1
|
Cheng YD, Hwang TL, Wang HH, Pan TL, Wu CC, Chang WY, Liu YT, Chu TC, Hsieh PW. Anthranilic acid-based inhibitors of phosphodiesterase: design, synthesis, and bioactive evaluation. Org Biomol Chem 2011; 9:7113-25. [PMID: 21847495 DOI: 10.1039/c1ob05714f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Our previous studies identified two 2-benzoylaminobenzoate derivatives 1, which potently inhibited superoxide (O(2)˙(-)) generation induced by formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP) in human neutrophils. In an attempt to improve their activities, a series of anthranilic acid derivatives were synthesized and their anti-inflammatory effects and underlying mechanisms were investigated in human neutrophils. Of these, compounds 17, 18, 46, 49, and 50 showed the most potent inhibitory effect on FMLP-induced release of O(2)˙(-) in human neutrophils with IC(50) values of 0.20, 0.16, 0.15, 0.06, and 0.29 μM, respectively. SAR analysis showed that the activities of most compounds were dependent on the ester chain length in the A ring. Conversely, a change in the linker between the A and B ring from amide to sulfonamide or N-methyl amide, as well as exchanges in the benzene rings (A or B rings) by isosteric replacements were unfavorable. Further studies indicated that inhibition of O(2)˙(-) production in human neutrophils by these anthranilic acids was associated with an elevation in cellular cAMP levels through the selective inhibition of phosphodiesterase 4. Compound 49 could be approved as a lead for the development of new drugs in the treatment of neutrophilic inflammatory diseases.
Collapse
Affiliation(s)
- Yih-Dih Cheng
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, 33302, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Pavan MV, Lassiani L, Berti F, Stefancich G, Ciogli A, Gasparrini F, Mennuni L, Ferrari F, Escrieut C, Marco E, Makovec F, Fourmy D, Varnavas A. New Anthranilic Acid Based Antagonists with High Affinity and Selectivity for the Human Cholecystokinin Receptor 1 (hCCK1-R). J Med Chem 2011; 54:5769-85. [DOI: 10.1021/jm200438b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michela V. Pavan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy
| | - Lucia Lassiani
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Giorgio Stefancich
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy
| | - Alessia Ciogli
- Department of Chemistry and Technology of Biologically Active Substances, University “La Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Gasparrini
- Department of Chemistry and Technology of Biologically Active Substances, University “La Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Laura Mennuni
- Rottapharm—Madaus SpA, Via Valosa di Sopra 7, 20052 Monza, Italy
| | - Flora Ferrari
- Rottapharm—Madaus SpA, Via Valosa di Sopra 7, 20052 Monza, Italy
| | - Chantal Escrieut
- Université de Toulouse 3, EA 4552, I2MC, 1 Avenue Jean Poulhès, 31432 Toulouse, France
| | - Esther Marco
- Université de Toulouse 3, EA 4552, I2MC, 1 Avenue Jean Poulhès, 31432 Toulouse, France
| | | | - Daniel Fourmy
- Université de Toulouse 3, EA 4552, I2MC, 1 Avenue Jean Poulhès, 31432 Toulouse, France
| | - Antonio Varnavas
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy
| |
Collapse
|