1
|
Supuran CT. A simple yet multifaceted 90 years old, evergreen enzyme: Carbonic anhydrase, its inhibition and activation. Bioorg Med Chem Lett 2023; 93:129411. [PMID: 37507055 DOI: 10.1016/j.bmcl.2023.129411] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Advances in the carbonic anhydrase (CA, EC 4.2.1.1) research over the last three decades are presented, with an emphasis on the deciphering of the activation mechanism, the development of isoform-selective inhibitors/ activators by the tail approach and their applications in the management of obesity, hypoxic tumors, neurological conditions, and as antiinfectives.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
2
|
Olson KR. H 2S and polysulfide metabolism: Conventional and unconventional pathways. Biochem Pharmacol 2017; 149:77-90. [PMID: 29248597 DOI: 10.1016/j.bcp.2017.12.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022]
Abstract
It is now well established that hydrogen sulfide (H2S) is an effector of a wide variety of physiological processes. It is also clear that many of the effects of H2S are mediated through reactions with cysteine sulfur on regulatory proteins and most of these are not mediated directly by H2S but require prior oxidation of H2S and the formation of per- and polysulfides (H2Sn, n = 2-8). Attendant with understanding the regulatory functions of H2S and H2Sn is an appreciation of the mechanisms that control, i.e., both increase and decrease, their production and catabolism. Although a number of standard "conventional" pathways have been described and well characterized, novel "unconventional" pathways are continuously being identified. This review summarizes our current knowledge of both the conventional and unconventional.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine - South Bend, South Bend, IN 46617, USA.
| |
Collapse
|
3
|
5-Substituted-benzylsulfanyl-thiophene-2-sulfonamides with effective carbonic anhydrase inhibitory activity: Solution and crystallographic investigations. Bioorg Med Chem 2017; 25:857-863. [DOI: 10.1016/j.bmc.2016.11.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/23/2016] [Indexed: 11/18/2022]
|
4
|
Supuran CT. Bortezomib inhibits mammalian carbonic anhydrases. Bioorg Med Chem 2016; 25:5064-5067. [PMID: 28277280 DOI: 10.1016/j.bmc.2016.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 11/16/2022]
Abstract
We investigated the carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of the clinically used antitumor agent bortezomib, a marketed proteasome inhibitor, against all the catalytically active mammalian isoforms CA I-VII, IX, XII-XV. Bortezomib effectively inhibited all these CAs in the micromolar range. hCA II, the physiologically dominant cytosolic isoform showed the highest affinity for the drug, with a KI of 1.16μM. The cytosolic slow isoform hCA I was also effectively inhibited, with a KI of 1.29μM, whereas the next best affinity was observed for the membrane-anchored form mCA XV, with a KI of 2.68μM, followed by two transmembrane isoforms, hCA IX and XIV (KIs of 3.28-3.38μM). The remaining cytosolic (CA III, VII and XIII), membrane-anchored (CA IV), mitochondrial (CA VA, VB), transmembrane (CA XII) and secreted (CA VI) isoforms were slightly less inhibited by bortezomib compared to isoforms discussed above, with KIs ranging between 4.38 and 8.45μM. These data may shed some light on possible side effects and novel antitumor mechanisms of action of this drug.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
5
|
De Luca V, Vullo D, Del Prete S, Carginale V, Scozzafava A, Osman SM, AlOthman Z, Supuran CT, Capasso C. Cloning, characterization and anion inhibition studies of a new γ-carbonic anhydrase from the Antarctic bacterium Pseudoalteromonas haloplanktis. Bioorg Med Chem 2015; 23:4405-4409. [PMID: 26145820 DOI: 10.1016/j.bmc.2015.06.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
Abstract
A new γ-class carbonic anhydrase (CA, EC 4.2.1.1) was cloned, purified and characterized from the Antarctic bacterium Pseudoalteromonas haloplanktis, PhaCAγ. The enzyme has a medium-low catalytic activity for the physiologic reaction of CO2 hydration to bicarbonate and protons, with a kcat of 1.4×10(5)s(-1) and a kcat/Km of 1.9×10(6)M(-1)s(-1). An anion inhibition study of PhaCAγ with inorganic anions and small molecule inhibitors is also reported. Many anions present in sea water, such as chloride, fluoride, sulfate, iodide, but also others such as azide, perchlorate and tetrafluoroborate did not inhibit this enzyme. Pseudohalides such as cyanate, thiocyanate, cyanide, selenocyanide, and also bicarbonate, nitrate, nitrite and many complex inorganic anions showed inhibition in the millimolar range (KI in the range of 1.7-9.3mM). The best PhaCAγ inhibitors detected in this study were diethyldithiocarbamate (KI of 0.96 mM) as well as sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid (KI in the range of 82-91 μM). Since γ-CAs are poorly understood at this moment, being present in carboxysomes and thus involved in photosynthesis, this study may be relevant for a better understanding of these processes in Antarctic bacteria/cyanobacteria.
