1
|
Jegatheeswaran S, Asnani A, Forman A, Hendel JL, Moore CJ, Nejatie A, Wang A, Wang JW, Auzanneau FI. Recognition of Dimeric Lewis X by Anti-Dimeric Le x Antibody SH2. Vaccines (Basel) 2020; 8:vaccines8030538. [PMID: 32957489 PMCID: PMC7563222 DOI: 10.3390/vaccines8030538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 11/16/2022] Open
Abstract
The carbohydrate antigen dimeric Lewis X (DimLex), which accumulates in colonic and liver adenocarcinomas, is a valuable target to develop anti-cancer therapeutics. Using the native DimLex antigen as a vaccine would elicit an autoimmune response against the Lex antigen found on normal, healthy cells. Thus, we aim to study the immunogenic potential of DimLex and search internal epitopes displayed by DimLex that remain to be recognized by anti-DimLex monoclonal antibodies (mAbs) but no longer possess epitopes recognized by anti-Lex mAbs. In this context, we attempted to map the epitope recognized by anti-DimLex mAb SH2 by titrations and competitive inhibition experiments using oligosaccharide fragments of DimLex as well as Lex analogues. We compare our results with that reported for anti-Lex mAb SH1 and anti-polymeric Lex mAbs 1G5F6 and 291-2G3-A. While SH1 recognizes an epitope localized to the non-reducing end Lex trisaccharide, SH2, 1G5F6, and 291-2G3-A have greater affinity for DimLex conjugates than for Lex conjugates. We show, however, that the Lex trisaccharide is still an important recognition element for SH2, which (like 1G5F6 and 291-2G3-A) makes contacts with all three sugar units of Lex. In contrast to mAb SH1, anti-polymeric Lex mAbs make contact with the GlcNAc acetamido group, suggesting that epitopes extend further from the non-reducing end Lex. Results with SH2 show that this epitope is only recognized when DimLex is presented by glycoconjugates. We have reported that DimLex adopts two conformations around the β-d-GlcNAc-(1→3)-d-Gal bond connecting the Lex trisaccharides. We propose that only one of these conformations is recognized by SH2 and that this conformation is favored when the hexasaccharide is presented as part of a glycoconjugate such as DimLex-bovine serum albumin (DimLex-BSA). Proper presentation of the oligosaccharide candidate via conjugation to a protein or lipid is essential for the design of an anti-cancer vaccine or immunotherapeutic based on DimLex.
Collapse
Affiliation(s)
- Sinthuja Jegatheeswaran
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.J.); (A.A.); (A.F.); (J.L.H.); (C.J.M.); (A.N.); (A.W.); (J.-W.W.)
- Immunology Department, University of Toronto, 1 King’s College Circle, Toronto, ON M5S-1A8, Canada
| | - Ari Asnani
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.J.); (A.A.); (A.F.); (J.L.H.); (C.J.M.); (A.N.); (A.W.); (J.-W.W.)
- Department of Chemistry, Universitas Jenderal Soedirman, Purwokerto, Jawa Tengah 53123, Indonesia
| | - Adam Forman
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.J.); (A.A.); (A.F.); (J.L.H.); (C.J.M.); (A.N.); (A.W.); (J.-W.W.)
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S-3H6, Canada
| | - Jenifer L. Hendel
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.J.); (A.A.); (A.F.); (J.L.H.); (C.J.M.); (A.N.); (A.W.); (J.-W.W.)
- Research and Development, Ludger Ltd., Culham Science Centre, Abingdon, Oxfordshire OX14-3EB, UK
| | - Christopher J. Moore
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.J.); (A.A.); (A.F.); (J.L.H.); (C.J.M.); (A.N.); (A.W.); (J.-W.W.)
- Quality Control, SteriMax Inc., 2770 Portland Dr, Oakville, ON L6H-6R4, Canada
| | - Ali Nejatie
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.J.); (A.A.); (A.F.); (J.L.H.); (C.J.M.); (A.N.); (A.W.); (J.-W.W.)
