1
|
Mousavi H, Rimaz M, Zeynizadeh B. Practical Three-Component Regioselective Synthesis of Drug-Like 3-Aryl(or heteroaryl)-5,6-dihydrobenzo[ h]cinnolines as Potential Non-Covalent Multi-Targeting Inhibitors To Combat Neurodegenerative Diseases. ACS Chem Neurosci 2024; 15:1828-1881. [PMID: 38647433 DOI: 10.1021/acschemneuro.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Neurodegenerative diseases (NDs) are one of the prominent health challenges facing contemporary society, and many efforts have been made to overcome and (or) control it. In this research paper, we described a practical one-pot two-step three-component reaction between 3,4-dihydronaphthalen-1(2H)-one (1), aryl(or heteroaryl)glyoxal monohydrates (2a-h), and hydrazine monohydrate (NH2NH2•H2O) for the regioselective preparation of some 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnoline derivatives (3a-h). After synthesis and characterization of the mentioned cinnolines (3a-h), the in silico multi-targeting inhibitory properties of these heterocyclic scaffolds have been investigated upon various Homo sapiens-type enzymes, including hMAO-A, hMAO-B, hAChE, hBChE, hBACE-1, hBACE-2, hNQO-1, hNQO-2, hnNOS, hiNOS, hPARP-1, hPARP-2, hLRRK-2(G2019S), hGSK-3β, hp38α MAPK, hJNK-3, hOGA, hNMDA receptor, hnSMase-2, hIDO-1, hCOMT, hLIMK-1, hLIMK-2, hRIPK-1, hUCH-L1, hPARK-7, and hDHODH, which have confirmed their functions and roles in the neurodegenerative diseases (NDs), based on molecular docking studies, and the obtained results were compared with a wide range of approved drugs and well-known (with IC50, EC50, etc.) compounds. In addition, in silico ADMET prediction analysis was performed to examine the prospective drug properties of the synthesized heterocyclic compounds (3a-h). The obtained results from the molecular docking studies and ADMET-related data demonstrated that these series of 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnolines (3a-h), especially hit ones, can really be turned into the potent core of new drugs for the treatment of neurodegenerative diseases (NDs), and/or due to the having some reactionable locations, they are able to have further organic reactions (such as cross-coupling reactions), and expansion of these compounds (for example, with using other types of aryl(or heteroaryl)glyoxal monohydrates) makes a new avenue for designing novel and efficient drugs for this purpose.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| | - Mehdi Rimaz
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran 19395-3697, Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| |
Collapse
|
2
|
Narayanan AP, Jayan J, Sudevan ST, Dhyani A, Zachariah SM, Mathew B. Flavonoid and Chalcone Scaffolds as Inhibitors of BACE1: Recent Updates. Comb Chem High Throughput Screen 2024; 27:1243-1256. [PMID: 37519205 DOI: 10.2174/1386207326666230731092409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 08/01/2023]
Abstract
Flavonoids and chalcones are two major classes of chemical moieties that have a vast background of pharmacological activities. Chalcone is a subclass of flavonoids whose therapeutic potential has been implicated due to an array of bioactivities. A lot of research works have shown interest in investigating the neuroprotective effect of these molecules, and have revealed them to be much more potent molecules that can be used to treat neurodegenerative disorders. Beta-site APP cleaving enzyme (BACE1), which is majorly found in the brain, is one of the reasons behind the development of Alzheimer's disease (AD). Flavonoids and chalcones have proven clinical data that they inhibit the production of Aβ plaques that are involved in the progression of AD. In this article, we have provided a detailed chronological review of the research work on the BACE1 inhibiting potency of both flavonoids and chalcones. Almost all the flavonoids and chalcones mentioned in this article have shown very good in vitro and in vivo BACE1 inhibiting activity. The docking studies and the structural importance of some BACE1-inhibiting flavonoids, as well as chalcones, are also mentioned here.
Collapse
Affiliation(s)
- Anishma Payyappilliparambil Narayanan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala-682041, India
| | - Jayalakshmi Jayan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala-682041, India
| | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala-682041, India
| | - Archana Dhyani
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, Uttarakhand, India
| | - Subin Mary Zachariah
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala-682041, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala-682041, India
| |
Collapse
|
3
|
Wang Y, Yang F, Yan D, Zeng Y, Wei B, Chen J, He W. Identification Mechanism of BACE1 on Inhibitors Probed by Using Multiple Separate Molecular Dynamics Simulations and Comparative Calculations of Binding Free Energies. Molecules 2023; 28:4773. [PMID: 37375328 DOI: 10.3390/molecules28124773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
β-amyloid cleaving enzyme 1 (BACE1) is regarded as an important target of drug design toward the treatment of Alzheimer's disease (AD). In this study, three separate molecular dynamics (MD) simulations and calculations of binding free energies were carried out to comparatively determine the identification mechanism of BACE1 for three inhibitors, 60W, 954 and 60X. The analyses of MD trajectories indicated that the presence of three inhibitors influences the structural stability, flexibility and internal dynamics of BACE1. Binding free energies calculated by using solvated interaction energy (SIE) and molecular mechanics generalized Born surface area (MM-GBSA) methods reveal that the hydrophobic interactions provide decisive forces for inhibitor-BACE1 binding. The calculations of residue-based free energy decomposition suggest that the sidechains of residues L91, D93, S96, V130, Q134, W137, F169 and I179 play key roles in inhibitor-BACE1 binding, which provides a direction for future drug design toward the treatment of AD.
