1
|
Liu L, Dai J, Yang Q, Lv L. A comprehensive review on anti-allergic natural bioactive compounds for combating food allergy. Food Res Int 2025; 201:115565. [PMID: 39849714 DOI: 10.1016/j.foodres.2024.115565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/18/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Food allergy poses a great challenge to food safety and public health worldwide. Currently, clinical symptoms are primarily managed with medications, which can lead to drug resistance, adverse effects, and disruptions in gut flora balance. As a result, there has been a focus on researching safe and effective anti-allergic natural ingredients. This paper provides a comprehensive overview of food allergy mechanisms, methods of assessment of anti-food allergy studies, and a classification of natural substances with anti-allergic properties. It also examines the anti-allergic effects of these substances on food allergies and investigates gut microbiota changes induced by these natural bioactives, highlighting their significance to food allergies.Natural actives with anti-food allergic properties may alleviate allergic reactions through multiple targets and pathways. These mechanisms include promoting a shift in the Th1/Th2 balance, reducting IgE synthesis, preventing cellular degranulation and reducing the release of allergic mediator. The gut environment is closely related to food allergy and there is a significant interaction between the two. By targeting the intestinal flora, we can adopt dietary interventions to effectively address and control food allergies. This provides valuable insights for the future development of functional foods targeting the alleviation of food allergies.
Collapse
Affiliation(s)
- Lu Liu
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Jing Dai
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Qingli Yang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Liangtao Lv
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
2
|
Structures and Anti-Allergic Activities of Natural Products from Marine Organisms. Mar Drugs 2023; 21:md21030152. [PMID: 36976202 PMCID: PMC10056057 DOI: 10.3390/md21030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
In recent years, allergic diseases have occurred frequently, affecting more than 20% of the global population. The current first-line treatment of anti-allergic drugs mainly includes topical corticosteroids, as well as adjuvant treatment of antihistamine drugs, which have adverse side effects and drug resistance after long-term use. Therefore, it is essential to find alternative anti-allergic agents from natural products. High pressure, low temperature, and low/lack of light lead to highly functionalized and diverse functional natural products in the marine environment. This review summarizes the information on anti-allergic secondary metabolites with a variety of chemical structures such as polyphenols, alkaloids, terpenoids, steroids, and peptides, obtained mainly from fungi, bacteria, macroalgae, sponges, mollusks, and fish. Molecular docking simulation is applied by MOE to further reveal the potential mechanism for some representative marine anti-allergic natural products to target the H1 receptor. This review may not only provide insight into information about the structures and anti-allergic activities of natural products from marine organisms but also provides a valuable reference for marine natural products with immunomodulatory activities.
Collapse
|
3
|
The natural substances with anti-allergic properties in food allergy. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Subbiah V, Xie C, Dunshea FR, Barrow CJ, Suleria HAR. The Quest for Phenolic Compounds from Seaweed: Nutrition, Biological Activities and Applications. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2094406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Vigasini Subbiah
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Cundong Xie
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Hafiz A. R. Suleria
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
5
|
Lomartire S, Gonçalves AMM. An Overview of Potential Seaweed-Derived Bioactive Compounds for Pharmaceutical Applications. Mar Drugs 2022; 20:141. [PMID: 35200670 PMCID: PMC8875101 DOI: 10.3390/md20020141] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
Nowadays, seaweeds are widely involved in biotechnological applications. Due to the variety of bioactive compounds in their composition, species of phylum Ochrophyta, class Phaeophyceae, phylum Rhodophyta and Chlorophyta are valuable for the food, cosmetic, pharmaceutical and nutraceutical industries. Seaweeds have been consumed as whole food since ancient times and used to treat several diseases, even though the mechanisms of action were unknown. During the last decades, research has demonstrated that those unique compounds express beneficial properties for human health. Each compound has peculiar properties (e.g., antioxidant, antimicrobial, antiviral activities, etc.) that can be exploited to enhance human health. Seaweed's extracted polysaccharides are already involved in the pharmaceutical industry, with the aim of replacing synthetic compounds with components of natural origin. This review aims at a better understanding of the recent uses of algae in drug development, with the scope of replacing synthetic compounds and the multiple biotechnological applications that make up seaweed's potential in industrial companies. Further research is needed to better understand the mechanisms of action of seaweed's compounds and to embrace the use of seaweeds in pharmaceutical companies and other applications, with the final scope being to produce sustainable and healthier products.
