1
|
Ružić D, Đoković N, Nikolić K, Vujić Z. Medicinal chemistry of histone deacetylase inhibitors. ARHIV ZA FARMACIJU 2021. [DOI: 10.5937/arhfarm71-30618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Today, we are witnessing an explosion of scientific concepts in cancer chemotherapy. It has been considered for a long time that genetic instability in cancer should be treated with drugs that directly damage the DNA. Understanding the molecular basis of malignant diseases shed light on studying phenotypic plasticity. In the era of epigenetics, many efforts are being made to alter the aberrant homeostasis in cancer without modifying the DNA sequence. One such strategy is modulation of the lysine acetylome in human cancers. To remove the acetyl group from the histones, cells use the enzymes that are called histone deacetylases (HDACs). The disturbed equilibrium between acetylation and deacetylation on lysine residues of histones can be manipulated with histone deacetylase inhibitors (HDACi). Throughout the review, an effort will be made to present the mechanistic basis of targeting the HDAC isoforms, discovered selective HDAC inhibitors, and their therapeutical implications and expectations in modern drug discovery.
Collapse
|
2
|
Kouznetsov VV, Ortiz Villamizar MC, Puerto Galvis CE. The A3 Redox-Neutral C1-Alkynylation of Tetrahydroisoquinolines: A Comparative Study between Visible Light Photocatalysis and Transition-Metal Catalysis. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AbstractConsidering the current challenges of the A3 redox-neutral C1-alkynylation of tetrahydroisoquinolines (THIQs), we studied this synthetic tool under visible light photocatalysis and transition-metal catalysis in order to describe alternative reaction conditions and discuss possible improvements to this process. We demonstrated that 1-alkynylated THIQs can be readily obtained by three different approaches: iridium-based photocatalysis and copper ([CuBr(PPh3)3]) and silver (AgNO3) catalysis under mild, selective and accessible reaction conditions. Among these approaches, the copper(I)-based methodology resulted in the most robust, optimal reaction conditions for the synthesis of a series of 18 1-alkynylated THIQs in moderate to excellent yields and with high selectivity for the endo-alkynylated products. Moreover, this reaction can be accelerated by microwave irradiation (120 °C, 15 min) affording a novel library of diverse THIQs with alkyne and N-substituent moieties, from unreactive and uncommon substrates, that could be further transformed into new compounds of interest.
Collapse
|
3
|
Kouznetsov VV, Ortiz-Villamizar MC, Méndez-Vargas LY, Galvis CEP. A Review on Metal-Free Oxidative α-Cyanation and Alkynylation of N-Substituted Tetrahydroisoquinolines as a Rapid Route for the Synthesis of Isoquinoline Alkaloids. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200420073539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
As a fast-growing research field in modern organic chemistry, the crossdehydrogenative
coupling (CDC) has seen considerable development in its scope of application,
uptake into industry, and understanding of its mechanism to functionalize the tetrahydroisoquinoline
(THIQ) scaffold. Among the vast number of possibilities offered by
the CDC coupling, the metal-free oxidative α-cyanation and alkynylation reactions have
emerged as powerful strategies in the synthesis of diverse and potentially bioactive
THIQs. Even though transition-metal catalyzed CDC reactions have undoubtedly made
significant progress in THIQ chemistry, general and selective protocols for the metal-free
oxidative α-cyanation and alkynylation reactions of THIQs are urgently needed. Thereby,
this critical discussion is aimed to highlight the recent progress in this field of CDC reactions
where Csp3-H bonds are activated without metal catalysts to introduce the CN and the alkynyl groups into
the THIQ core.