Collapse
Affiliation(s)
- Yiwen Wang
- School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China
- School of Aeronautics, Shandong Jiaotong University, Jinan 250357, China
| | - Fen Yang
- School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China
| | - Dongliang Yan
- School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Yalin Zeng
- School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China
| | - Benzheng Wei
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
| | - Jianzhong Chen
- School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Weikai He
- School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China
- School of Aeronautics, Shandong Jiaotong University, Jinan 250357, China
| |
Collapse
|
4
|
Guanidine-based β amyloid precursor protein cleavage enzyme 1 (BACE-1) inhibitors for the Alzheimer's disease (AD): A review. Bioorg Med Chem 2022; 74:117047. [DOI: 10.1016/j.bmc.2022.117047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/16/2022] [Accepted: 10/04/2022] [Indexed: 11/02/2022]
|
5
|
Patel S, Bansoad AV, Singh R, Khatik GL. BACE1: A Key Regulator in Alzheimer's Disease Progression and Current Development of its Inhibitors. Curr Neuropharmacol 2022; 20:1174-1193. [PMID: 34852746 PMCID: PMC9886827 DOI: 10.2174/1570159x19666211201094031] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurodegenerative disease with no specific disease-modifying treatment. β-secretase (BACE1) is considered the potential and rationale target because it is involved in the rate-limiting step, which produces toxic Aβ42 peptides that leads to deposits in the form of amyloid plaques extracellularly, resulting in AD. OBJECTIVE This study aims to discuss the role and implications of BACE1 and its inhibitors in the management of AD. METHODS We have searched and collected the relevant quality work from PubMed using the following keywords "BACE1", BACE2", "inhibitors", and "Alzheimer's disease". In addition, we included the work which discusses the role of BACE1 in AD and the recent work on its inhibitors. RESULTS In this review, we have discussed the importance of BACE1 in regulating AD progression and the current development of BACE1 inhibitors. However, the development of a BACE1 inhibitor is very challenging due to the large active site of BACE1. Nevertheless, some of the BACE1 inhibitors have managed to enter advanced phases of clinical trials, such as MK-8931 (Verubecestat), E2609 (Elenbecestat), AZD3293 (Lanabecestat), and JNJ-54861911 (Atabecestat). This review also sheds light on the prospect of BACE1 inhibitors as the most effective therapeutic approach in delaying or preventing AD progression. CONCLUSION BACE1 is involved in the progression of AD. The current ongoing or failed clinical trials may help understand the role of BACE1 inhibition in regulating the Aβ load and cognitive status of AD patients.
Collapse
Affiliation(s)
| | - Ankush Vardhaman Bansoad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (Uttar Pradesh), 226002, India
| | - Rakesh Singh
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (Uttar Pradesh), 226002, India
| | - Gopal L. Khatik
- Department of Medicinal Chemistry, ,Address correspondence to this author at the Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, India, 226002; E-mail: ,
| |
Collapse
|
6
|
Ueno T, Matsuoka E, Asada N, Yamamoto S, Kanegawa N, Ito M, Ito H, Moechars D, Rombouts FJR, Gijsen HJM, Kusakabe KI. Discovery of Extremely Selective Fused Pyridine-Derived β-Site Amyloid Precursor Protein-Cleaving Enzyme (BACE1) Inhibitors with High In Vivo Efficacy through 10s Loop Interactions. J Med Chem 2021; 64:14165-14174. [PMID: 34553947 DOI: 10.1021/acs.jmedchem.1c00359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
β-Site amyloid precursor protein-cleaving enzyme 1 (BACE1) is considered to be a promising target for treating Alzheimer's disease. However, all clinical BACE1 inhibitors have failed due to lack of efficacy, and some have even led to cognitive worsening. Recent evidence points to the importance of avoiding BACE2 inhibition along with careful dose titration. In this study, we focused on the fact that the 10s loop lining the S3 pocket in BACE1 can form both "open (up)" and "closed (down)" conformations, whereas in BACE2, it prefers to adopt a "closed" form; thus, more space is available in BACE1. By leveraging the difference, we designed fused pyridine analogues that could reach the 10s loop, leading to 6 with high selectivity and significant Aβ reduction. The cocrystal structures confirmed that 6 significantly increased B-factors of the 10s loop in BACE2 relative to those in BACE1. Thus, the destabilization of BACE2 seems to offer structural insights into the reduced BACE2 potency of 6, explaining the significant improvement in BACE1 selectivity.
Collapse
Affiliation(s)
- Tatsuhiko Ueno
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Eriko Matsuoka
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Naoya Asada
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Shiho Yamamoto
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Naoki Kanegawa
- Laboratory for Drug Discovery & Development, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Mana Ito
- Laboratory for Drug Discovery & Disease Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Hisanori Ito
- Laboratory for Drug Discovery & Disease Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Diederik Moechars
- Neuroscience, Janssen Research & Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Frederik J R Rombouts
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Harrie J M Gijsen
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Ken-Ichi Kusakabe
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| |
Collapse
|
7
|
JNJ-67569762, A 2-Aminotetrahydropyridine-Based Selective BACE1 Inhibitor Targeting the S3 Pocket: From Discovery to Clinical Candidate. J Med Chem 2021; 64:14175-14191. [PMID: 34553934 DOI: 10.1021/acs.jmedchem.1c00935] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The discovery of a novel 2-aminotetrahydropyridine class of BACE1 inhibitors is described. Their pKa and lipophilicity were modulated by a pending sulfonyl group, while good permeability and brain penetration were achieved via intramolecular hydrogen bonding. BACE1 selectivity over BACE2 was achieved in the S3 pocket by a novel bicyclic ring system. An optimization addressing reactive metabolite formation, cardiovascular safety, and CNS toxicity is described, leading to the clinical candidate JNJ-67569762 (12), which gave robust dose-dependent BACE1-mediated amyloid β lowering without showing BACE2-dependent hair depigmentation in preclinical models. We show that 12 has a favorable projected human dose and PK and hence presented us with an opportunity to test a highly selective BACE1 inhibitor in humans. However, 12 was found to have a QT effect upon repeat dosing in dogs and its development was halted in favor of other selective leads, which will be reported in the future.
