1
|
Taha H, Dove S, Geduhn J, König B, Shen Y, Tang WJ, Seifert R. Inhibition of the adenylyl cyclase toxin, edema factor, from Bacillus anthracis by a series of 18 mono- and bis-(M)ANT-substituted nucleoside 5'-triphosphates. Naunyn Schmiedebergs Arch Pharmacol 2011; 385:57-68. [PMID: 21947230 DOI: 10.1007/s00210-011-0688-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/24/2011] [Indexed: 11/27/2022]
Abstract
Bacillus anthracis causes anthrax disease and exerts its deleterious effects by the release of three exotoxins, i.e. lethal factor, protective antigen and edema factor (EF), a highly active calmodulin-dependent adenylyl cyclase (AC). Conventional antibiotic treatment is ineffective against either toxaemia or antibiotic-resistant strains. Thus, more effective drugs for anthrax treatment are needed. Our previous studies showed that EF is differentially inhibited by various purine and pyrimidine nucleotides modified with N-methylanthraniloyl (MANT)- or anthraniloyl (ANT) groups at the 2'(3')-O-ribosyl position, with the unique preference for the base cytosine (Taha et al., Mol Pharmacol 75:693 (2009)). MANT-CTP was the most potent EF inhibitor (K (i), 100 nM) among 16 compounds studied. Here, we examined the interaction of EF with a series of 18 2',3'-O-mono- and bis-(M)ANT-substituted nucleotides, recently shown to be very potent inhibitors of the AC toxin from Bordetella pertussis, CyaA (Geduhn et al., J Pharmacol Exp Ther 336:104 (2011)). We analysed purified EF and EF mutants in radiometric AC assays and in fluorescence spectroscopy studies and conducted molecular modelling studies. Bis-MANT nucleotides inhibited EF competitively. Propyl-ANT-ATP was the most potent EF inhibitor (K (i), 80 nM). In contrast to the observations made for CyaA, introduction of a second (M)ANT-group decreased rather than increased inhibitor potency at EF. Activation of EF by calmodulin resulted in effective fluorescence resonance energy transfer (FRET) from tryptophan and tyrosine residues located in the vicinity of the catalytic site to bis-MANT-ATP, but FRET to bis-MANT-CTP was only small. Mutations N583Q, K353A and K353R differentially altered the inhibitory potencies of bis-MANT-ATP and bis-MANT-CTP. The nucleotide binding site of EF accommodates bulky bis-(M)ANT-substituted purine and pyrimidine nucleotides, but the fit is suboptimal compared to CyaA. These data provide a basis for future studies aiming at the development of potent EF inhibitors with high selectivity relative to mammalian ACs.
Collapse
Affiliation(s)
- Hesham Taha
- Department of Pharmacology and Toxicology, University of Regensburg, 90430, Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
2
|
Pinto C, Lushington GH, Richter M, Gille A, Geduhn J, König B, Mou TC, Sprang SR, Seifert R. Structure-activity relationships for the interactions of 2'- and 3'-(O)-(N-methyl)anthraniloyl-substituted purine and pyrimidine nucleotides with mammalian adenylyl cyclases. Biochem Pharmacol 2011; 82:358-70. [PMID: 21620805 DOI: 10.1016/j.bcp.2011.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/11/2011] [Accepted: 05/11/2011] [Indexed: 10/18/2022]
Abstract