Collapse
Affiliation(s)
- Viviana De Luca
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 81, Napoli, Italy
| | - Daniela Vullo
- Università degli Studi di Firenze, Dipartimento Di Chimica, Laboratorio di Chimica Bioinorganica, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Sonia Del Prete
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 81, Napoli, Italy; Università degli Studi di Firenze, Dipartimento Di Chimica, Laboratorio di Chimica Bioinorganica, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Vincenzo Carginale
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 81, Napoli, Italy
| | - Andrea Scozzafava
- Università degli Studi di Firenze, Dipartimento Di Chimica, Laboratorio di Chimica Bioinorganica, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Sameh M Osman
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Zeid AlOthman
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento Di Chimica, Laboratorio di Chimica Bioinorganica, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 81, Napoli, Italy.
| |
Collapse
|
6
|
Karacan MS, Zharmukhamedov SK, Mamaş S, Kupriyanova EV, Shitov AV, Klimov VV, Özbek N, Özmen Ü, Gündüzalp A, Schmitt FJ, Karacan N, Friedrich T, Los DA, Carpentier R, Allakhverdiev SI. Screening of novel chemical compounds as possible inhibitors of carbonic anhydrase and photosynthetic activity of photosystem II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2014; 137:156-67. [PMID: 24418071 DOI: 10.1016/j.jphotobiol.2013.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/05/2013] [Indexed: 12/28/2022]
Abstract
Thirty novel chemical compounds were designed and synthesized expecting that they would be possible inhibitors. From this number eleven were organic bases, twenty-four were their organic derivatives and fourteen were metal complexes. Screening of these chemicals by their action on photosynthetic electron transfer (PET) and carbonic anhydrase (CA) activity (CAA) of photosystem II (PSII), α-CA, as well as β-CA was done. Several groups were revealed among them. Some of them are capable to suppress either one, two, three, or even all of the measured activities. As example, one of the Cu(II)-phenyl sulfonylhydrazone complexes (compound 25) suppresses CAA of α-CA by 88%, CAA of β-CA by 100% inhibition; CAA of PSII by 100% and the PSII photosynthetic activity by 66.2%. The Schiff base compounds (12, 15) and Cu(II)-phenyl sulfonylhydrazone complexes (25, 26) inhibited the CAA and PET of PSII significantly. The obtained data indicate that the PSII donor side is a target of the inhibitory action of these agents. Some physico- or electrochemical properties such as diffusion coefficient, number of transferred electrons, peak potential and heterogeneous standard rate constants of the compounds were determined in nonaqueous media. pKa values were also determined in nonaqueous and aqueous media. Availability in the studied group of novel chemical agents possessing different inhibitory activity allow in future to isolate the "active part" in the structure of the inhibitors responsible for different inhibitory mechanisms, as well as to determine the influence of side substituters on its inhibitory efficiency.
Collapse
Affiliation(s)
- Mehmet Sayım Karacan
- Gazi University, Science Faculty, Department of Chemistry, 06500 Ankara, Turkey.
| | - Sergei K Zharmukhamedov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region 142290, Russia
| | - Serhat Mamaş
- Gazi University, Science Faculty, Department of Chemistry, 06500 Ankara, Turkey
| | - Elena V Kupriyanova
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Alexandr V Shitov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region 142290, Russia
| | - Vyacheslav V Klimov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region 142290, Russia
| | - Neslihan Özbek
- Ahi Evran University, Dept. of Primary Educ. Fac. Of Educ., 40100 Kırsehir, Turkey
| | - Ümmühan Özmen
- Gazi University, Science Faculty, Department of Chemistry, 06500 Ankara, Turkey
| | - Ayla Gündüzalp
- Gazi University, Science Faculty, Department of Chemistry, 06500 Ankara, Turkey
| | - Franz-Josef Schmitt
- Technical University of Berlin, Institute of Chemistry Sekr. PC 14, Max-Volmer-Laboratory of Biophysical Chemistry, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| | - Nurcan Karacan
- Gazi University, Science Faculty, Department of Chemistry, 06500 Ankara, Turkey
| | - Thomas Friedrich
- Technical University of Berlin, Institute of Chemistry Sekr. PC 14, Max-Volmer-Laboratory of Biophysical Chemistry, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| | - Dmitry A Los
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Robert Carpentier
- Department de Chimie, Biochimie et Physique, Université du Quebec à Trois Rivières, 3351 Boulevard des Forges, C.P. 500, Québec G9A 5H7, Canada
| | - Suleyman I Allakhverdiev
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region 142290, Russia; Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia.