Collapse
|
8
|
Structure-Based Approaches to Improving Selectivity through Utilizing Explicit Water Molecules: Discovery of Selective β-Secretase (BACE1) Inhibitors over BACE2. J Med Chem 2021; 64:3075-3085. [PMID: 33719429 DOI: 10.1021/acs.jmedchem.0c01858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACE1 is an attractive target for disease-modifying treatment of Alzheimer's disease. BACE2, having high homology around the catalytic site, poses a critical challenge to identifying selective BACE1 inhibitors. Recent evidence indicated that BACE2 has various roles in peripheral tissues and the brain, and therefore, the chronic use of nonselective inhibitors may cause side effects derived from BACE2 inhibition. Crystallographic analysis of the nonselective inhibitor verubecestat identified explicit water molecules with different levels of free energy in the S2' pocket. Structure-based design targeting them enabled the identification of propynyl oxazine 3 with improved selectivity. Further optimization efforts led to the discovery of compound 6 with high selectivity. The cocrystal structures of 7, a close analogue of 6, bound to BACE1 and BACE2 confirmed that one of the explicit water molecules is displaced by the propynyl group, suggesting that the difference in the relative water displacement cost may contribute to the improved selectivity.
Collapse
|
9
|
Rombouts F, Kusakabe KI, Hsiao CC, Gijsen HJM. Small-molecule BACE1 inhibitors: a patent literature review (2011 to 2020). Expert Opin Ther Pat 2020; 31:25-52. [PMID: 33006491 DOI: 10.1080/13543776.2021.1832463] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Inhibition of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) has been extensively pursued as potential disease-modifying treatment for Alzheimer's disease (AD). Clinical failures with BACE inhibitors have progressively raised the bar forever cleaner candidates with reduced cardiovascular liability, toxicity risk, and increased selectivity over cathepsin D (CatD) and BACE2. AREAS COVERED This review provides an overview of patented BACE1 inhibitors between 2011 and 2020 per pharmaceutical company or research group and highlights the progress that was made in dialing out toxicity liabilities. EXPERT OPINION Despite an increasingly crowded IP situation, significant progress was made using highly complex chemistry in avoiding toxicity liabilities, with BACE1/BACE2 selectivity being the most remarkable achievement. However, clinical trial data suggest on-target toxicity is likely a contributing factor, which implies the only potential future of BACE1 inhibitors lies in careful titration of highly selective compounds in early populations where the amyloid burden is still minimal as prophylactic therapy, or as an affordable oral maintenance therapy following amyloid-clearing therapies.
Collapse
Affiliation(s)
- Frederik Rombouts
- Medicinal Chemistry, Janssen Research & Development , Beerse, Belgium
| | - Ken-Ichi Kusakabe
- Laboratory for Medicinal Chemistry Research, Shionogi & Co., Ltd ., Toyonaka, Osaka, Japan
| | - Chien-Chi Hsiao
- Medicinal Chemistry, Janssen Research & Development , Beerse, Belgium
| | - Harrie J M Gijsen
- Medicinal Chemistry, Janssen Research & Development , Beerse, Belgium
| |
Collapse
|
10
|
Yepremyan A, Mekhail MA, Niebuhr BP, Pota K, Sadagopan N, Schwartz TM, Green KN. Synthesis of 12-Membered Tetra-aza Macrocyclic Pyridinophanes Bearing Electron-Withdrawing Groups. J Org Chem 2020; 85:4988-4998. [PMID: 32208700 DOI: 10.1021/acs.joc.0c00188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The number of substituted pyridine pyridinophanes found in the literature is limited due to challenges associated with 12-membered macrocycle and modified pyridine synthesis. Most notably, the electrophilic character at the 4-position of pyridine in pyridinophanes presents a unique challenge for introducing electrophilic chemical groups. Likewise, of the few reported, most substituted pyridine pyridinophanes in the literature are limited to electron-donating functionalities. Herein, new synthetic strategies for four new macrocycles bearing the electron-withdrawing groups CN, Cl, NO2, and CF3 are introduced. Potentiometric titrations were used to determine the protonation constants of the new pyridinophanes. Further, the influence of such modifications on the chemical behavior is predicted by comparing the potentiometric results to previously reported systems. X-ray diffraction analysis of the 4-Cl substituted species and its Cu(II) complex are also described to demonstrate the metal binding nature of these ligands. DFT analysis is used to support the experimental findings through energy calculations and ESP maps. These new molecules serve as a foundation to access a range of new pyridinophane small molecules and applications in future work.