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A1S6, Canada
| | - An Wang
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.J.); (A.A.); (A.F.); (J.L.H.); (C.J.M.); (A.N.); (A.W.); (J.-W.W.)
- SGS-CSTC Standards Technical Services Co., Ltd. 4/F, 4th Building, 889 Yishan Road, Xuhui District, Shanghai 200233, China
| | - Jo-Wen Wang
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.J.); (A.A.); (A.F.); (J.L.H.); (C.J.M.); (A.N.); (A.W.); (J.-W.W.)
- IQVIA, QuintilesIMS, Clinical Research, 10188 Telesis Ct #400, San Diego, CA 92121, USA
| | - France-Isabelle Auzanneau
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.J.); (A.A.); (A.F.); (J.L.H.); (C.J.M.); (A.N.); (A.W.); (J.-W.W.)
- Correspondence:
| |
Collapse
|
2
|
Jegatheeswaran S, Auzanneau FI. Recognition of Lewis X by Anti-Le x Monoclonal Antibody IG5F6. THE JOURNAL OF IMMUNOLOGY 2019; 203:3037-3044. [PMID: 31666308 DOI: 10.4049/jimmunol.1900806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/22/2019] [Indexed: 11/19/2022]
Abstract
mAbs directed toward the Lewis X (Lex) determinant have been shown to display different specificities, depending on the presentation of Lex to the immune system. Of interest is the murine anti-Lex mAb IG5F6, generated against the O chain polysaccharide of Helicobacter pylori that contains polymeric Lex structures. The mAb was found to have a higher affinity for polymeric Lex over monomeric Lex In this study, we explore the recognition of monomeric Lex by IG5F6 using a panel of Lex analogues in which N-acetyl-d-glucosamine, l-fucose, or d-galactose (D-Gal) are replaced with d-glucose and/or l-rhamnose. Our studies show that all analogues were weaker inhibitors than the Lex Ag, indicating that all three residues are essential in the recognition of Lex by mAb IG5F6. We explored the involvement of 4″-OH of d-Gal in the binding with IG5F6 using a panel of 4″-modified Lex analogues. Although the 4″-OH is only involved in a weak polar interaction, we conclude that the D-Gal residue in Lex is primarily involved in aromatic stacking interactions with the Ab binding site. We compared these results to our work with mAb SH1. Although stacking interactions between D-Gal and an aromatic residue was also suggested for SH1, an H-bond involving the 4″-OH was identified that is not found in the binding of IG5F6 to Lex Thus, anti-Lex mAbs SH1 and IG5F6 bind to Lex in different manners, even though the hydrophobic patch displayed by the β-galactoside in Lex is essential in both cases for their binding to Lex.
Collapse
|
3
|
Guillemineau M, Lyczko J, Gabryelski W, Auzanneau FI. Synthesis of Tumor-Associated Le(a)Le(x) Hexasaccharides: Instability of a Thiol-Containing Oligosaccharide in Mass Spectrometry and Hypermetalation Detected by ESI FAIMS. J Org Chem 2015. [PMID: 26222404 DOI: 10.1021/acs.joc.5b01190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the efficient synthesis of three analogues of the tumor-associated carbohydrate antigen Le(a)Le(x). This hexasaccharide was prepared as a soluble inhibitor hexyl glycoside, as a 6-aminohexyl glycoside for conjugation to proteins, and as a 6-thiohexyl glycoside for immobilization to a gold surface. These three analogues were obtained from a common hexasaccharide intermediate and isolated pure following efficient deprotection reactions that involved metal-dissolving conditions. While all other intermediates and analogues gave the expected molecular ions in ESI HRMS, the 6-thiohexyl glycoside final compound gave a complex spectrum in which no signal matched the molecular ion. Using ESI FAIMS HRMS, we were able to prevent ion dissociation reactions and obtained high quality spectral data. The ions detected could be characterized unambiguously from their accurate masses and gave insight into the behavior of the thiohexyl analogue in the gas phase. These results indicate that the 6-thiohexyl glycoside lost water and led to the formation of "hypermetalated" species which we propose are cyclic.