| |
Collapse
|
7
|
Carbonic anhydrase 5 regulates acid-base homeostasis in zebrafish. PLoS One 2012; 7:e39881. [PMID: 22745834 PMCID: PMC3382148 DOI: 10.1371/journal.pone.0039881] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/28/2012] [Indexed: 11/19/2022] Open
Abstract
The regulation of the acid-base balance in cells is essential for proper cellular homeostasis. Disturbed acid-base balance directly affects cellular physiology, which often results in various pathological conditions. In every living organism, the protein family of carbonic anhydrases regulate a broad variety of homeostatic processes. Here we describe the identification, mapping and cloning of a zebrafish carbonic anhydrase 5 (ca5) mutation, collapse of fins (cof), which causes initially a collapse of the medial fins followed by necrosis and rapid degeneration of the embryo. These phenotypical characteristics can be mimicked in wild-type embryos by acetazolamide treatment, suggesting that CA5 activity in zebrafish is essential for a proper development. In addition we show that CA5 regulates acid-base balance during embryonic development, since lowering the pH can compensate for the loss of CA5 activity. Identification of selective modulators of CA5 activity could have a major impact on the development of new therapeutics involved in the treatment of a variety of disorders.
Collapse
|
8
|
(In)organic anions as carbonic anhydrase inhibitors. J Inorg Biochem 2011; 111:117-29. [PMID: 22192857 DOI: 10.1016/j.jinorgbio.2011.11.017] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 10/17/2011] [Accepted: 11/08/2011] [Indexed: 01/17/2023]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are widespread enzymes in all life kingdoms with five distinct genetic families known to date, the α-, β-, γ-, δ- and ζ-CAs. With the exception of the δ-class, which is less investigated to date, enzymes from the remaining classes found in vertebrates, corals, fungi, bacteria and archaea have been studied for their inhibition with simple inorganic anions as well as more complex inorganic and organic ones. In this paper we review the available data for the inhibition of these enzymes with all anions except sulfonamides and their bioisosteres (sulfamates, sulfamides) which have been reviewed earlier. Anion inhibitors are important both for understanding the inhibition/catalytic mechanisms of these enzymes and for designing novel types of inhibitors which may have clinical applications for the management of a variety of disorders in which CAs are involved. Environmental aspects of CO(2) fixation by CAs present in plants, corals, algae or diatoms and how this may be affected by inhibitors are also discussed.
Collapse
|
9
|
Temperini C, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors. X-ray crystal studies of the carbonic anhydrase II–trithiocarbonate adduct—An inhibitor mimicking the sulfonamide and urea binding to the enzyme. Bioorg Med Chem Lett 2010; 20:474-8. [DOI: 10.1016/j.bmcl.2009.11.124] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 11/20/2009] [Accepted: 11/21/2009] [Indexed: 12/21/2022]
|
10
|
Carbonic anhydrase inhibitors. Inhibition of the human cytosolic isoforms I and II and transmembrane, tumor-associated isoforms IX and XII with boronic acids. Bioorg Med Chem 2009; 17:3649-52. [DOI: 10.1016/j.bmc.2009.03.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 03/22/2009] [Accepted: 03/29/2009] [Indexed: 12/31/2022]
|
11
|
Innocenti A, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors. Inhibition of cytosolic isoforms I, II, III, VII and XIII with less investigated inorganic anions. Bioorg Med Chem Lett 2009; 19:1855-7. [DOI: 10.1016/j.bmcl.2009.02.088] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 02/20/2009] [Accepted: 02/22/2009] [Indexed: 01/29/2023]
|
12
|
Carbonic anhydrase inhibitors: The membrane-associated isoform XV is highly inhibited by inorganic anions. Bioorg Med Chem Lett 2009; 19:1155-8. [DOI: 10.1016/j.bmcl.2008.12.082] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 12/19/2008] [Indexed: 01/17/2023]