Collapse
Affiliation(s)
- Akop Yepremyan
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 W. Bowie, Fort Worth, Texas 76129, United States
| | - Magy A Mekhail
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 W. Bowie, Fort Worth, Texas 76129, United States
| | - Brian P Niebuhr
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 W. Bowie, Fort Worth, Texas 76129, United States
| | - Kristof Pota
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 W. Bowie, Fort Worth, Texas 76129, United States
| | - Nishanth Sadagopan
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 W. Bowie, Fort Worth, Texas 76129, United States
| | - Timothy M Schwartz
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 W. Bowie, Fort Worth, Texas 76129, United States
| | - Kayla N Green
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 W. Bowie, Fort Worth, Texas 76129, United States
| |
Collapse
|
11
|
Chen J, Wang J, Yin B, Pang L, Wang W, Zhu W. Molecular Mechanism of Binding Selectivity of Inhibitors toward BACE1 and BACE2 Revealed by Multiple Short Molecular Dynamics Simulations and Free-Energy Predictions. ACS Chem Neurosci 2019; 10:4303-4318. [PMID: 31545898 DOI: 10.1021/acschemneuro.9b00348] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The β-amyloid cleaving enzymes 1 and 2 (BACE1 and BACE2) have been regarded as the prospective targets for clinically treating Alzheimer's disease (AD) in the last two decades. Thus, insight into the binding differences of inhibitors to BACE1 and BACE2 is of significance for designing highly selective inhibitors toward the two proteins. In this work, multiple short molecular dynamics (MSMD) simulations are coupled with the molecular mechanics generalized Born surface area (MM-GBSA) method to probe the binding selectivity of three inhibitors DBO, CS9, and SC7 on BACE1 over BACE2. The results show that the entropy effect plays a key role in selectivity identification of inhibitors toward BACE1 and BACE2, which determines that DBO has better selectivity toward BACE2 over BACE1, while CS9 and CS7 can more favorably bind to BACE1 than BACE2. The hierarchical clustering analysis based on energetic contributions of residues suggests that BACE1 and BACE2 share the common hot interaction spots. The residue-based free-energy decomposition method was applied to compute the inhibitor-residue interaction spectrum, and the results recognize four common binding subpockets corresponding to the different groups of inhibitors, which can be used as efficient targets for designing highly selective inhibitors toward BACE1 and BACE2. Therefore, these results provide a useful molecular basis and dynamics information for development of highly selective inhibitors targeting BACE1 and BACE2.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357 China
| | - Jinan Wang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Baohua Yin
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Laixue Pang
- School of Science, Shandong Jiaotong University, Jinan 250357 China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan 250357 China
| | - Weiliang Zhu
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
12
|
Guntreddi T, Shankar M, Kommu N, Sahoo AK. Construction of Pyranoisoquinolines via Ru(II)-Catalyzed Unsymmetrical Double Annulation of N-Methoxybenzamides with Unactivated Alkynes. J Org Chem 2019; 84:13033-13044. [PMID: 31411030 DOI: 10.1021/acs.joc.9b01878] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A ruthenium (Ru)-catalyzed double annulation of easily accessible N-methoxybenzamide derivatives with unactivated alkynes for the synthesis of unusual 6,6-fused pyranoisoquinolines is described. Both ortho-C-H bonds of arenes and the N- and O-moieties of N-methoxybenzamides are involved in the construction of four [(C-C)-(C-N) and (C-C)-(C-O)] bonds in one step under single catalytic conditions. The unsymmetrical annulation of N-methoxybenzamides with two distinct alkynes is also demonstrated. The oxidizable directing group N-methoxyamine (NHOMe) assists the unsymmetrical double annulations of arenes [that use both N- and O-heteroatoms] in a single operation. This synthetic method features excellent substrate scope and tolerates a wide range of functional groups. Peripheral modification of pyranoisoquinolines for the construction of complex heterocyclic compounds is also demonstrated.
Collapse
Affiliation(s)
| | - Majji Shankar
- School of Chemistry , University of Hyderabad , Hyderabad , Telangana 500046 , India
| | - Nagarjuna Kommu
- Advanced Center of Research in High Energy Materials (ACRHEM) , University of Hyderabad , Hyderabad , Telangana 500046 , India
| | - Akhila K Sahoo
- School of Chemistry , University of Hyderabad , Hyderabad , Telangana 500046 , India.,Advanced Center of Research in High Energy Materials (ACRHEM) , University of Hyderabad , Hyderabad , Telangana 500046 , India
| |
Collapse
|
13
|
Fujimoto K, Matsuoka E, Asada N, Tadano G, Yamamoto T, Nakahara K, Fuchino K, Ito H, Kanegawa N, Moechars D, Gijsen HJM, Kusakabe KI. Structure-Based Design of Selective β-Site Amyloid Precursor Protein Cleaving Enzyme 1 (BACE1) Inhibitors: Targeting the Flap to Gain Selectivity over BACE2. J Med Chem 2019; 62:5080-5095. [DOI: 10.1021/acs.jmedchem.9b00309] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
New evolutions in the BACE1 inhibitor field from 2014 to 2018. Bioorg Med Chem Lett 2019; 29:761-777. [DOI: 10.1016/j.bmcl.2018.12.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 11/24/2022]
|
15
|
Karch S, Broichhagen J, Schneider J, Böning D, Hartmann S, Schmid B, Tripal P, Palmisano R, Alzheimer C, Johnsson K, Huth T. A New Fluorogenic Small-Molecule Labeling Tool for Surface Diffusion Analysis and Advanced Fluorescence Imaging of β-Site Amyloid Precursor Protein-Cleaving Enzyme 1 Based on Silicone Rhodamine: SiR-BACE1. J Med Chem 2018; 61:6121-6139. [PMID: 29939737 DOI: 10.1021/acs.jmedchem.8b00387] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
β-site APP-cleaving enzyme 1 (BACE1) is a major player in the pathogenesis of Alzheimer's disease. Structural and functional fluorescence microscopy offers a powerful approach to learn about the physiology and pathophysiology of this protease. Up to now, however, common labeling techniques require genetic manipulation, use large antibodies, or are not compatible with live cell imaging. Fluorescent small molecules that specifically bind to the protein of interest can overcome these limitations. Herein, we introduce SiR-BACE1, a conjugate of the BACE1 inhibitor S-39 and SiR647, as a novel fluorogenic, tag-free, and antibody-free label for BACE1. We present its chemical development, characterize its photophysical and pharmacologic properties, and evaluate its behavior in solution, in overexpression systems, and in native brain tissue. We demonstrate its applicability in confocal, stimulated emission depletion and dynamic single-molecule microscopy. The first functional studies with SiR-BACE1 on the surface mobility of BACE1 revealed a markedly confined diffusion pattern.