Collapse
Affiliation(s)
- Silvia Lomartire
- University of Coimbra, MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
| | - Ana M. M. Gonçalves
- University of Coimbra, MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
- Department of Biology, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
6
|
Sugiura Y, Katsuzaki H, Imai K, Amano H. The Anti-Allergic and Anti-Inflammatory Effects of Phlorotannins from the Edible Brown Algae, Ecklonia sp. and Eisenia sp. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211060924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Because the number of people suffering from allergies has significantly increased, improved ways of treating these conditions by medical, pharmaceutical, and dietary means are required. Large numbers of studies on allergy have been conducted, and many anti-allergic compounds have been found. Phenolic compounds from terrestrial plants, including catechins and flavonoids, possess anti-allergic properties. Although polyphenols are present in some brown algae, their anti-allergic activities were not studied in detail before the 1990s. The focus was on the algal polyphenols, collectively called phlorotannins (eg., eckol, 6,6′-bieckol, 8,8′-bieckol, dieckol, and phlorofucofuroeckol-A), and research was conducted to clarify their anti-allergic activities. This review summarizes the anti-allergic effects of phlorotannins isolated from the brown alga, Eisenia nipponica, and related reports by other research groups.
Collapse
Affiliation(s)
- Yoshimasa Sugiura
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Hirotaka Katsuzaki
- Laboratory of Bioorganic Chemistry, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Kunio Imai
- Laboratory of Bioorganic Chemistry, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Hideomi Amano
- Laboratory of Marine Biochemistry, Graduate School of Bioresources, Mie University, Tsu, Japan
| |
Collapse
|
7
|
Correlation between the seasonal variations in phlorotannin content and the antiallergic effects of the brown alga Ecklonia cava subsp. stolonifera. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
García-Poza S, Leandro A, Cotas C, Cotas J, Marques JC, Pereira L, Gonçalves AMM. The Evolution Road of Seaweed Aquaculture: Cultivation Technologies and the Industry 4.0. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6528. [PMID: 32911710 PMCID: PMC7560192 DOI: 10.3390/ijerph17186528] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
Seaweeds (marine macroalgae) are autotrophic organisms capable of producing many compounds of interest. For a long time, seaweeds have been seen as a great nutritional resource, primarily in Asian countries to later gain importance in Europe and South America, as well as in North America and Australia. It has been reported that edible seaweeds are rich in proteins, lipids and dietary fibers. Moreover, they have plenty of bioactive molecules that can be applied in nutraceutical, pharmaceutical and cosmetic areas. There are historical registers of harvest and cultivation of seaweeds but with the increment of the studies of seaweeds and their valuable compounds, their aquaculture has increased. The methodology of cultivation varies from onshore to offshore. Seaweeds can also be part of integrated multi-trophic aquaculture (IMTA), which has great opportunities but is also very challenging to the farmers. This multidisciplinary field applied to the seaweed aquaculture is very promising to improve the methods and techniques; this area is developed under the denominated industry 4.0.
Collapse
Affiliation(s)
- Sara García-Poza
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Adriana Leandro
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Carla Cotas
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal;
| | - João Cotas
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - João C. Marques
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Leonel Pereira
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Ana M. M. Gonçalves
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
9
|
Cotas J, Leandro A, Monteiro P, Pacheco D, Figueirinha A, Gonçalves AMM, da Silva GJ, Pereira L. Seaweed Phenolics: From Extraction to Applications. Mar Drugs 2020; 18:E384. [PMID: 32722220 PMCID: PMC7460554 DOI: 10.3390/md18080384] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Seaweeds have attracted high interest in recent years due to their chemical and bioactive properties to find new molecules with valuable applications for humankind. Phenolic compounds are the group of metabolites with the most structural variation and the highest content in seaweeds. The most researched seaweed polyphenol class is the phlorotannins, which are specifically synthesized by brown seaweeds, but there are other polyphenolic compounds, such as bromophenols, flavonoids, phenolic terpenoids, and mycosporine-like amino acids. The compounds already discovered and characterized demonstrate a full range of bioactivities and potential future applications in various industrial sectors. This review focuses on the extraction, purification, and future applications of seaweed phenolic compounds based on the bioactive properties described in the literature. It also intends to provide a comprehensive insight into the phenolic compounds in seaweed.
Collapse
Affiliation(s)
- João Cotas
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Adriana Leandro
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Pedro Monteiro
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, Health Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (P.M.); (G.J.d.S.)
| | - Diana Pacheco
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Artur Figueirinha
- LAQV, REQUIMTE, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Faculty of Pharmacy of University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana M. M. Gonçalves
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gabriela Jorge da Silva
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, Health Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (P.M.); (G.J.d.S.)