Collapse
Affiliation(s)
- Vladimir V. Kouznetsov
- Laboratory of Organic and Bimolecular Chemistry, CMN, Industrial University of Santande, Guatiguará Technology Park, Km 2 Vía Refugio, Piedecuesta 681011, Colombia
| | - Marlyn C. Ortiz-Villamizar
- Laboratory of Organic and Bimolecular Chemistry, CMN, Industrial University of Santande, Guatiguará Technology Park, Km 2 Vía Refugio, Piedecuesta 681011, Colombia
| | - Leonor Y. Méndez-Vargas
- Laboratory of Organic and Bimolecular Chemistry, CMN, Industrial University of Santande, Guatiguará Technology Park, Km 2 Vía Refugio, Piedecuesta 681011, Colombia
| | - Carlos E. Puerto Galvis
- Laboratory of Organic and Bimolecular Chemistry, CMN, Industrial University of Santande, Guatiguará Technology Park, Km 2 Vía Refugio, Piedecuesta 681011, Colombia
| |
Collapse
|
4
|
Amsalem Z, Arif T, Shteinfer-Kuzmine A, Chalifa-Caspi V, Shoshan-Barmatz V. The Mitochondrial Protein VDAC1 at the Crossroads of Cancer Cell Metabolism: The Epigenetic Link. Cancers (Basel) 2020; 12:cancers12041031. [PMID: 32331482 PMCID: PMC7226296 DOI: 10.3390/cancers12041031] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 12/29/2022] Open
Abstract
Carcinogenesis is a complicated process that involves the deregulation of epigenetics, resulting in cellular transformational events, such as proliferation, differentiation, and metastasis. Most chromatin-modifying enzymes utilize metabolites as co-factors or substrates and thus are directly dependent on such metabolites as acetyl-coenzyme A, S-adenosylmethionine, and NAD+. Here, we show that using specific siRNA to deplete a tumor of VDAC1 not only led to reprograming of the cancer cell metabolism but also altered several epigenetic-related enzymes and factors. VDAC1, in the outer mitochondrial membrane, controls metabolic cross-talk between the mitochondria and the rest of the cell, thus regulating the metabolic and energetic functions of mitochondria, and has been implicated in apoptotic-relevant events. We previously demonstrated that silencing VDAC1 expression in glioblastoma (GBM) U-87MG cell-derived tumors, resulted in reprogramed metabolism leading to inhibited tumor growth, angiogenesis, epithelial-mesenchymal transition and invasiveness, and elimination of cancer stem cells, while promoting the differentiation of residual tumor cells into neuronal-like cells. These VDAC1 depletion-mediated effects involved alterations in transcription factors regulating signaling pathways associated with cancer hallmarks. As the epigenome is sensitive to cellular metabolism, this study was designed to assess whether depleting VDAC1 affects the metabolism-epigenetics axis. Using DNA microarrays, q-PCR, and specific antibodies, we analyzed the effects of si-VDAC1 treatment of U-87MG-derived tumors on histone modifications and epigenetic-related enzyme expression levels, as well as the methylation and acetylation state, to uncover any alterations in epigenetic properties. Our results demonstrate that metabolic rewiring of GBM via VDAC1 depletion affects epigenetic modifications, and strongly support the presence of an interplay between metabolism and epigenetics.
Collapse
Affiliation(s)
- Zohar Amsalem
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (Z.A.); (T.A.); (A.S.-K.)
| | - Tasleem Arif
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (Z.A.); (T.A.); (A.S.-K.)
| | - Anna Shteinfer-Kuzmine
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (Z.A.); (T.A.); (A.S.-K.)
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Vered Chalifa-Caspi
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (Z.A.); (T.A.); (A.S.-K.)
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
- Correspondence: ; Fax: +972-8-647-2992
| |
Collapse
|
5
|
Gröll B, Schaaf P, Mihovilovic MD, Schnürch M. Cu(I)-catalyzed one-pot decarboxylation-alkynylation reactions on 1,2,3,4-tetrahydroisoquinolines and one-pot synthesis of triazolyl-1,2,3,4-tetrahydroisoquinolines. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.molcata.2016.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Kumar A, Chauhan S. Use of the Monte Carlo Method for OECD Principles-Guided QSAR Modeling of SIRT1 Inhibitors. Arch Pharm (Weinheim) 2016; 350. [PMID: 28025857 DOI: 10.1002/ardp.201600268] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/27/2016] [Accepted: 11/23/2016] [Indexed: 12/15/2022]
Abstract
SIRT1 inhibitors offer therapeutic potential for the treatment of a number of diseases including cancer and human immunodeficiency virus infection. A diverse series of 45 compounds with reported SIRT1 inhibitory activity has been employed for the development of quantitative structure-activity relationship (QSAR) models using the Monte Carlo optimization method. This method makes use of simplified molecular input line entry system notation of the molecular structure. The QSAR models were built up according to OECD principles. Three subsets of three splits were examined and validated by respective external sets. All the three described models have good statistical quality. The best model has the following statistical characteristics: R2 = 0.8350, Q2test = 0.7491 for the test set and R2 = 0.9655, Q2ext = 0.9261 for the validation set. In the mechanistic interpretation, structural attributes responsible for the endpoint increase and decrease are defined. Further, the design of some prospective SIRT1 inhibitors is also presented on the basis of these structural attributes.