Collapse
Affiliation(s)
- Sandra Karch
- Institute of Physiology and Pathophysiology , Friedrich-Alexander-Universität Erlangen-Nürnberg , Universitaetsstrasse 17 , 91054 Erlangen , Germany
| | - Johannes Broichhagen
- Department of Chemical Biology , Max Planck Institute for Medical Research , Jahnstrasse 29 , 69120 Heidelberg , Germany.,Laboratory of Protein Engineering, Institut des Sciences et Ingénierie Chimiques, Sciences de Base , École Polytechnique Fédérale Lausanne , 1015 Lausanne , Switzerland
| | - Julia Schneider
- Institute of Physiology and Pathophysiology , Friedrich-Alexander-Universität Erlangen-Nürnberg , Universitaetsstrasse 17 , 91054 Erlangen , Germany
| | - Daniel Böning
- Max Planck Institute for the Science of Light , Staudtstrasse 2 , 91058 Erlangen , Germany
| | - Stephanie Hartmann
- Institute of Physiology and Pathophysiology , Friedrich-Alexander-Universität Erlangen-Nürnberg , Universitaetsstrasse 17 , 91054 Erlangen , Germany
| | - Benjamin Schmid
- Optical Imaging Centre , Friedrich-Alexander-Universität Erlangen-Nürnberg , Hartmannstrasse 14 , 91052 Erlangen , Germany
| | - Philipp Tripal
- Optical Imaging Centre , Friedrich-Alexander-Universität Erlangen-Nürnberg , Hartmannstrasse 14 , 91052 Erlangen , Germany
| | - Ralf Palmisano
- Optical Imaging Centre , Friedrich-Alexander-Universität Erlangen-Nürnberg , Hartmannstrasse 14 , 91052 Erlangen , Germany
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology , Friedrich-Alexander-Universität Erlangen-Nürnberg , Universitaetsstrasse 17 , 91054 Erlangen , Germany
| | - Kai Johnsson
- Department of Chemical Biology , Max Planck Institute for Medical Research , Jahnstrasse 29 , 69120 Heidelberg , Germany.,Laboratory of Protein Engineering, Institut des Sciences et Ingénierie Chimiques, Sciences de Base , École Polytechnique Fédérale Lausanne , 1015 Lausanne , Switzerland
| | - Tobias Huth
- Institute of Physiology and Pathophysiology , Friedrich-Alexander-Universität Erlangen-Nürnberg , Universitaetsstrasse 17 , 91054 Erlangen , Germany
| |
Collapse
|
16
|
Coimbra JRM, Marques DFF, Baptista SJ, Pereira CMF, Moreira PI, Dinis TCP, Santos AE, Salvador JAR. Highlights in BACE1 Inhibitors for Alzheimer's Disease Treatment. Front Chem 2018; 6:178. [PMID: 29881722 PMCID: PMC5977085 DOI: 10.3389/fchem.2018.00178] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/04/2018] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder and the most common type of dementia in the elderly. The clinical symptoms of AD include a progressive loss of memory and impairment of cognitive functions interfering with daily life activities. The main neuropathological features consist in extracellular amyloid-β (Aβ) plaque deposition and intracellular Neurofibrillary tangles (NFTs) of hyperphosphorylated Tau. Understanding the pathophysiological mechanisms that underlie neurodegeneration in AD is essential for rational design of neuroprotective agents able to prevent disease progression. According to the "Amyloid Cascade Hypothesis" the critical molecular event in the pathogenesis of AD is the accumulation of Aβ neurotoxic oligomers. Since the proteolytic processing of Amyloid Precursor Protein (APP) by β-secretase (beta-site APP cleaving enzyme 1, BACE1) is the rate-limiting step in the production of Aβ, this enzyme is considered a major therapeutic target and BACE1 inhibitors have the potential to be disease-modifying drugs for AD treatment. Therefore, intensive efforts to discover and develop inhibitors that can reach the brain and effectively inhibit BACE1 have been pursued by several groups worldwide. The aim of this review is to highlight the progress in the discovery of potent and selective small molecule BACE1 inhibitors over the past decade.
