guwahati 781039 Assam India
| | - Lal Mohan Kundu
- Department of ChemistryIndian Institute of Technology Guwahati 781039 Assam India
| |
Collapse
|
34
|
Zheng Y, Tu L, Li N, Huang R, Feng T, Sun H, Li Z, Liu J. Inverse‐Electron‐Demand [4+2]‐Cycloaddition of 1,3,5‐triazinanes: Facile Approaches to Tetrahydroquinazolines. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801063] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yongsheng Zheng
- School of Pharmaceutical SciencesSouth-Central University of Nationalities, Wuhan 430074 People's Republic of China
| | - Liang Tu
- School of Pharmaceutical SciencesSouth-Central University of Nationalities, Wuhan 430074 People's Republic of China
| | - Na Li
- School of Pharmaceutical SciencesSouth-Central University of Nationalities, Wuhan 430074 People's Republic of China
| | - Rong Huang
- School of Pharmaceutical SciencesSouth-Central University of Nationalities, Wuhan 430074 People's Republic of China
| | - Tao Feng
- School of Pharmaceutical SciencesSouth-Central University of Nationalities, Wuhan 430074 People's Republic of China
| | - Huan Sun
- School of Pharmaceutical SciencesSouth-Central University of Nationalities, Wuhan 430074 People's Republic of China
| | - Zhenghui Li
- School of Pharmaceutical SciencesSouth-Central University of Nationalities, Wuhan 430074 People's Republic of China
| | - Jikai Liu
- School of Pharmaceutical SciencesSouth-Central University of Nationalities, Wuhan 430074 People's Republic of China
| |
Collapse
|
35
|
Zhang W, Zhang X, Ma X, Zhang W. One-pot synthesis of dihydroquinazolinethione-based polycyclic system. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.09.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Eidi E, Kassaee MZ, Nasresfahani Z, Cummings PT. Synthesis of quinazolines over recyclable Fe3
O4
@SiO2
-PrNH2
-Fe3+
nanoparticles: A green, efficient, and solvent-free protocol. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4573] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Esmaiel Eidi
- Department of Chemistry; Tarbiat Modares University; P.O. Box 14155-175 Tehran Iran
| | | | - Zahra Nasresfahani
- Department of Chemistry; Tarbiat Modares University; P.O. Box 14155-175 Tehran Iran
| | - Peter T. Cummings
- Chemical and Biomolecular Engineering; Vanderbilt University; Nashville TN 37240 USA
| |
Collapse
|
37
|
Gujjarappa R, Maity SK, Hazra CK, Vodnala N, Dhiman S, Kumar A, Beifuss U, Malakar CC. Divergent Synthesis of Quinazolines Using Organocatalytic Domino Strategies under Aerobic Conditions. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800746] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Raghuram Gujjarappa
- Department of Chemistry; National Institute of Technology Manipur; 795004 Langol, Imphal Manipur India
| | - Suvik K. Maity
- Department of Chemistry; National Institute of Technology Manipur; 795004 Langol, Imphal Manipur India
| | - Chinmoy K. Hazra
- Department of Chemistry; Korea Advanced Institute of Science & Technology (KAIST); 34141 Daejeon 305 - 701 South Korea
| | - Nagaraju Vodnala
- Department of Chemistry; National Institute of Technology Manipur; 795004 Langol, Imphal Manipur India
| | - Shiv Dhiman
- Department of Chemistry; BITS Pilani; Pilani Campus 333031 Pilani Rajasthan India
| | - Anil Kumar
- Department of Chemistry; BITS Pilani; Pilani Campus 333031 Pilani Rajasthan India
| | - Uwe Beifuss
- Institut für Chemie; Universität Hohenheim; Garbenstr. 30 70599 Stuttgart Germany
| | - Chandi C. Malakar
- Department of Chemistry; National Institute of Technology Manipur; 795004 Langol, Imphal Manipur India
| |
Collapse
|
38
|