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Shilpi Chauhan
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| |
Collapse
|
7
|
Kumar A, Chauhan S. How much successful are the medicinal chemists in modulation of SIRT1: A critical review. Eur J Med Chem 2016; 119:45-69. [PMID: 27153347 DOI: 10.1016/j.ejmech.2016.04.063] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/14/2016] [Accepted: 04/25/2016] [Indexed: 12/27/2022]
Abstract
Silent information regulator two homologue one (SIRT1) is the most widely studied member of the sirtuin family related to histone deacetylases class III super-family using nicotinamide adenine dinucleotide (NAD(+)) as its cofactor. It is located in the nucleus but also modulates the targets in cytoplasm and mainly acts as transacetylase rather than deacetylase. SIRT1 specifically cleaves the nicotinamide ribosyl bond of NAD(+) and transfers the acetyl group from proteins to their co-substrate through an ADP- ribose-peptidyl imidate intermediate. It has been indicated that SIRT1 and its histone as well as non histone targets are involved in a wide range of biological courses including metabolic diseases, age related diseases, viral infection, inflammation, tumor-cell growth and metastasis. Modulation of SIRT1 expression may present a new insight in the discovery of a number of therapeutics. This review summarizes studies about SIRT1 and mainly focuses on the various modulators of SIRT1 evolved by natural as well as synthetic means.
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India.
| | - Shilpi Chauhan
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| |
Collapse
|
8
|
Sun Y, Zhou H, Zhu H, Leung SW. Ligand-based virtual screening and inductive learning for identification of SIRT1 inhibitors in natural products. Sci Rep 2016; 6:19312. [PMID: 26805727 PMCID: PMC4726279 DOI: 10.1038/srep19312] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 12/09/2015] [Indexed: 02/04/2023] Open
Abstract
Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide-dependent deacetylase, and its dysregulation can lead to ageing, diabetes, and cancer. From 346 experimentally confirmed SIRT1 inhibitors, an inhibitor structure pattern was generated by inductive logic programming (ILP) with DMax Chemistry Assistant software. The pattern contained amide, amine, and hetero-aromatic five-membered rings, each of which had a hetero-atom and an unsubstituted atom at a distance of 2. According to this pattern, a ligand-based virtual screening of 1 444 880 active compounds from Chinese herbs identified 12 compounds as inhibitors of SIRT1. Three compounds (ZINC08790006, ZINC08792229, and ZINC08792355) had high affinity (-7.3, -7.8, and -8.6 kcal/mol, respectively) for SIRT1 as estimated by molecular docking software AutoDock Vina. This study demonstrated a use of ILP and background knowledge in machine learning to facilitate virtual screening.