| | - Leonel Pereira
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| |
Collapse
|
10
|
Vo TS. Natural products targeting FcεRI receptor for anti-allergic therapeutics. J Food Biochem 2020; 44:e13335. [PMID: 32588463 DOI: 10.1111/jfbc.13335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/26/2020] [Accepted: 05/25/2020] [Indexed: 11/28/2022]
Abstract
Mast cells and basophils are important contributors for development of allergic reactions. The activation of these cells via cross-linking of IgE bound to FcεRI by allergen causes the generation of allergic mediators and the reaction of immediate hypersensitivity. Obviously, FcεRI is considered as a key trigger of acute allergic responses. Consequently, FcεRI is regarded as a potential target for downregulation of allergic diseases. So far, numerous synthetic agents have been reported for inhibition of FcεRI expression and FcεRI-IgE interaction. Meanwhile, natural products have received much attention due to their efficacy and safety. Recently, numerous anti-allergic agents from natural products have been revealed as promising inhibitors of allergic reactions via inhibiting the expression of FcεRI subunits as well as blocking FcεRI activation. Thus, the present contribution is mainly focused to describe natural products targeting FcεRI receptor and to emphasize their applicable potential as anti-allergic foods. PRACTICAL APPLICATIONS: Phlorotannins, epigallocatechin-3-gallate, peptides, chitooligosaccharides, and other natural products have been revealed as potential inhibitors of allergic responses. These bioactive agents target to FcεRI receptor by inhibiting expression of FcεRI and blocking interaction of FcεRI-IgE. Hence, these compounds could be applied as functional ingredients of anti-allergic foods.
Collapse
Affiliation(s)
- Thanh Sang Vo
- Faculty of Natural Sciences, Thu Dau Mot University, Thu Dau Mot City, Vietnam
| |
Collapse
|
11
|
Wang K, Pramod SN, Pavase TR, Ahmed I, Lin H, Liu L, Tian S, Lin H, Li Z. An overview on marine anti-allergic active substances for alleviating food-induced allergy. Crit Rev Food Sci Nutr 2019; 60:2549-2563. [PMID: 31441662 DOI: 10.1080/10408398.2019.1650716] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Food provides energy and various nutrients and is the most important substance for the survival of living beings. However, for allergic people, certain foods cause strong reactions, and sometimes even cause shock or death. Food allergy has been recognized by the World Health Organization (WHO) as a major global food safety issue which affect the quality of life of nearly 5% of adults and 8% of children, and the incidence continues to rise but there is no effective cure. Drug alleviation methods for food allergies often have shortcomings such as side effects, poor safety, and high cost. At present, domestic and foreign scientists have turned to research and develop various new, safe and efficient natural sources of hypoallergenic or anti-allergic drugs or foods. There are many kinds of anti-allergic substances obtained from the plants and animals have been reported. Besides, probiotics and bifidobacteria also have certain anti-allergic effects. Of all the sources of anti-allergic substances, the ocean is rich in effective active substances due to its remarkable biodiversity and extremely complex living environment, and plays a huge role in the field of anti-food allergy. In this paper, the anti-food allergic bioactive substances isolated from marine organisms encompassing marine microbial, plant, animal sources and their mechanism were reviewed and the possible targets of anti-allergic substances exerting effects are illustrated by drawing. In addition, the development prospects of marine anti-allergic market are discussed and forecasted, which can provide reference for future research on anti-allergic substances.
Collapse
Affiliation(s)
- Kexin Wang
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, P.R. China
| | - Siddanakoppalu Narayana Pramod
- Laboratory for Immunomodulation and Inflammation Biology, Department of Studies and Research in Biochemistry, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, India
| | - Tushar Ramesh Pavase
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, P.R. China
| | - Ishfaq Ahmed
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, P.R. China
| | - Hang Lin
- The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Liangyu Liu
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, P.R. China
| | - Shenglan Tian
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, P.R. China
| | - Hong Lin
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, P.R. China
| |
Collapse
|
12
|
Barbosa M, Lopes G, Andrade PB, Valentão P. Bioprospecting of brown seaweeds for biotechnological applications: Phlorotannin actions in inflammation and allergy network. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Vo TS, Kim SK, Ryu B, Ngo DH, Yoon NY, Bach LG, Hang NTN, Ngo DN. The Suppressive Activity of Fucofuroeckol-A Derived from Brown Algal Ecklonia stolonifera Okamura on UVB-Induced Mast Cell Degranulation. Mar Drugs 2018; 16:E1. [PMID: 29300311 PMCID: PMC5793049 DOI: 10.3390/md16010001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/12/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022] Open
Abstract
UV light, especially UVB, is known as a trigger of allergic reaction, leading to mast cell degranulation and histamine release. In this study, phlorotannin Fucofuroeckol-A (F-A) derived from brown algal Ecklonia stolonifera Okamura was evaluated for its protective capability against UVB-induced allergic reaction in RBL-2H3 mast cells. It was revealed that F-A significantly suppress mast cell degranulation via decreasing histamine release as well as intracellular Ca2+ elevation at the concentration of 50 μM. Moreover, the inhibitory effect of F-A on IL-1β and TNF-α productions was also evidenced. Notably, the protective activity of F-A against mast cell degranulation was found due to scavenging ROS production. Accordingly, F-A from brown algal E. stolonifera was suggested to be promising candidate for its protective capability against UVB-induced allergic reaction.