Parua S, Sikari R, Sinha S, Chakraborty G, Mondal R, Paul ND. Accessing Polysubstituted Quinazolines via Nickel Catalyzed Acceptorless Dehydrogenative Coupling. J Org Chem 2018; 83:11154-11166. [DOI: 10.1021/acs.joc.8b01479] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Seuli Parua
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Rina Sikari
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Suman Sinha
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Gargi Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D. Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
39
|
Assiri MA, Ali TE, El-Edfawy SM, Yahia IS. Synthesis and Characterization of Some Novel Phosphorylated 4-Oxo-2-phenylquinazolines. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mohammed A. Assiri
- Advanced Materials and Green Chemistry, Chemistry Department, Faculty of Science; King Khalid University; Abha Saudi Arabia
- Research Center for Advanced Materials Science; King Khalid University; Abha Saudi Arabia
| | - Tarik E. Ali
- Department of Chemistry, Faculty of Education; Ain Shams University; Roxy Cairo Egypt
| | - Somaya M. El-Edfawy
- Department of Chemistry, Faculty of Education; Ain Shams University; Roxy Cairo Egypt
| | - I. S. Yahia
- Advanced Functional Materials & Optoelectronic Laboratory, Department of Physics, Faculty of Science; King Khalid University; Abha Saudi Arabia
- Nanoscience Laboratory for Environmental and Bio-medical Applications, Semiconductor Lab., Department of Physics, Faculty of Education; Ain Shams University; Roxy Cairo Egypt
| |
Collapse
|
40
|
Kumar NR, Swaroop DK, Punna N, Sirisha K, Ganapathi T, Kumar CG, Narsaiah B. Synthesis of Novel Pyrido[2′, 3′:3,4]Pyrazolo[1, 5‐
a
]Quinazoline Derivatives, Their Biological Evaluation and Molecular Modelling Studies. ChemistrySelect 2018. [DOI: 10.1002/slct.201801186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nagiri Ravi Kumar
- Fluoroorganic divisionCSIR-Indian Institute of Chemical Technology, Tarnaka Hyderabad-500607 India
| | | | - Nagender Punna
- Fluoroorganic divisionCSIR-Indian Institute of Chemical Technology, Tarnaka Hyderabad-500607 India
| | - Kanugala Sirisha
- Medicinal Chemistry and Pharmacology DivisionCSIR-Indian Institute of Chemical Technology
| | - Thipparapu Ganapathi
- Stem Cell Research DivisionDepartment of BiochemistryNational Institute of Nutrition (NIN), Indian Council of Medical Research (ICMR) Hyderabad-500007 Telangana India
| | - Chityal Ganesh Kumar
- Medicinal Chemistry and Pharmacology DivisionCSIR-Indian Institute of Chemical Technology
| | - Banda Narsaiah
- Fluoroorganic divisionCSIR-Indian Institute of Chemical Technology, Tarnaka Hyderabad-500607 India
| |
Collapse
|
41
|
Bodhak C, Hazra S, Pramanik A. Graphene Oxide: An Efficient Carbocatalyst for the Facile Synthesis of Isoindolo[2, 1‐
a
]quinazoline‐5,11‐diones via Domino Condensation under Solvent‐Free Conditions. ChemistrySelect 2018. [DOI: 10.1002/slct.201801322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Chandan Bodhak
- Department of ChemistryUniversity of Calcutta, 92, A. P. C. Road Kolkata-700 009 India
| | - Subhenjit Hazra
- Department of ChemistryUniversity of Calcutta, 92, A. P. C. Road Kolkata-700 009 India
| | - Animesh Pramanik
- Department of ChemistryUniversity of Calcutta, 92, A. P. C. Road Kolkata-700 009 India
| |
Collapse
|
42
|
Devthade V, Kamble G, Ghugal SG, Chikhalia KH, Umare SS. Visible Light-Driven Biginelli Reaction over Mesoporous g-C3
N4
Lewis-Base Catalyst. ChemistrySelect 2018. [DOI: 10.1002/slct.201800591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vidyasagar Devthade
- Materials and Catalysis Laboratory; Department of Chemistry; Visvesvaraya National Institute of Technology (VNIT); Nagpur India
| | | | - Sachin G Ghugal