Collapse
Affiliation(s)
- Yunan Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hui Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hongmei Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Siu-wai Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.,School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, United Kingdom
| |
Collapse
|
9
|
Pulla VK, Sriram DS, Viswanadha S, Sriram D, Yogeeswari P. Energy-Based Pharmacophore and Three-Dimensional Quantitative Structure–Activity Relationship (3D-QSAR) Modeling Combined with Virtual Screening To Identify Novel Small-Molecule Inhibitors of Silent Mating-Type Information Regulation 2 Homologue 1 (SIRT1). J Chem Inf Model 2016; 56:173-87. [DOI: 10.1021/acs.jcim.5b00220] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Venkat Koushik Pulla
- Computer-Aided
Drug Design Laboratory, Department of Pharmacy, Birla Institute of Technology and Science−Pilani, Hyderabad Campus, Hyderabad−500078, Telangana, India
| | - Dinavahi Saketh Sriram
- Computer-Aided
Drug Design Laboratory, Department of Pharmacy, Birla Institute of Technology and Science−Pilani, Hyderabad Campus, Hyderabad−500078, Telangana, India
- Incozen Therapeutics
Private Limited, 450, Alexandria Knowledge
Park, Phase-I, Shameerpet, Hyderabad−500078, Telangana, India
| | - Srikant Viswanadha
- Incozen Therapeutics
Private Limited, 450, Alexandria Knowledge
Park, Phase-I, Shameerpet, Hyderabad−500078, Telangana, India
| | - Dharmarajan Sriram
- Computer-Aided
Drug Design Laboratory, Department of Pharmacy, Birla Institute of Technology and Science−Pilani, Hyderabad Campus, Hyderabad−500078, Telangana, India
- Yogee’s Bioinnovations
Private Limited, Room 5, Technology
Business Incubator, BITS-Pilani, Hyderabad campus, Shameerpet, Hyderabad−500078, Telangana, India
| | - Perumal Yogeeswari
- Computer-Aided
Drug Design Laboratory, Department of Pharmacy, Birla Institute of Technology and Science−Pilani, Hyderabad Campus, Hyderabad−500078, Telangana, India
- Yogee’s Bioinnovations
Private Limited, Room 5, Technology
Business Incubator, BITS-Pilani, Hyderabad campus, Shameerpet, Hyderabad−500078, Telangana, India
| |
Collapse
|
10
|
Abstract
The sirtuins form a superfamily of evolutionarily conserved NAD+-dependent protein N-ϵ-acyl-lysine (AcK) deacylases with roles in a variety of key cellular processes. Sirtuins have a broadly conserved overall structure with a catalytic site formed by a hydrophobic channel between the NAD+-binding Rossmann fold domain and a smaller Zn2+-binding domain. Schistosomes express five members of the sirtuin family and generic sirtuin inhibitors induce apoptosis and death in schistosome larvae, the disruption of adult worm pairs, inhibition of egg laying and damage to the male and female worm reproductive systems. Sirtuins in schistosomes and other parasitic flatworms present structural differences from their human orthologues that should allow the development of selective inhibitors that can be developed as drug leads.
Collapse
|
11
|
Marmorstein R, Zhou MM. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb Perspect Biol 2014; 6:a018762. [PMID: 24984779 DOI: 10.1101/cshperspect.a018762] [Citation(s) in RCA: 383] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone acetylation marks are written by histone acetyltransferases (HATs) and read by bromodomains (BrDs), and less commonly by other protein modules. These proteins regulate many transcription-mediated biological processes, and their aberrant activities are correlated with several human diseases. Consequently, small molecule HAT and BrD inhibitors with therapeutic potential have been developed. Structural and biochemical studies of HATs and BrDs have revealed that HATs fall into distinct subfamilies containing a structurally related core for cofactor binding, but divergent flanking regions for substrate-specific binding, catalysis, and autoregulation. BrDs adopt a conserved left-handed four-helix bundle to recognize acetyllysine; divergent loop residues contribute to substrate-specific acetyllysine recognition.
Collapse
Affiliation(s)
- Ronen Marmorstein
- Program in Gene Expression and Regulation, Wistar Institute, and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10065
| |
Collapse
|
12
|
|
13
|
Bruzzone S, Parenti MD, Grozio A, Ballestrero A, Bauer I, Del Rio A, Nencioni A. Rejuvenating sirtuins: the rise of a new family of cancer drug targets. Curr Pharm Des 2013; 19:614-23. [PMID: 23016857 PMCID: PMC3549556 DOI: 10.2174/138161213804581954] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/25/2012] [Indexed: 01/06/2023]
Abstract
Sirtuins are a family of NAD+-dependent enzymes that was proposed to control organismal life span about a decade ago. While such role of sirtuins is now debated, mounting evidence involves these enzymes in numerous physiological processes and disease conditions, including metabolism, nutritional behavior, circadian rhythm, but also inflammation and cancer. SIRT1, SIRT2, SIRT3, SIRT6, and SIRT7 have all been linked to carcinogenesis either as tumor suppressor or as cancer promoting proteins. Here, we review the biological rationale for the search of sirtuin inhibitors and activators for treating cancer and the experimental approaches to their identification.