Collapse
Affiliation(s)
- Judite R. M. Coimbra
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of CoimbraCoimbra, Portugal
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
| | - Daniela F. F. Marques
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of CoimbraCoimbra, Portugal
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
| | - Salete J. Baptista
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of CoimbraCoimbra, Portugal
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
- Chem4Pharma, Edifício IPN IncubadoraCoimbra, Portugal
| | - Cláudia M. F. Pereira
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
- Faculty of Medicine, University of CoimbraCoimbra, Portugal
| | - Paula I. Moreira
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
- Laboratory of Physiology, Faculty of Medicine, University of CoimbraCoimbra, Portugal
| | - Teresa C. P. Dinis
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
- Laboratory of Biochemistry, Faculty of Pharmacy, University of CoimbraCoimbra, Portugal
| | - Armanda E. Santos
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
- Laboratory of Biochemistry, Faculty of Pharmacy, University of CoimbraCoimbra, Portugal
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of CoimbraCoimbra, Portugal
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
| |
Collapse
|
17
|
Khaled MB, El Mokadem RK, Weaver JD. Hydrogen Bond Directed Photocatalytic Hydrodefluorination: Overcoming Electronic Control. J Am Chem Soc 2017; 139:13092-13101. [PMID: 28837319 PMCID: PMC6069595 DOI: 10.1021/jacs.7b06847] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The photocatalytic C-F functionalization of highly fluorinated arenes is a powerful method for accessing functionalized multifluorinated arenes. The decisive step in the determining regioselectivity in fluorine functionalization is fluoride fragmentation from the radical anion of the multifluorinated arene. To date, the availability of regioisomers has been dictated by the innate electronics of the fluorinated arene, limiting the synthetic utility of the chemistry. This study investigates the remarkable ability of a strategically located hydrogen bond to transcend the normal regioselectivity of the C-F functionalization event. A significant rate acceleration is additionally observed for hydrodefluorination of fluorines that can undergo intramolecular hydrogen bonds that form 5-8-membered cycles with moderately acidic N-H's. The hydrogen bond is expected to facilitate the fragmentation not only by bending the C-F bond of the radical anion out of planarity but also by increasing the exothermicity of the fluoride extrusion step through protonation of the naked fluoride. Finally, the synthetic utility of the method is demonstrated in an expedited synthesis of the trifluorinated α-phenyl acetic acid derivative required for the commercial synthesis of Januvia, an antidiabetic drug. This represents the first synthesis of a commercially important multifluorinated arene via a defluorination strategy and is significantly shorter than the current strategy.
Collapse
Affiliation(s)
- Mohammad B. Khaled
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078
| | | | - Jimmie D. Weaver
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078
| |
Collapse
|
18
|
Palakurti R, Vadrevu R. Pharmacophore based 3D-QSAR modeling, virtual screening and docking for identification of potential inhibitors of β-secretase. Comput Biol Chem 2017; 68:107-117. [DOI: 10.1016/j.compbiolchem.2017.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/07/2017] [Accepted: 03/01/2017] [Indexed: 12/19/2022]
|
19
|
Burnett JC, Lim C, Peyser BD, Samankumara LP, Kovaliov M, Colombo R, Bulfer SL, LaPorte MG, Hermone AR, McGrath CF, Arkin MR, Gussio R, Huryn DM, Wipf P. A threonine turnstile defines a dynamic amphiphilic binding motif in the AAA ATPase p97 allosteric binding site. Org Biomol Chem 2017; 15:4096-4114. [PMID: 28352916 PMCID: PMC5472064 DOI: 10.1039/c7ob00526a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The turnstile motion of two neighboring threonines sets up a dynamic side chain interplay that can accommodate both polar and apolar ligands in a small molecule allosteric protein binding site. A computational model based on SAR data and both X-ray and cryo-EM structures of the AAA ATPase p97 was used to analyze the effects of paired threonines at the inhibitor site. Specifically, the Thr side chain hydroxyl groups form a hydrogen bonding network that readily accommodates small, highly polar ligand substituents. Conversely, diametric rotation of the χ1 torsion by 150-180° orients the side chain β-methyl groups into the binding cleft, creating a hydrophobic pocket that can accommodate small, apolar substituents. This motif was found to be critical for rationalizing the affinities of a structurally focused set of inhibitors of p97 covering a > 2000-fold variation in potencies, with a preference for either small-highly polar or small-apolar groups. The threonine turnstile motif was further validated by a PDB search that identified analogous binding modes in ligand interactions in PKB, as well as by an analysis of NMR structures demonstrating additional gear-like interactions between adjacent Thr pairs. Combined, these data suggest that the threonine turnstile motif may be a general feature of interest in protein binding pockets.
Collapse
Affiliation(s)
- James C. Burnett
- Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, United States
| | - Chaemin Lim
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Brian D. Peyser
- Frederick National Laboratory for Cancer Research, Developmental Therapeutics Program, P.O. Box B, Frederick, MD 21702, United States
| | - Lalith P. Samankumara
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Marina Kovaliov
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Raffaele Colombo
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Stacie L. Bulfer
- Department of Pharmaceutical Chemistry, Small Molecule Discovery Center, University of California, San Francisco, CA 94158, United States
| | - Matthew G. LaPorte
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Ann R. Hermone
- Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, United States
| | - Connor F. McGrath
- Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, United States
| | - Michelle R. Arkin
- Department of Pharmaceutical Chemistry, Small Molecule Discovery Center, University of California, San Francisco, CA 94158, United States
| | - Rick Gussio
- Frederick National Laboratory for Cancer Research, Developmental Therapeutics Program, P.O. Box B, Frederick, MD 21702, United States
| | - Donna M. Huryn
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, United States
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Peter Wipf
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, United States
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, United States
| |
Collapse
|
20
|
Keränen H, Pérez-Benito L, Ciordia M, Delgado F, Steinbrecher TB, Oehlrich D, van Vlijmen HWT, Trabanco AA, Tresadern G. Acylguanidine Beta Secretase 1 Inhibitors: A Combined Experimental and Free Energy Perturbation Study. J Chem Theory Comput 2017; 13:1439-1453. [PMID: 28103438 DOI: 10.1021/acs.jctc.6b01141] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A series of acylguanidine beta secretase 1 (BACE1) inhibitors with modified scaffold and P3 pocket substituent was synthesized and studied with free energy perturbation (FEP) calculations. The resulting molecules showed potencies in enzymatic BACE1 inhibition assays up to 1 nM. The correlation between the predicted activity from the FEP calculations and the experimental activity was good for the P3 pocket substituents. The average mean unsigned error (MUE) between prediction and experiment was 0.68 ± 0.17 kcal/mol for the default 5 ns lambda window simulation time improving to 0.35 ± 0.13 kcal/mol for 40 ns. FEP calculations for the P2' pocket substituents on the same acylguanidine scaffold also showed good agreement with experiment and the results remained stable with repeated simulations and increased simulation time. It proved more difficult to use FEP calculations to study the scaffold modification from increasing 5 to 6 and 7 membered-rings. Although prediction and experiment were in agreement for short 2 ns simulations, as the simulation time increased the results diverged. This was improved by the use of a newly developed "Core Hopping FEP+" approach, which also showed improved stability in repeat calculations. The origins of these differences along with the value of repeat and longer simulation times are discussed. This work provides a further example of the use of FEP as a computational tool for molecular design.