Membranous adenylyl cyclases (ACs) play a key role in signal transduction and are promising drug targets. In previous studies we showed that 2',3'-(O)-(N-methylanthraniloyl) (MANT)-substituted nucleotides are potent AC inhibitors. The aim of this study was to provide systematic structure-activity relationships for 21 (M)ANT-substituted nucleotides at the purified catalytic AC subunit heterodimer VC1:IIC2, the VC1:VC1 homodimer and recombinant ACs 1, 2 and 5. (M)ANT-nucleotides inhibited fully activated VC1:IIC2 in the order of affinity for bases hypoxanthine>uracil>cytosine>adenine∼guanine≫xanthine. Omission of a hydroxyl group at the 2' or 3'-position reduced inhibitor potency as did introduction of a γ-thiophosphate group or omission of the γ-phosphate group. Substitution of the MANT-group by an ANT-group had little effect on affinity. Although all nucleotides bound to VC1:IIC2 similarly according to the tripartite pharmacophore model with a site for the base, the ribose, and the phosphate chain, nucleotides exhibited subtle differences in their binding modes as revealed by fluorescence spectroscopy and molecular modelling. MANT-nucleotides also differentially interacted with the VC1:VC1 homodimer as assessed by fluorescence spectroscopy and modelling. Similar structure-activity relationships as for VC1:IIC2 were obtained for recombinant ACs 1, 2 and 5, with AC2 being the least sensitive AC isoform in terms of inhibition. Overall, ACs possess a broad base-specificity with no preference for the "cognate" base adenine as verified by enzyme inhibition, fluorescence spectroscopy and molecular modelling. These properties of ACs are indicative for ligand-specific conformational landscapes that extend to the VC1:VC1 homodimer and should facilitate development of non-nucleotide inhibitors.
Collapse
Affiliation(s)
- Cibele Pinto
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Hübner M, Dixit A, Mou TC, Lushington GH, Pinto C, Gille A, Geduhn J, König B, Sprang SR, Seifert R. Structural basis for the high-affinity inhibition of mammalian membranous adenylyl cyclase by 2',3'-o-(N-methylanthraniloyl)-inosine 5'-triphosphate. Mol Pharmacol 2011; 80:87-96. [PMID: 21498658 DOI: 10.1124/mol.111.071894] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
2',3'-O-(N-Methylanthraniloyl)-ITP (MANT-ITP) is the most potent inhibitor of mammalian membranous adenylyl cyclase (mAC) 5 (AC5, K(i), 1 nM) yet discovered and surpasses the potency of MANT-GTP by 55-fold (J Pharmacol Exp Ther 329:1156-1165, 2009). AC5 inhibitors may be valuable drugs for treatment of heart failure. The aim of this study was to elucidate the structural basis for the high-affinity inhibition of mAC by MANT-ITP. MANT-ITP was a considerably more potent inhibitor of the purified catalytic domains VC1 and IIC2 of mAC than MANT-GTP (K(i), 0.7 versus 18 nM). Moreover, there was considerably more efficient fluorescence resonance energy transfer between Trp1020 of IIC2 and the MANT group of MANT-ITP compared with MANT-GTP, indicating optimal interaction of the MANT group of MANT-ITP with the hydrophobic pocket. The crystal structure of MANT-ITP in complex with the G(s)α- and forskolin-activated catalytic domains VC1:IIC2 compared with the existing MANT-GTP crystal structure revealed only subtle differences in binding mode. The higher affinity of MANT-ITP to mAC compared with MANT-GTP is probably due to fewer stereochemical constraints upon the nucleotide base in the purine binding pocket, allowing a stronger interaction with the hydrophobic regions of IIC2 domain, as assessed by fluorescence spectroscopy. Stronger interaction is also achieved in the phosphate-binding site. The triphosphate group of MANT-ITP exhibits better metal coordination than the triphosphate group of MANT-GTP, as confirmed by molecular dynamics simulations. Collectively, the subtle differences in ligand structure have profound effects on affinity for mAC.