Collapse
Affiliation(s)
- Santina Bruzzone
- Room 221, Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Disch JS, Evindar G, Chiu CH, Blum CA, Dai H, Jin L, Schuman E, Lind KE, Belyanskaya SL, Deng J, Coppo F, Aquilani L, Graybill TL, Cuozzo JW, Lavu S, Mao C, Vlasuk GP, Perni RB. Discovery of thieno[3,2-d]pyrimidine-6-carboxamides as potent inhibitors of SIRT1, SIRT2, and SIRT3. J Med Chem 2013; 56:3666-79. [PMID: 23570514 DOI: 10.1021/jm400204k] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The sirtuins SIRT1, SIRT2, and SIRT3 are NAD(+) dependent deacetylases that are considered potential targets for metabolic, inflammatory, oncologic, and neurodegenerative disorders. Encoded library technology (ELT) was used to affinity screen a 1.2 million heterocycle enriched library of DNA encoded small molecules, which identified pan-inhibitors of SIRT1/2/3 with nanomolar potency (e.g., 11c: IC50 = 3.6, 2.7, and 4.0 nM for SIRT1, SIRT2, and SIRT3, respectively). Subsequent SAR studies to improve physiochemical properties identified the potent drug like analogues 28 and 31. Crystallographic studies of 11c, 28, and 31 bound in the SIRT3 active site revealed that the common carboxamide binds in the nicotinamide C-pocket and the aliphatic portions of the inhibitors extend through the substrate channel, explaining the observable SAR. These pan SIRT1/2/3 inhibitors, representing a novel chemotype, are significantly more potent than currently available inhibitors, which makes them valuable tools for sirtuin research.
Collapse
Affiliation(s)
- Jeremy S Disch
- Sirtris a GSK Company, Cambridge, Massachusetts, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
This review focuses on the progress in the development of the second generation of epigenetic modifiers able to modulate histone marks, and restore normal gene transcription.
Collapse
Affiliation(s)
- Philip Jones
- Institute for Applied Cancer Sciences
- MD Anderson Cancer Center
- Houston
- USA
| |
Collapse
|
16
|
Stünkel W, Campbell RM. Sirtuin 1 (SIRT1): the misunderstood HDAC. ACTA ACUST UNITED AC 2011; 16:1153-69. [PMID: 22086720 DOI: 10.1177/1087057111422103] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The sirtuin family of NAD-dependent histone deacetylases (HDACs) consists of seven mammalian proteins, SIRT1-7. Many of the sirtuin isoforms also deacetylate nonhistone substrates, such as p53 (SIRT1) and α-tubulin (SIRT2). The sirtuin literature focuses on pharmacological activators of SIRT1 (e.g., resveratrol, SRT1720), proposed as therapeutics for diabetes, neurodegeneration, inflammation, and others. However, many of the SIRT1 activator results may have been due to artifacts in the assay methodology (i.e., use of fluorescently tagged substrates). A biological role for SIRT1 in cancer has been given less scrutiny but is no less equivocal. Although proposed initially as an oncogene, we present herein compelling data suggesting that SIRT1 is indeed a context-specific tumor suppressor. For oncology, SIRT1 inhibitors (dual SIRT1/2) are indicated as potential therapeutics. A number of sirtuin inhibitors have been developed but with mixed results in cellular systems and animal models. It is unclear whether this has been due to poorly understood model systems, signalling redundancy, and/or inadequately potent and selective tool compounds. This review provides an overview of recent developments in the field of SIRT1 function. While focusing on oncology, it aims to shed light on new concepts of expanding the selectivity spectrum, including other sirtuins such as SIRT2.