Collapse
Affiliation(s)
- Henrik Keränen
- Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V. , Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Laura Pérez-Benito
- Laboratori de Medicina Computacional Unitat de Bioestadistica, Facultat de Medicina, Universitat Autonoma de Barcelona , 08193, Bellaterra, Spain.,Computational Chemistry, Janssen Research and Development, Janssen-Cilag , c/ Jarama 75A, 45007, Toledo, Spain
| | - Myriam Ciordia
- Neuroscience Medicinal Chemistry, Janssen Research and Development, Janssen-Cilag , c/ Jarama 75A, 45007, Toledo, Spain
| | - Francisca Delgado
- Neuroscience Medicinal Chemistry, Janssen Research and Development, Janssen-Cilag , c/ Jarama 75A, 45007, Toledo, Spain
| | | | - Daniel Oehlrich
- Neuroscience Medicinal Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V. , Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Herman W T van Vlijmen
- Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V. , Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Andrés A Trabanco
- Neuroscience Medicinal Chemistry, Janssen Research and Development, Janssen-Cilag , c/ Jarama 75A, 45007, Toledo, Spain
| | - Gary Tresadern
- Computational Chemistry, Janssen Research and Development, Janssen-Cilag , c/ Jarama 75A, 45007, Toledo, Spain
| |
Collapse
|
21
|
Xu YL, Teng QH, Tong W, Wang HS, Pan YM, Ma XL. Atom-Economic Synthesis of 4-Pyrones from Diynones and Water. Molecules 2017; 22:E109. [PMID: 28075414 PMCID: PMC6155647 DOI: 10.3390/molecules22010109] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/31/2022] Open
Abstract
Transition-metal-free synthesis of 4-pyrones via TfOH-promoted nucleophilic addition/cyclization of diynones and water has been developed. This transformation is simple, atom economical and environmentally benign, providing rapid and efficient access to substituted 4-pyrones.
Collapse
Affiliation(s)
- Yan-Li Xu
- College of Pharmacy, Guilin Medical University, Guilin 541004, China.
| | - Qing-Hu Teng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China.
| | - Wei Tong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China.
| | - Heng-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China.
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China.
| | - Xian-Li Ma
- College of Pharmacy, Guilin Medical University, Guilin 541004, China.
| |
Collapse
|
22
|
Pigoni M, Wanngren J, Kuhn PH, Munro KM, Gunnersen JM, Takeshima H, Feederle R, Voytyuk I, De Strooper B, Levasseur MD, Hrupka BJ, Müller SA, Lichtenthaler SF. Seizure protein 6 and its homolog seizure 6-like protein are physiological substrates of BACE1 in neurons. Mol Neurodegener 2016; 11:67. [PMID: 27716410 PMCID: PMC5053352 DOI: 10.1186/s13024-016-0134-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 09/28/2016] [Indexed: 01/22/2023] Open
Abstract
Background The protease BACE1 (beta-site APP cleaving enzyme) is a major drug target in Alzheimer’s disease. However, BACE1 therapeutic inhibition may cause unwanted adverse effects due to its additional functions in the nervous system, such as in myelination and neuronal connectivity. Additionally, recent proteomic studies investigating BACE1 inhibition in cell lines and cultured murine neurons identified a wider range of neuronal membrane proteins as potential BACE1 substrates, including seizure protein 6 (SEZ6) and its homolog SEZ6L. Methods and results We generated antibodies against SEZ6 and SEZ6L and validated these proteins as BACE1 substrates in vitro and in vivo. Levels of the soluble, BACE1-cleaved ectodomain of both proteins (sSEZ6, sSEZ6L) were strongly reduced upon BACE1 inhibition in primary neurons and also in vivo in brains of BACE1-deficient mice. BACE1 inhibition increased neuronal surface levels of SEZ6 and SEZ6L as shown by cell surface biotinylation, demonstrating that BACE1 controls surface expression of both proteins. Moreover, mass spectrometric analysis revealed that the BACE1 cleavage site in SEZ6 is located in close proximity to the membrane, similar to the corresponding cleavage site in SEZ6L. Finally, an improved method was developed for the proteomic analysis of murine cerebrospinal fluid (CSF) and was applied to CSF from BACE-deficient mice. Hereby, SEZ6 and SEZ6L were validated as BACE1 substrates in vivo by strongly reduced levels in the CSF of BACE1-deficient mice. Conclusions This study demonstrates that SEZ6 and SEZ6L are physiological BACE1 substrates in the murine brain and suggests that sSEZ6 and sSEZ6L levels in CSF are suitable markers to monitor BACE1 inhibition in mice. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0134-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martina Pigoni
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Johanna Wanngren
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Peer-Hendrik Kuhn
- Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Institute for Advanced Study, Technische Universität München, Munich, Germany.,Institute for Pathology und Pathological Anatomy, Technische Universität München, Munich, Germany
| | - Kathryn M Munro
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria, Australia
| | - Jenny M Gunnersen