Collapse
Affiliation(s)
- Thanh Sang Vo
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam.
| | - Se-Kwon Kim
- Department of Marine Life Science, College of Ocean Science and Technology, Korea Maritime and Ocean University, Busan 606-791, Korea.
| | - BoMi Ryu
- School of Pharmacy, the University of Queensland, Brisbane QLD 4072, Australia.
| | - Dai Hung Ngo
- Faculty of Natural Sciences, Thu Dau Mot University, Thu Dau Mot City 820000, Binh Duong Province, Vietnam.
| | - Na-Young Yoon
- Food and Safety Research Center, National Fisheries Research & Development, Busan 46083, Korea.
| | - Long Giang Bach
- Department of Science and Technology, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam.
| | - Nguyen Thi Nhat Hang
- Faculty of Natural Sciences, Thu Dau Mot University, Thu Dau Mot City 820000, Binh Duong Province, Vietnam.
- Faculty of Chemistry, University of Science-VNU-HCM City, 227 Nguyen Van Cu Street, Ho Chi Minh City 700000, Vietnam.
| | - Dai Nghiep Ngo
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.
| |
Collapse
|
14
|
Azam MS, Choi J, Lee MS, Kim HR. Hypopigmenting Effects of Brown Algae-Derived Phytochemicals: A Review on Molecular Mechanisms. Mar Drugs 2017; 15:E297. [PMID: 28946635 PMCID: PMC5666405 DOI: 10.3390/md15100297] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/11/2017] [Accepted: 09/20/2017] [Indexed: 12/29/2022] Open
Abstract
There is a rapid increase in the demand for natural hypopigmenting agents from marine sources for cosmeceutical and pharmaceutical applications. Currently, marine macroalgae are considered as a safe and effective source of diverse bioactive compounds. Many research groups are exploring marine macroalgae to discover and characterize novel compounds for cosmeceutical, nutraceutical, and pharmaceutical applications. Many types of bioactive secondary metabolites from marine algae, including phlorotannins, sulfated polysaccharides, carotenoids, and meroterpenoids, have already been documented for their potential applications in the pharmaceutical industry. Among these metabolites, phlorotannins from brown algae have been widely screened for their pharmaceutical and hypopigmenting effects. Unfortunately, the majority of these articles did not have detailed investigations on molecular targets, which is critical to fulfilling the criteria for their cosmeceutical and pharmaceutical use. Very recently, a few meroterpenoids have been discovered from Sargassum sp., with the examination of their anti-melanogenic properties and mechanisms. Despite the scarcity of in vivo and clinical investigations of molecular mechanistic events of marine algae-derived hypopigmenting agents, identifying the therapeutic targets and their validation in humans has been a major challenge for future studies. In this review, we focused on available data representing molecular mechanisms underlying hypopigmenting properties of potential marine brown alga-derived compounds.
Collapse
Affiliation(s)
- Mohammed Shariful Azam
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Korea.
| | - Jinkyung Choi
- Department of Foodservice Management, Woosong University, Daejeon 34606, Korea.
| | - Min-Sup Lee
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Korea.
| | - Hyeung-Rak Kim
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Korea.
| |
Collapse
|
15
|
Shim SY, Lee M, Lee KD. Achyranthes japonica Nakai Water Extract Suppresses Binding of IgE Antibody to Cell Surface FcɛRI. Prev Nutr Food Sci 2016; 21:323-329. [PMID: 28078254 PMCID: PMC5216883 DOI: 10.3746/pnf.2016.21.4.323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/13/2016] [Indexed: 12/23/2022] Open
Abstract
Achyranthes japonica Nakai (AJN) water extract has a variety of physiological properties, including anti-diabetic, anti-cancer, anti-inflammatory, anti-microbial, and anti-oxidative activities. In the present study, the inhibitory effects of AJN extract were investigated in high affinity immunoglobulin E receptor (FcɛRI)-mediated KU812F cells activation. AJN extract showed suppressive effects on histamine release and intracellular calcium [Ca2+]i elevation from anti-FcɛRI antibody (CRA-1)-stimulated cells in a dose-dependent manner. Flow cytometric analysis showed that AJN extract treatment caused a dose-dependent decrease in the cell surface FcɛRI expression and the binding between the cell surface FcɛRI and the IgE antibody. Moreover, reverse transcription-polymerase chain reaction analysis showed that levels of the mRNA for the FcɛRI α chain was decreased by treatment with AJN extract. These results indicate that AJN extract may exert anti-allergic effects via the inhibition of calcium influx and histamine release, which occurs as a result from the down-regulation of the binding of IgE antibody to cell surface FcɛRI. This mechanism may occur through FcɛRI expression inhibition.