Collapse
Affiliation(s)
| | - Jadwiga Lyczko
- Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Wojciech Gabryelski
- Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
4
|
Jackson TA, Robertson V, Auzanneau FI. Evidence for Two Populated Conformations for the Dimeric LeX and LeALeX Tumor-Associated Carbohydrate Antigens. J Med Chem 2014; 57:817-27. [DOI: 10.1021/jm401576x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Trudy A. Jackson
- Department of Chemistry, University of Guelph, Guelph, Ontario, N1G2W1, Canada
| | - Valerie Robertson
- Department of Chemistry, University of Guelph, Guelph, Ontario, N1G2W1, Canada
| | | |
Collapse
|
5
|
Auzanneau FI, Jackson TA, Liao L. Stochastic searches and NMR experiments on four Lewis A analogues: NMR experiments support some flexibility around the fucosidic bond. Bioorg Med Chem 2012; 20:5085-93. [PMID: 22867708 DOI: 10.1016/j.bmc.2012.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/04/2012] [Accepted: 07/10/2012] [Indexed: 11/29/2022]
Abstract
We have compared the conformational behavior of three Le(a) analogues with that of Le(a) using stochastic searches (MOE2005) and selective ROESY experiments. In the analogues either or both the β-d-Gal and α-l-Fuc residues were replaced by β-d-Glc and α-l-Rha units, respectively. All compounds showed similar behavior and even though four conformational families were identified, the calculations and NMR experiments support that the 'stacked conformation' known for Le(a) is predominant for all analogues. Interestingly, ROESY showed a correlation between H-1 Fuc/Rha and H-3 GlcNAc which, although small, could be seen in all analogues. For two compounds, the corresponding distance was measured and found to be shorter (∼3.7Å) than that found in the global minimum (4.5Å). While one published study suggests some motion around the fucosidic bond, this constitutes the first experimental evidence supporting such flexibility. Our MD simulation (Amber10/Glycam06) on Le(a) was in full agreement with previous studies which described a rigid conformation for this branched trisaccharide. Thus, NMR seems to indicate that these dynamic studies are underestimating flexibility around the fucosidic bond.
Collapse
|
6
|
Zaccheus M, Pendrill R, Jackson TA, Wang A, Auzanneau FI, Widmalm G. Conformational Dynamics of a Central Trisaccharide Fragment of the LeaLex Tumor Associated Antigen Studied by NMR Spectroscopy and Molecular Dynamics Simulations. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200569] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Foley BL, Tessier MB, Woods RJ. Carbohydrate force fields. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2012; 2:652-697. [PMID: 25530813 PMCID: PMC4270206 DOI: 10.1002/wcms.89] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Carbohydrates present a special set of challenges to the generation of force fields. First, the tertiary structures of monosaccharides are complex merely by virtue of their exceptionally high number of chiral centers. In addition, their electronic characteristics lead to molecular geometries and electrostatic landscapes that can be challenging to predict and model. The monosaccharide units can also interconnect in many ways, resulting in a large number of possible oligosaccharides and polysaccharides, both linear and branched. These larger structures contain a number of rotatable bonds, meaning they potentially sample an enormous conformational space. This article briefly reviews the history of carbohydrate force fields, examining and comparing their challenges, forms, philosophies, and development strategies. Then it presents a survey of recent uses of these force fields, noting trends, strengths, deficiencies, and possible directions for future expansion.