Collapse
Affiliation(s)
- Walter Stünkel
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR ), Singapore
| | | |
Collapse
|
17
|
Yuan H, Rossetto D, Mellert H, Dang W, Srinivasan M, Johnson J, Hodawadekar S, Ding EC, Speicher K, Abshiru N, Perry R, Wu J, Yang C, Zheng YG, Speicher DW, Thibault P, Verreault A, Johnson FB, Berger SL, Sternglanz R, McMahon SB, Côté J, Marmorstein R. MYST protein acetyltransferase activity requires active site lysine autoacetylation. EMBO J 2011; 31:58-70. [PMID: 22020126 DOI: 10.1038/emboj.2011.382] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 09/19/2011] [Indexed: 01/12/2023] Open
Abstract
The MYST protein lysine acetyltransferases are evolutionarily conserved throughout eukaryotes and acetylate proteins to regulate diverse biological processes including gene regulation, DNA repair, cell-cycle regulation, stem cell homeostasis and development. Here, we demonstrate that MYST protein acetyltransferase activity requires active site lysine autoacetylation. The X-ray crystal structures of yeast Esa1 (yEsa1/KAT5) bound to a bisubstrate H4K16CoA inhibitor and human MOF (hMOF/KAT8/MYST1) reveal that they are autoacetylated at a strictly conserved lysine residue in MYST proteins (yEsa1-K262 and hMOF-K274) in the enzyme active site. The structure of hMOF also shows partial occupancy of K274 in the unacetylated form, revealing that the side chain reorients to a position that engages the catalytic glutamate residue and would block cognate protein substrate binding. Consistent with the structural findings, we present mass spectrometry data and biochemical experiments to demonstrate that this lysine autoacetylation on yEsa1, hMOF and its yeast orthologue, ySas2 (KAT8) occurs in solution and is required for acetylation and protein substrate binding in vitro. We also show that this autoacetylation occurs in vivo and is required for the cellular functions of these MYST proteins. These findings provide an avenue for the autoposttranslational regulation of MYST proteins that is distinct from other acetyltransferases but draws similarities to the phosphoregulation of protein kinases.
Collapse
Affiliation(s)
- Hua Yuan
- Gene Expression and Regulation Program, The Wistar Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fukamachi S, Konishi H, Kobayashi K. One-Pot Synthesis of 2-Substituted 4-Aryl-4,5-dihydro-3,1-benzoxazepines from 2-(2-Aminophenyl)-1-arylethanols via Dehydration of the Corresponding Amides. Helv Chim Acta 2011. [DOI: 10.1002/hlca.201000421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Synthesis and biological activity of splitomicin analogs targeted at human NAD(+)-dependent histone deacetylases (sirtuins). Bioorg Med Chem 2011; 19:3669-77. [PMID: 21315612 DOI: 10.1016/j.bmc.2011.01.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/07/2011] [Accepted: 01/13/2011] [Indexed: 11/23/2022]
Abstract
Small molecules interfering with posttranslational modification of histones are of interest as tools to study epigenetic regulation of gene transcription. Specifically, drugs that interfere with histone deacetylation could be useful to induce differentiation, growth arrest as well as apoptotic cell death in tumor cells. One class of histone deacetylases is known as sirtuins some of which (Saccharomyces cerevisiae Sir2) are for example inhibited by the lactone splitomicin leading to telomeric silencing in yeast. However, splitomicin is only a micromolar inhibitor of yeast Sir2 and does not inhibit human subtypes and the lactone is prone to hydrolytic ring opening. In preliminary SAR-studies, splitomicin analogs lacking this hydrolytically labile ring were described as inactive while the naphthalene moiety could successfully be replaced by smaller aromatic rings in a fragment-like dihydrocoumarin. Here we report the synthesis and biological activity of a series of hydrolytically stable analogs with activity against human SIRT1 and 2. These comparatively small compounds characterized by high ligand efficiency are used as a starting point toward the development of specific inhibitors of histone deacetylases from the class of sirtuins.