Collapse
Affiliation(s)
- Melanie Hübner
- Department of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abia D, Bastolla U, Chacón P, Fábrega C, Gago F, Morreale A, Tramontano A. In memoriam. Proteins 2010; 78:iii-viii. [DOI: 10.1002/prot.22660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
The C1 homodimer of adenylyl cyclase binds nucleotides with high affinity but possesses exceedingly low catalytic activity. Neurosci Lett 2009; 467:1-5. [PMID: 19788911 DOI: 10.1016/j.neulet.2009.09.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 09/21/2009] [Accepted: 09/24/2009] [Indexed: 11/20/2022]
Abstract
Membranous adenylyl cyclase (AC) subtypes play differential roles in the regulation of cell functions. The C1- and C2-subunits of AC form a heterodimer that efficiently catalyzes cAMP formation and constitutes a very useful model system for AC analysis at a molecular level. Intriguingly, C1 and C2 homodimers exist, too. The C2 homodimer is catalytically inactive and possesses two forskolin binding sites. However, little is known about the C1 homodimer. Therefore, in this study, we examined the C1 homodimer. C1 exhibited exceedingly low catalytic activity but high substrate-affinity. Fluorescence studies with the AC inhibitor 2',3'-O-(2,4,6-trinitrophenyl)-ATP suggested that 2 mol of C1 binds 1 mol of nucleotide, pointing to homodimerization. C1 also bound the AC inhibitor 2',3'-O-(N-methylanthraniloyl)-GTP as assessed by direct fluorescence and fluorescence resonance energy transfer studies. Molecular modelling revealed that in the C1 homodimer, the catalytic base arginine is exchanged against histidine. The lower basicity and shorter side chain of histidine probably account for the low catalytic activity. In conclusion, the C1 homodimer of AC binds nucleotides with high affinity, but exhibits only exceedingly low catalytic activity. The low catalytic activity of the C1 homodimer may constitute a mechanism by which in intact cells dimeric AC molecules exhibit a high signal-to-noise ratio upon stimulation by receptor agonists.
Collapse
|
6
|
Pavan B, Biondi C, Dalpiaz A. Adenylyl cyclases as innovative therapeutic goals. Drug Discov Today 2009; 14:982-91. [PMID: 19638320 DOI: 10.1016/j.drudis.2009.07.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 06/30/2009] [Accepted: 07/17/2009] [Indexed: 11/16/2022]
Abstract
Pharmacological modulation of intracellular cyclic AMP (cAMP) signalling could provide new therapeutic and experimental tools. Although drugs interfering with this pathway have traditionally targeted membrane receptors, the effector enzyme adenylyl cyclase (AC), which functions as a signalling catalyst, also presents an interesting target. Thus, development of isoform-selective stimulator and/or inhibitor compounds for AC could lead to organ-specific pharmacotherapeutics for treating heart failure, cancer and neurodegenerative diseases. In this review, the potential of AC as the object of drug therapy is discussed.
Collapse
Affiliation(s)
- Barbara Pavan
- Department of Biology and Evolution, General Physiology Section, University of Ferrara, Ferrara, Italy.
| | | | | |
Collapse
|
7
|
Pierre S, Eschenhagen T, Geisslinger G, Scholich K. Capturing adenylyl cyclases as potential drug targets. Nat Rev Drug Discov 2009; 8:321-35. [PMID: 19337273 DOI: 10.1038/nrd2827] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclic AMP (cAMP) is an important intracellular signalling mediator. It is generated in mammals by nine membrane-bound and one soluble adenylyl cyclases (ACs), each with distinct regulation and expression patterns. Although many drugs inhibit or stimulate AC activity through the respective upstream G-protein coupled receptors (for example, opioid or beta-adrenergic receptors), ACs themselves have not been major drug targets. Over the past decade studies on the physiological functions of the different mammalian AC isoforms as well as advances in the development of isoform-selective AC inhibitors and activators suggest that ACs could be useful drug targets. Here we discuss the therapeutic potential of isoform-selective compounds in various clinical settings, including neuropathic pain, neurodegenerative disorders, congestive heart failure, asthma and male contraception.