Collapse
Affiliation(s)
- Sun Yup Shim
- College of Pharmacy, Sunchon National University, Jeonnam 57922, Korea
| | - Mina Lee
- College of Pharmacy, Sunchon National University, Jeonnam 57922, Korea
| | - Kyung Dong Lee
- Department of Oriental Medicine Materials, Dongshin University, Jeonnam 58245, Korea
| |
Collapse
|
16
|
Bang CY, Byun JH, Choi HK, Choi JS, Choung SY. Protective Effects of Ecklonia stolonifera Extract on Ethanol-Induced Fatty Liver in Rats. Biomol Ther (Seoul) 2016; 24:650-658. [PMID: 27795452 PMCID: PMC5098545 DOI: 10.4062/biomolther.2016.176] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 12/20/2022] Open
Abstract
Chronic alcohol consumption causes alcoholic liver disease, which is associated with the initiation of dysregulated lipid metabolism. Recent evidences suggest that dysregulated cholesterol metabolism plays an important role in the pathogenesis of alcoholic fatty liver disease. Ecklonia stolonifera (ES), a perennial brown marine alga that belongs to the family Laminariaceae, is rich in phlorotannins. Many studies have indicated that ES has extensive pharmacological effects, such as antioxidative, hepatoprotective, and antiinflammatory effects. However, only a few studies have investigated the protective effect of ES in alcoholic fatty liver. Male Sprague-Dawley rats were randomly divided into normal diet (ND) (fed a normal diet for 10 weeks) and ethanol diet (ED) groups. Rats in the ED group were fed a Lieber-DeCarli liquid diet (containing 5% ethanol) for 10 weeks and administered ES extract (50, 100, or 200 mg/kg/day), silymarin (100 mg/kg/day), or no treatment for 4 weeks. Each treatment group comprised of eight rats. The supplementation with ES resulted in decreased serum levels of triglycerides (TGs), total cholesterol, alanine aminotransferase, and aspartate aminotransferase. In addition, there were decreases in hepatic lipid and malondialdehyde levels. Changes in liver histology, as analyzed by Oil Red O staining, showed that the ES treatment suppressed adipogenesis. In addition, the ES treatment increased the expression of fatty acid oxidation-related genes (e.g., PPAR-α and CPT-1) but decreased the expression of SREBP 1, which is a TG synthesis-related gene. These results suggest that ES extract may be useful in preventing fatty acid oxidation and reducing lipogenesis in ethanol-induced fatty liver.
Collapse
Affiliation(s)
- Chae-Young Bang
- Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae-Hyuk Byun
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hye-Kyung Choi
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae-Sue Choi
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Se-Young Choung
- Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.,Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
17
|
Lee JH, Ko JY, Oh JY, Kim CY, Lee HJ, Kim J, Jeon YJ. Preparative isolation and purification of phlorotannins from Ecklonia cava using centrifugal partition chromatography by one-step. Food Chem 2014; 158:433-7. [PMID: 24731366 DOI: 10.1016/j.foodchem.2014.02.112] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/05/2014] [Accepted: 02/19/2014] [Indexed: 12/21/2022]
Abstract
Various bioactive phlorotannins of Ecklonia cava (e.g., dieckol, eckol, 6,6-bieckol, phloroglucinol, phloroeckol, and phlorofucofuroeckol-A) are reported. However, their isolation and purification are not easy. Centrifugal partition chromatography (CPC) can be used to efficiently purify the various bioactive-compounds efficiently from E. cava. Phlorotannins are successfully isolated from the ethyl acetate (EtOAc) fraction of E. cava by CPC with a two-phase solvent system comprising n-hexane:EtOAc:methanol:water (2:7:3:7, v/v) solution. The dieckol (fraction I, 40.2mg), phlorofucofuroeckol-A (fraction III, 31.1mg), and fraction II (34.1mg) with 2,7-phloroglucinol-6,6-bieckol and pyrogallol-phloroglucinol-6,6-bieckol are isolated from the crude extract (500 mg) by a one-step CPC system. The purities of the isolated dieckol and phlorofucofuroeckol-A are ⩾90% according to high performance liquid chromatography (HPLC) and electrospray ionization multi stage tandem mass spectrometry analyses. The purified 2,7-phloroglucinol-6,6-bieckol and pyrogallol-phloroglucinol-6,6-bieckol are collected from fraction II by recycle-HPLC. Thus, the CPC system is useful for easy and simple isolation of phlorotannins from E. cava.
Collapse
Affiliation(s)
- Ji-Hyeok Lee
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea
| | - Ju-Young Ko
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea
| | - Jae-Young Oh
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea
| | - Chul-Young Kim
- Natural Product Research Center, Hanyang University, Daejeon-dong, Ahnsan, Gyeongi-do, Republic of Korea
| | - Hee-Ju Lee
- Natural Product Research Center, KIST Gangneung Institute, Daejeon-dong, Gangneung, Gangwon-do, Republic of Korea
| | - Jaeil Kim
- Department of Food Science and Technology, Pukyong National University, Busan 608-737, Republic of Korea.