|
13
|
Carbonic anhydrase inhibitors: inhibition of the beta-class enzyme from the yeast Saccharomyces cerevisiae with sulfonamides and sulfamates. Bioorg Med Chem 2008; 17:1158-63. [PMID: 19124253 DOI: 10.1016/j.bmc.2008.12.035] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 12/10/2008] [Accepted: 12/13/2008] [Indexed: 11/23/2022]
Abstract
The protein encoded by the Nce103 gene of Saccharomyces cerevisiae, a beta-carbonic anhydrase (CA, EC 4.2.1.1) designated as scCA, has been cloned, purified, characterized kinetically and investigated for its inhibition with a series of sulfonamides and one sulfamate. The enzyme showed high CO(2) hydrase activity, with a k(cat) of 9.4x10(5)s(-1), and k(cat)/K(M) of 9.8x10(7)M(-1)s(-1). Simple benzenesulfonamides substituted in 2-, 4- and 3,4-positions of the benzene ring with amino, alkyl, halogeno and hydroxyalkyl moieties were weak scCA inhibitors with K(I)s in the range of 0.976-18.45 microM. Better inhibition (K(I)s in the range of 154-654 nM) was observed for benzenesulfonamides incorporating aminoalkyl/carboxyalkyl moieties or halogenosulfanilamides; benzene-1,3-disulfonamides; simple heterocyclic sulfonamides and sulfanilyl-sulfonamides. The clinically used sulfonamides/sulfamate (acetazolamide, ethoxzolamide, methazolamide, dorzolamide, topiramate, celecoxib, etc.) generally showed effective scCA inhibitory activity, with K(I)s in the range of 82.6-133 nM. The best inhibitor (K(I) of 15.1 nM) was 4-(2-amino-pyrimidin-4-yl)-benzenesulfonamide. These inhibitors may be useful to better understand the physiological role of beta-CAs in yeast and some pathogenic fungi which encode orthologues of the yeast enzyme and eventually for designing novel antifungal therapies.
Collapse
|
14
|
Isik S, Kockar F, Arslan O, Guler OO, Innocenti A, Supuran CT. Carbonic anhydrase inhibitors. Inhibition of the beta-class enzyme from the yeast Saccharomyces cerevisiae with anions. Bioorg Med Chem Lett 2008; 18:6327-31. [PMID: 18993072 DOI: 10.1016/j.bmcl.2008.10.100] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 10/21/2008] [Accepted: 10/22/2008] [Indexed: 10/21/2022]
Abstract
The protein encoded by the Nce103 gene of Saccharomyces cerevisiae, a beta-carbonic anhydrase (CA, EC 4.2.1.1) designated as scCA, has been cloned, purified, characterized kinetically, and investigated for its inhibition with a series simple, inorganic anions such as halogenides, pseudohalogenides, bicarbonate, carbonate, nitrate, nitrite, hydrogen sulfide, bisulfite, perchlorate, sulfate, and some of its isosteric species. The enzyme showed high CO(2) hydrase activity, with a k(cat) of 9.4x10(5) s(-1) and k(cat)/K(m) of 9.8x10(7) M(-1) s(-1). scCA was weakly inhibited by metal poisons (cyanide, azide, cyanate, thiocyanate, K(I)s of 16.8-55.6 mM) and strongly inhibited by bromide, iodide, and sulfamide (K(I)s of 8.7-10.8 microM). The other investigated anions showed inhibition constants in the low millimolar range.
Collapse
Affiliation(s)
- Semra Isik
- Department of Chemistry, Science and Art Faculty, Balikesir University, Balikesir, Turkey
| | | | | | | | | | | |
Collapse
|
15
|
Krishnamurthy VM, Kaufman GK, Urbach AR, Gitlin I, Gudiksen KL, Weibel DB, Whitesides GM. Carbonic anhydrase as a model for biophysical and physical-organic studies of proteins and protein-ligand binding. Chem Rev 2008; 108:946-1051. [PMID: 18335973 PMCID: PMC2740730 DOI: 10.1021/cr050262p] [Citation(s) in RCA: 565] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Vijay M. Krishnamurthy
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - George K. Kaufman
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - Adam R. Urbach
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - Irina Gitlin
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - Katherine L. Gudiksen
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - Douglas B. Weibel
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - George M. Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| |
Collapse
|