Collapse
|
20
|
Heterocyclic Dyes: Preparation, Properties, and Applications. PROGRESS IN HETEROCYCLIC CHEMISTRY 2011. [DOI: 10.1016/s0959-6380(11)22002-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Blum CA, Ellis JL, Loh C, Ng PY, Perni RB, Stein RL. SIRT1 Modulation as a Novel Approach to the Treatment of Diseases of Aging. J Med Chem 2010; 54:417-32. [DOI: 10.1021/jm100861p] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Charles A. Blum
- Sirtris, A GSK Company, 200 Technology Square, Cambridge, Massachusetts 02139, United States
| | - James L. Ellis
- Sirtris, A GSK Company, 200 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Christine Loh
- Sirtris, A GSK Company, 200 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Pui Yee Ng
- Sirtris, A GSK Company, 200 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Robert B. Perni
- Sirtris, A GSK Company, 200 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Ross L. Stein
- Sirtris, A GSK Company, 200 Technology Square, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
22
|
Lawson M, Uciechowska U, Schemies J, Rumpf T, Jung M, Sippl W. Inhibitors to understand molecular mechanisms of NAD(+)-dependent deacetylases (sirtuins). BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:726-39. [PMID: 20601279 DOI: 10.1016/j.bbagrm.2010.06.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 06/08/2010] [Accepted: 06/10/2010] [Indexed: 02/01/2023]
Abstract
Histone deacetylases (HDACs) are enzymes that cleave acetyl groups from acetyl-lysine residues in histones and various nonhistone proteins. Unlike the other three of the four classes of HDACs that have been identified in humans, which are zinc-dependent amidohydrolases, class III HDACs depend on nicotinamide adenine dinucleotide (NAD(+)) for their catalytic activity. The seven members of the class III HDACs are also named sirtuins for their homology to Sir2p, a yeast histone deacetylase. Sirtuin inhibitors have been critical for the linkage of sirtuin activity to many physiological and pathological processes, and sirtuin activity has been associated with the pathogenesis of cancer, HIV, and metabolic and neurological diseases. Presented here is an overview of the many sirtuin inhibitors that have provided insight into the biological role of sirtuins.
Collapse
Affiliation(s)
- Michael Lawson
- Department of Pharmaceutical Chemistry, Martin-Luther Universität Halle-Wittenberg, Wolfgang-Langenbeckstr. 4, 06120 Halle/Saale, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Pontiki E, Hadjipavlou-Litina D. Histone deacetylase inhibitors (HDACIs). Structure--activity relationships: history and new QSAR perspectives. Med Res Rev 2010; 32:1-165. [PMID: 20162725 DOI: 10.1002/med.20200] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Histone deacetylase (HDAC) inhibition is a recent, clinically validated therapeutic strategy for cancer treatment. HDAC inhibitors (HDACIs) block angiogenesis, arrest cell growth, and lead to differentiation and apoptosis in tumor cells. In this article, a survey of published quantitative structure-activity relationships (QSARs) studies are presented and discussed in the hope of identifying the structural determinants for anticancer activity. Secondly a two-dimensional QSAR study was carried out on biological results derived from various types of HDACIs and from different assays using the C-QSAR program of Biobyte. The QSAR analysis presented here is an attempt to organize the knowledge on the HDACIs with the purpose of designing new chemical entities with enhanced inhibitory potencies and to study the mechanism of action of the compounds. This study revealed that lipophilicity is one of the most important determinants of activity. Additionally, steric factors such as the overall molar refractivity (CMR), molar volume (MgVol), the substituent's molar refractivity (MR) (linear or parabola), or the sterimol parameters B(1) and L are important. Electronic parameters indicated as σ(p), are found to be present only in one case.
Collapse
Affiliation(s)
- Eleni Pontiki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, Thessaloniki 54124, Greece.
| | | |
Collapse
|
24
|
Cen Y. Sirtuins inhibitors: the approach to affinity and selectivity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1635-44. [PMID: 19931429 DOI: 10.1016/j.bbapap.2009.11.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Revised: 11/07/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
Abstract
Accumulating evidence has indicated the importance of sirtuins (class III histone deacetylases) in various biological processes. Their potential roles in metabolic and neurodegenerative diseases have encouraged scientists to seek potent and selective sirtuin inhibitors to investigate their biological functions with a view to eventual new therapeutic treatments. This article surveys current knowledge of sirtuin inhibitors including those discovered via high-throughput screening (HST) or via mechanism-based drug design from synthetic or natural sources. Their inhibitory affinity, selectivities, and possible inhibition mechanisms are discussed.
Collapse
Affiliation(s)
- Yana Cen
- Department of Pharmacology, Weill Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|