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea.
| |
Collapse
|
18
|
Bak SS, Ahn BN, Kim JA, Shin SH, Kim JC, Kim MK, Sung YK, Kim SK. Ecklonia cava promotes hair growth. Clin Exp Dermatol 2014; 38:904-10. [PMID: 24252083 DOI: 10.1111/ced.12120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Previous studies have reported the protective effects on skin elasticity of the edible marine seaweed Ecklonia cava, which acts through regulation of both antioxidative and anti-inflammatory responses. AIM We evaluated the effect of E. cava and one of its components, dioxinodehydroeckol, on hair-shaft growth in cultured human hair follicles and on hair growth in mice. METHODS The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to check cell viability of human dermal papilla cells (DPCs) and outer root sheath (ORS) cells after treatment with E. cava and its metabolite, dioxinodehydroeckol. Hair-shaft growth was measured using the in vitro hair-follicle organ-culture system, in the presence or absence of E. cava and dioxinodehydroeckol. Anagen induction activity was examined by topical application of E. cava to the dorsal skin of C57BL/6 mice. Insulin-like growth factor (IGF)-1 expression was measured by reverse transcriptase PCR and ELISA. RESULTS The proliferation activity was found to be highest for the ethyl acetate-soluble fraction of E. cava (EAFE) in DPCs and in ORS cells. Treatment with EAFE resulted in elongation of the hair shaft in cultured human hair follicles, and promoted transition of the hair cycle from the telogen to the anagen phase in the dorsal skin of C57BL/6 mice. In addition, EAFE induced an increase in IGF-1 expression in DPCs. Dioxinodehydroeckol, a component of E. cava, induced elongation of the hair shaft, an increase in proliferation of DPCs and ORS cells, and an increase in expression of IGF-1 in DPCs. CONCLUSIONS These results suggest that E. cava containing dioxinodehydroeckol promotes hair growth through stimulation of DPCs and ORS cells.
Collapse
Affiliation(s)
- S S Bak
- Marine Bioprocess Research Center, Pukyong National University, Busan, Korea
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Jung HA, Jung HJ, Jeong HY, Kwon HJ, Ali MY, Choi JS. Phlorotannins isolated from the edible brown alga Ecklonia stolonifera exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating C/EBPα and PPARγ. Fitoterapia 2014; 92:260-9. [PMID: 24334103 DOI: 10.1016/j.fitote.2013.12.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/03/2013] [Accepted: 12/07/2013] [Indexed: 01/19/2023]
Abstract
The dramatic increase in obesity-related diseases emphasizes the need to elucidate the cellular and molecular mechanisms underlying fat metabolism. Inhibition of adipocyte differentiation has been suggested to be an important strategy for preventing or treating obesity. In our previous study, we characterized an Ecklonia stolonifera extract and non-polar fractions thereof, including dichloromethane and ethyl acetate fractions. We showed that these fractions inhibited adipocyte differentiation and lipid formation/accumulation in 3T3-L1 preadipocytes, as assessed by Oil Red O staining. As part of our ongoing search for anti-obesity agents derived from E. stolonifera, in this work, we characterized five known phlorotannins, including phloroglucinol, eckol, dieckol, dioxinodehydroeckol, and phlorofucofuroeckol A, all of which were isolated from the active ethyl acetate fraction of E. stolonifera. We determined the chemical structures of these phlorotannins through comparisons of published nuclear magnetic resonance (NMR) spectral data. Furthermore, we screened these phlorotannins for their abilities to inhibit adipogenesis over a range of concentrations (12.5-100 μM). Of these five phlorotannins, phloroglucinol, eckol, and phlorofucofuroeckol A significantly concentration-dependently inhibited lipid accumulation in 3T3-L1 cells without affecting cell viability. In addition, the five isolated phlorotannins also significantly reduced the expression levels of several adipocyte marker genes, including proliferator activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), although they did so to different extents. These results suggest that the molecular weight of a phlorotannin is an important factor affecting its ability to inhibit adipocyte differentiation and modulate the expression levels of adipocyte marker genes.
Collapse
Affiliation(s)
- Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Hee Jin Jung
- Department of Food and Life Science, Pukyong National University, 608-737, Republic of Korea
| | - Hyun Young Jeong
- Department of Life Science and Biotechnology, Dong-Eui University, Busan 614-714, Republic of Korea
| | - Hyun Ju Kwon
- Department of Life Science and Biotechnology, Dong-Eui University, Busan 614-714, Republic of Korea
| | - Md Yousof Ali
- Department of Food and Life Science, Pukyong National University, 608-737, Republic of Korea
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, 608-737, Republic of Korea.