Collapse
Affiliation(s)
- B. Lachele Foley
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Matthew B. Tessier
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Robert J. Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- School of Chemistry, National University of Ireland, Galway, Ireland
| |
Collapse
|
8
|
Säwén E, Hinterholzinger F, Landersjö C, Widmalm G. Conformational flexibility of the pentasaccharide LNF-2 deduced from NMR spectroscopy and molecular dynamics simulations. Org Biomol Chem 2012; 10:4577-85. [PMID: 22572908 DOI: 10.1039/c2ob25189b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human milk oligosaccharides (HMOs) are important as prebiotics since they stimulate the growth of beneficial bacteria in the intestine and act as receptor analogues that can inhibit the binding of pathogens. The conformation and dynamics of the HMO Lacto-N-fucopentaose 2 (LNF-2), α-L-Fucp-(1 → 4)[β-D-Galp-(1 → 3)]-β-D-GlcpNAc-(1 → 3)-β-D-Galp-(1 → 4)-D-Glcp, having a Lewis A epitope, has been investigated employing NMR spectroscopy and molecular dynamics (MD) computer simulations. 1D (1)H,(1)H-NOESY experiments were used to obtain proton-proton cross-relaxation rates from which effective distances were deduced and 2D J-HMBC and 1D long-range experiments were utilized to measure trans-glycosidic (3)J(CH) coupling constants. The MD simulations using the PARM22/SU01 force field for carbohydrates were carried out for 600 ns with explicit water as solvent which resulted in excellent sampling for flexible glycosidic torsion angles. In addition, in vacuo MD simulations were performed using an MM3-2000 force field, but the agreement was less satisfactory based on an analysis of heteronuclear trans-glycosidic coupling constants. LNF-2 has a conformationally well-defined region consisting of the terminal branched part of the pentasaccharide, i.e., the Lewis A epitope, and a flexible β-D-GlcpNAc-(1 → 3)-β-D-Galp-linkage towards the lactose unit, which is situated at the reducing end. For this β-(1 → 3)-linkage a negative ψ torsion angle is favored, when experimental NMR data is combined with the MD simulation in the analysis. In addition, flexibility on a similar time scale, i.e., on the order of the global overall molecular reorientation, may also be present for the ϕ torsion angle of the β-D-Galp-(1 → 4)-D-Glcp-linkage as suggested by the simulation. It was further observed from a temperature variation study that some (1)H NMR chemical shifts of LNF-2 were highly sensitive and this study indicates that Δδ/ΔT may be an additional tool for revealing conformational dynamics of oligosaccharides.
Collapse
Affiliation(s)
- Elin Säwén
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
9
|
Agostino M, Yuriev E, Ramsland PA. A computational approach for exploring carbohydrate recognition by lectins in innate immunity. Front Immunol 2011; 2:23. [PMID: 22566813 PMCID: PMC3342079 DOI: 10.3389/fimmu.2011.00023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 06/14/2011] [Indexed: 11/13/2022] Open
Abstract
Recognition of pathogen-associated carbohydrates by a broad range of carbohydrate-binding proteins is central to both adaptive and innate immunity. A large functionally diverse group of mammalian carbohydrate-binding proteins are lectins, which often display calcium-dependent carbohydrate interactions mediated by one or more carbohydrate recognition domains. We report here the application of molecular docking and site mapping to study carbohydrate recognition by several lectins involved in innate immunity or in modulating adaptive immune responses. It was found that molecular docking programs can identify the correct carbohydrate-binding mode, but often have difficulty in ranking it as the best pose. This is largely attributed to the broad and shallow nature of lectin binding sites, and the high flexibility of carbohydrates. Site mapping is very effective at identifying lectin residues involved in carbohydrate recognition, especially with cases that were found to be particularly difficult to characterize via molecular docking. This study highlights the need for alternative strategies to examine carbohydrate–lectin interactions, and specifically demonstrates the potential for mapping methods to extract additional and relevant information from the ensembles of binding poses generated by molecular docking.
Collapse
Affiliation(s)
- Mark Agostino
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University Parkville, VIC, Australia
| | | | | |
Collapse
|
10
|
Wang A, Auzanneau FI. Synthesis of LeaLex oligosaccharide fragments and efficient one-step deprotection. Carbohydr Res 2010; 345:1216-21. [DOI: 10.1016/j.carres.2010.03.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 03/25/2010] [Accepted: 03/28/2010] [Indexed: 11/27/2022]
|
11
|
Xue J, Kumar V, Khaja SD, Chandrasekaran E, Locke RD, Matta KL. Syntheses of fluorine-containing mucin core 2/core 6 structures using novel fluorinated glucosaminyl donors. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.07.089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|