- Materials and Catalysis Laboratory; Department of Chemistry; Visvesvaraya National Institute of Technology (VNIT); Nagpur India
- School of Chemistry; University of Hyderabad, Gachibowli; Hyderabad India
| | | | - Suresh S Umare
- Materials and Catalysis Laboratory; Department of Chemistry; Visvesvaraya National Institute of Technology (VNIT); Nagpur India
| |
Collapse
|
43
|
Raut AB, Bhanage BM. Cuprous Oxide Nanoparticle Supported on Iron Oxide (Cu2O-Fe3O4): Magnetically Separable and Reusable Nanocatalyst for the Synthesis of Quinazolines. ChemistrySelect 2017. [DOI: 10.1002/slct.201701251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Amol B. Raut
- Institute of Chemical Technology, Matunga (East); Mumbai, Maharashtra 400019 India
| | | |
Collapse
|
44
|
Quinazoline-directed selective ortho-iodination for the synthesis of 2-(2-iodoaryl)-4-arylquinazolines. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.05.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Boukhris S. FeCl3/Egg shell: An Effective Catalytic System for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones at Room Temperature. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2017. [DOI: 10.18596/jotcsa.308593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
46
|
Hudwekar AD, Reddy GL, Verma PK, Gupta S, Vishwakarma RA, Sawant SD. Transition Metal-free Single Step Approach for Arylated Pyrazolopyrimidinones and Quinazolinones Using Benzylamines/Benzylalcohols/Benzaldehydes. ChemistrySelect 2017. [DOI: 10.1002/slct.201700896] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Abhinandan D. Hudwekar
- Medicinal Chemistry Division; CSIR-Indian Institute of Integrative Medicine; Canal Road Jammu 180001 India
- Academy of Scientific and Innovative Research; New Delhi India, CSIR-IIIM Communication No: IIIM/2014/2017
| | - G. Lakshma Reddy
- Medicinal Chemistry Division; CSIR-Indian Institute of Integrative Medicine; Canal Road Jammu 180001 India
- Academy of Scientific and Innovative Research; New Delhi India, CSIR-IIIM Communication No: IIIM/2014/2017
| | - Praveen K. Verma
- Medicinal Chemistry Division; CSIR-Indian Institute of Integrative Medicine; Canal Road Jammu 180001 India
| | - Sorav Gupta
- Medicinal Chemistry Division; CSIR-Indian Institute of Integrative Medicine; Canal Road Jammu 180001 India
- Academy of Scientific and Innovative Research; New Delhi India, CSIR-IIIM Communication No: IIIM/2014/2017
| | - Ram A. Vishwakarma
- Medicinal Chemistry Division; CSIR-Indian Institute of Integrative Medicine; Canal Road Jammu 180001 India
| | - Sanghapal D. Sawant
- Medicinal Chemistry Division; CSIR-Indian Institute of Integrative Medicine; Canal Road Jammu 180001 India
- Academy of Scientific and Innovative Research; New Delhi India, CSIR-IIIM Communication No: IIIM/2014/2017
| |
Collapse
|
47
|
Wang L, Cao J, Li Z. Synthesis of quinazolines from (2-aminoaryl)methanols and arylmethanamines catalyzed by rhodium complex. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217040235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
48
|
Beyrati M, Hasaninejad A. One-pot, three-component synthesis of spiroindoloquinazoline derivatives under solvent-free conditions using ammonium acetate as a dual activating catalyst. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Saha M, Mukherjee P, Das AR. A facile and versatile protocol for the one-pot PhI(OAc) 2 mediated divergent synthesis of quinazolines from 2-aminobenzylamine. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.04.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Bingi C, Kola KY, Kale A, Nanubolu JB, Atmakur K. A simple one pot synthesis of novel tricyclic quinazolinones. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.01.106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|