| |
Collapse
|
20
|
Mayer AMS, Rodríguez AD, Taglialatela-Scafati O, Fusetani N. Marine pharmacology in 2009-2011: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar Drugs 2013; 11:2510-73. [PMID: 23880931 PMCID: PMC3736438 DOI: 10.3390/md11072510] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/04/2013] [Accepted: 06/14/2013] [Indexed: 12/13/2022] Open
Abstract
The peer-reviewed marine pharmacology literature from 2009 to 2011 is presented in this review, following the format used in the 1998–2008 reviews of this series. The pharmacology of structurally-characterized compounds isolated from marine animals, algae, fungi and bacteria is discussed in a comprehensive manner. Antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral pharmacological activities were reported for 102 marine natural products. Additionally, 60 marine compounds were observed to affect the immune and nervous system as well as possess antidiabetic and anti-inflammatory effects. Finally, 68 marine metabolites were shown to interact with a variety of receptors and molecular targets, and thus will probably contribute to multiple pharmacological classes upon further mechanism of action studies. Marine pharmacology during 2009–2011 remained a global enterprise, with researchers from 35 countries, and the United States, contributing to the preclinical pharmacology of 262 marine compounds which are part of the preclinical pharmaceutical pipeline. Continued pharmacological research with marine natural products will contribute to enhance the marine pharmaceutical clinical pipeline, which in 2013 consisted of 17 marine natural products, analogs or derivatives targeting a limited number of disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, Illinois 60515, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-630-515-6951; Fax: +1-630-971-6414
| | - Abimael D. Rodríguez
- Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931, USA; E-Mail:
| | - Orazio Taglialatela-Scafati
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, I-80131 Napoli, Italy; E-Mail:
| | | |
Collapse
|
21
|
Antiallergic benefit of marine algae in medicinal foods. ADVANCES IN FOOD AND NUTRITION RESEARCH 2012; 64:267-75. [PMID: 22054954 DOI: 10.1016/b978-0-12-387669-0.00021-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The prevalence of allergic diseases such as asthma, atopic dermatitis, and allergic rhinitis has increased during the past two decades and contributed a great deal to morbidity and an appreciable mortality in the world. Until now, few novel efficacious drugs have been discovered to treat, control, or even cure these disorders with a low adverse-effect profile. Meanwhile, glucocorticoids are still the mainstay for the treatment of allergic disease. Therefore, it is essential to isolate novel antiallergic therapeutics from natural resources. Recently, marine algae have received much attention as they are a valuable source of chemically diverse bioactive compounds with numerous health benefit effects. This contribution focuses on antiallergic agents derived from marine algae and presents an overview of their potential application in medicinal foods for the treatment of allergic disorders.
Collapse
|
22
|
Lee MS, Yoon HD, Kim JI, Choi JS, Byun DS, Kim HR. Dioxinodehydroeckol inhibits melanin synthesis through PI3K/Akt signalling pathway in α-melanocyte-stimulating hormone-treated B16F10 cells. Exp Dermatol 2012; 21:471-3. [PMID: 22621193 DOI: 10.1111/j.1600-0625.2012.01508.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Antimelanogenic activity has previously been reported in ethyl acetate fraction of Ecklonia stolonifera. In this study, using the isolated dioxinodehydroeckol from the fraction, we sought to investigate an antimelanogenic signalling pathway in α-melanocyte-stimulating hormone (α-MSH)-stimulated B16F10 melanoma cells. Treatment with dioxinodehydroeckol inhibited the cellular melanin contents and expression of melanogenesis-related proteins, including microphthalmia-associated transcription factor (MITF), tyrosinase and tyrosinase-related proteins TRP-1 and TRP-2. Moreover, dioxinodehydroeckol stimulated phosphorylation of Akt in a dose-dependent manner without affecting phosphorylation of ERK. These data suggest that dioxinodehydroeckol reduces melanin synthesis through the MITF regulation dependent upon PI3K/Akt signalling pathway.
Collapse
|
23
|
Isolation and identification of flavonoids from Gujeolcho (Chrysanthemum zawadskii var. latilobum) as inhibitor of histamine release. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0079-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
24
|
Xu HL, Kitajima C, Ito H, Miyazaki T, Baba M, Okuyama T, Okada Y. Antidiabetic effect of polyphenols from brown alga Ecklonia kurome in genetically diabetic KK-A(y) mice. PHARMACEUTICAL BIOLOGY 2012; 50:393-400. [PMID: 22103717 DOI: 10.3109/13880209.2011.601464] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
CONTEXT Prevalence of diabetes mellitus type 2 (DM-II) is increasing in Japan. Brown alga Ecklonia kurome Okamura (Laminariaceae) (kurome in Japanese) is rich in phlorotannins, a kind of polyphenol. Phlorotannins have been reported to possess various bioactivities; however, few studies have reported its effect on DM-II. OBJECTIVE The present study was conducted to investigate the antidiabetic effect of polyphenols from E. kurome (KPP) on KK-A(y) mice, the animal model for human DM-II. MATERIALS AND METHODS Inhibitory activities of KPP against α-amylase and α-glucosidase in vitro, and effects on oral carbohydrate tolerance test in vivo were investigated. KK-A(y) mice were fed with 0.1% KPP containing water for 5 weeks. A glucose tolerance test was conducted at week 4 of the 5-week period. At the end of experiment, blood biochemical parameters, including blood glucose, insulin, glycoalbumin, and fructosamine were determined. Furthermore, the kidneys and pancreatic islets were histologically examined. RESULTS KPP showed inhibitory activities on carbohydrate-hydrolyzing enzymes and decreased postprandial blood glucose levels. The body weight gain and blood glucose levels in the KPP group were lower than the control group during the experimental period. KPP improved glucose tolerance and decreased the fasting blood glucose and insulin levels, fructosamine and glycoalbumin levels compared with the control group. Furthermore, KPP contracted the pancreatic islet size and decreased renal mesangial matrix in KK-A(y) mice. DISCUSSION AND CONCLUSION These results suggest that KPP is effective against DM-II and might provide a source of therapeutic agents for DM-II.