Collapse
Affiliation(s)
- Sandra Pierre
- Pharmazentrum Frankfurt, ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | | | | | |
Collapse
|
8
|
Taha HM, Schmidt J, Göttle M, Suryanarayana S, Shen Y, Tang WJ, Gille A, Geduhn J, König B, Dove S, Seifert R. Molecular analysis of the interaction of anthrax adenylyl cyclase toxin, edema factor, with 2'(3')-O-(N-(methyl)anthraniloyl)-substituted purine and pyrimidine nucleotides. Mol Pharmacol 2008; 75:693-703. [PMID: 19056899 DOI: 10.1124/mol.108.052340] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bacillus anthracis causes anthrax disease and exerts its deleterious effects by the release of three exotoxins: lethal factor, protective antigen, and edema factor (EF), a highly active calmodulin-dependent adenylyl cyclase (AC). However, conventional antibiotic treatment is ineffective against either toxemia or antibiotic-resistant strains. Thus, more effective drugs for anthrax treatment are needed. Previous studies from our laboratory showed that mammalian membranous AC (mAC) exhibits broad specificity for purine and pyrimidine nucleotides ( Mol Pharmacol 70: 878-886, 2006 ). Here, we investigated structural requirements for EF inhibition by natural purine and pyrimidine nucleotides and nucleotides modified with N-methylanthraniloyl (MANT)- or anthraniloyl groups at the 2'(3')-O-ribosyl position. MANT-CTP was the most potent EF inhibitor (K(i), 100 nM) among 16 compounds studied. MANT-nucleotides inhibited EF competitively. Activation of EF by calmodulin resulted in effective fluorescence resonance energy transfer (FRET) from tryptophan and tyrosine residues located in the vicinity of the catalytic site to MANT-ATP, but FRET to MANT-CTP was only small. Mutagenesis studies revealed that Phe586 is crucial for FRET to MANT-ATP and MANT-CTP and that the mutations N583Q, K353A, and K353R differentially alter the inhibitory potencies of MANT-ATP and MANT-CTP. Docking approaches relying on crystal structures of EF indicate similar binding modes of the MANT nucleotides with subtle differences in the region of the nucleobases. In conclusion, like mAC, EF accommodates both purine and pyrimidine nucleotides. The unique preference of EF for the base cytosine offers an excellent starting point for the development of potent and selective EF inhibitors.
Collapse
Affiliation(s)
- Hesham M Taha
- Department of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chen D, Misra M, Sower L, Peterson JW, Kellogg GE, Schein CH. Novel inhibitors of anthrax edema factor. Bioorg Med Chem 2008; 16:7225-33. [PMID: 18620864 DOI: 10.1016/j.bmc.2008.06.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 06/18/2008] [Accepted: 06/20/2008] [Indexed: 01/13/2023]
Abstract
Several pathogenic bacteria produce adenylyl cyclase toxins, such as the edema factor (EF) of Bacillus anthracis. These disturb cellular metabolism by catalyzing production of excessive amounts of the regulatory molecule cAMP. Here, a structure-based method, where a 3D-pharmacophore that fit the active site of EF was constructed from fragments, was used to identify non-nucleotide inhibitors of EF. A library of small molecule fragments was docked to the EF-active site in existing crystal structures, and those with the highest HINT scores were assembled into a 3D-pharmacophore. About 10,000 compounds, from over 2.7 million compounds in the ZINC database, had a similar molecular framework. These were ranked according to their docking scores, using methodology that was shown to achieve maximum accuracy (i.e., how well the docked position matched the experimentally determined site for ATP analogues in crystal structures of the complex). Finally, 19 diverse compounds with the best AutoDock binding/docking scores were assayed in a cell-based assay for their ability to reduce cAMP secretion induced by EF. Four of the test compounds, from different structural groups, inhibited in the low micromolar range. One of these has a core structure common to phosphatase inhibitors previously identified by high-throughput assays of a diversity library. Thus, the fragment-based pharmacophore identified a small number of diverse compounds for assay, and greatly enhanced the selection process of advanced lead compounds for combinatorial design.
Collapse
Affiliation(s)
- Deliang Chen
- Sealy Center for Structural Biology and Molecular Biophysics, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0857, USA
| | | | | | | | | | | |
Collapse
|