Collapse
Affiliation(s)
- Hu-Lin Xu
- Department of Natural Medicine and Phytochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Stengel DB, Connan S, Popper ZA. Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. Biotechnol Adv 2011; 29:483-501. [PMID: 21672617 DOI: 10.1016/j.biotechadv.2011.05.016] [Citation(s) in RCA: 242] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 05/29/2011] [Accepted: 05/30/2011] [Indexed: 02/06/2023]
Abstract
There has been significant recent interest in the commercial utilisation of algae based on their valuable chemical constituents many of which exhibit multiple bioactivities with applications in the food, cosmetic, agri- and horticultural sectors and in human health. Compounds of particular commercial interest include pigments, lipids and fatty acids, proteins, polysaccharides and phenolics which all display considerable diversity between and within taxa. The chemical composition of natural algal populations is further influenced by spatial and temporal changes in environmental parameters including light, temperature, nutrients and salinity, as well as biotic interactions. As reported bioactivities are closely linked to specific compounds it is important to understand, and be able to quantify, existing chemical diversity and variability. This review outlines the taxonomic, ecological and chemical diversity between, and within, different algal groups and the implications for commercial utilisation of algae from natural populations. The biochemical diversity and complexity of commercially important types of compounds and their environmental and developmental control are addressed. Such knowledge is likely to help achieve higher and more consistent levels of bioactivity in natural samples and may allow selective harvesting according to algal species and local environmental conditions for different groups of compounds.
Collapse
Affiliation(s)
- Dagmar B Stengel
- Botany and Plant Science, School of Natural Sciences, Ryan Institute for Environmental, Marine and Energy Research, National University of Ireland Galway, Ireland.
| | | | | |
Collapse
|
27
|
Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2010; 28:196-268. [PMID: 21152619 DOI: 10.1039/c005001f] [Citation(s) in RCA: 343] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
28
|
Kim SK, Kong CS. Anti-adipogenic effect of dioxinodehydroeckol via AMPK activation in 3T3-L1 adipocytes. Chem Biol Interact 2010; 186:24-9. [PMID: 20385110 DOI: 10.1016/j.cbi.2010.04.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 03/30/2010] [Accepted: 04/02/2010] [Indexed: 11/16/2022]
Abstract
Dioxinodehydroeckol (DHE) isolated from Ecklonia cava, has previously been investigated for its inhibition of the differentiation of 3T3-L1 preadipocytes into adipocytes. Levels of lipid accumulation were measured, along with changes in the expression of genes and proteins associated with adipogenesis and lipolysis. Confluent 3T3-L1 preadipocytes in medium with or without different concentrations of DHE for 7 days were differentiated into adipocytes. Lipid accumulation was quantified by measuring direct triglyceride contents and Oil-Red O staining. The expression of genes and proteins associated with adipogenesis and lipolysis was measured using RT-PCR, quantitative real-time RT-PCR and Western blotting analysis. It was found that the presence of DHE significantly reduced lipid accumulation and down-regulated the expression of peroxisome proliferator-activated receptor-gamma (PPARgamma), sterol regulatory element-binding protein 1 (SREBP1) and CCAAT/enhancer-binding proteins (C/EBPalpha) in a dose-dependent manner. Moreover, DHE suppressed regulation of the adipocyte-specific gene promoters such as fatty acid binding protein (FABP4), fatty acid transport protein (FATP1), fatty acid synthase (FAS), lipoprotein lipase (LPL), acyl-CoA synthetase 1 (ACS1), leptin, perilipin and HSL compared to control adipocytes. The specific mechanism mediating the effects of DHE was confirmed by activation of phosphorylated AMP-activated protein kinase (pAMPK). Therefore, these results suggest that DHE exerts anti-adipogenic effect on adipocyte differentiation through the activation and modulation of the AMPK signaling pathway.
Collapse
Affiliation(s)
- Se-Kwon Kim
- Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea.
| | | |
Collapse
|