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria, Australia.,The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Hiroshi Takeshima
- Division of Pharmaceutical Sciences, Graduate School and Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Regina Feederle
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute for Diabetes and Obesity, Monoclonal Antibody Research Group, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Iryna Voytyuk
- VIB Center for the Biology of Disease, Leuven, Belgium
| | - Bart De Strooper
- VIB Center for the Biology of Disease, Leuven, Belgium.,Center for Human Genetics, and Leuven Institute for Neurodegenerative Diseases (LIND), University of Leuven (KU Leuven), Leuven, Belgium.,Institute of Neurology, University College London, London, UK
| | | | - Brian J Hrupka
- Department of Neuroscience, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany. .,Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany. .,Institute for Advanced Study, Technische Universität München, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
23
|
Johnson TC, Marsden SP. Precious-Metal-Free Heteroarylation of Azlactones: Direct Synthesis of α-Pyridyl, α-Substituted Amino Acid Derivatives. Org Lett 2016; 18:5364-5367. [DOI: 10.1021/acs.orglett.6b02731] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Tarn C. Johnson
- School of Chemistry and Institute
of Process Research and Development, University of Leeds, Leeds, LS2 9JT, U.K
| | - Stephen P. Marsden
- School of Chemistry and Institute
of Process Research and Development, University of Leeds, Leeds, LS2 9JT, U.K
| |
Collapse
|
24
|
Chambers RK, Khan TA, Olsen DB, Sleebs BE. Synthesis of amino heterocycle aspartyl protease inhibitors. Org Biomol Chem 2016; 14:4970-85. [DOI: 10.1039/c5ob01842k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthetic strategies to access 2-amino heterocycle head groups that inhibit aspartyl proteases, are reviewed.
Collapse
Affiliation(s)
- Rachel K. Chambers
- The Walter and Eliza Hall Institute for Medical Research
- Parkville
- Australia
| | | | | | - Brad E. Sleebs
- The Walter and Eliza Hall Institute for Medical Research
- Parkville
- Australia
- The University of Melbourne
- Parkville
| |
Collapse
|
25
|
Boy KM, Guernon JM, Wu YJ, Zhang Y, Shi J, Zhai W, Zhu S, Gerritz SW, Toyn JH, Meredith JE, Barten DM, Burton CR, Albright CF, Good AC, Grace JE, Lentz KA, Olson RE, Macor JE, Thompson LA. Macrocyclic prolinyl acyl guanidines as inhibitors of β-secretase (BACE). Bioorg Med Chem Lett 2015; 25:5040-7. [DOI: 10.1016/j.bmcl.2015.10.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/08/2015] [Accepted: 10/12/2015] [Indexed: 02/02/2023]
|
26
|
Mizumori T, Hata T, Urabe H. Alkylation of Pyridines at Their 4-Positions with Styrenes plus Yttrium Reagent or Benzyl Grignard Reagents. Chemistry 2014; 21:422-6. [DOI: 10.1002/chem.201404635] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Indexed: 11/08/2022]
|
27
|
Sleebs BE, Gazdik M, O'Neill MT, Rajasekaran P, Lopaticki S, Lackovic K, Lowes K, Smith BJ, Cowman AF, Boddey JA. Transition state mimetics of the Plasmodium export element are potent inhibitors of Plasmepsin V from P. falciparum and P. vivax. J Med Chem 2014; 57:7644-62. [PMID: 25167370 DOI: 10.1021/jm500797g] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Following erythrocyte invasion, malaria parasites export a catalogue of remodeling proteins into the infected cell that enable parasite development in the human host. Export is dependent on the activity of the aspartyl protease, plasmepsin V (PMV), which cleaves proteins within the Plasmodium export element (PEXEL; RxL↓xE/Q/D) in the parasite's endoplasmic reticulum. Here, we generated transition state mimetics of the native PEXEL substrate that potently inhibit PMV isolated from Plasmodium falciparum and Plasmodium vivax. Through optimization, we identified that the activity of the mimetics was completely dependent on the presence of P1 Leu and P3 Arg. Treatment of P. falciparum-infected erythrocytes with a set of optimized mimetics impaired PEXEL processing and killed the parasites. The striking effect of the compounds provides a clearer understanding of the accessibility of the PMV active site and reaffirms the enzyme as an attractive target for the design of future antimalarials.
Collapse
Affiliation(s)
- Brad E Sleebs
- The Walter and Eliza Hall Institute of Medical Research , 1G Royal Parade, Parkville 3052, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Oehlrich D, Prokopcova H, Gijsen HJ. The evolution of amidine-based brain penetrant BACE1 inhibitors. Bioorg Med Chem Lett 2014; 24:2033-45. [DOI: 10.1016/j.bmcl.2014.03.025] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 01/18/2023]
|
29
|
Yonezawa S, Fujiwara K, Yamamoto T, Hattori K, Yamakawa H, Muto C, Hosono M, Tanaka Y, Nakano T, Takemoto H, Arisawa M, Shuto S. Conformational restriction approach to β-secretase (BACE1) inhibitors III: effective investigation of the binding mode by combinational use of X-ray analysis, isothermal titration calorimetry and theoretical calculations. Bioorg Med Chem 2013; 21:6506-22. [PMID: 24051074 DOI: 10.1016/j.bmc.2013.08.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/18/2013] [Accepted: 08/20/2013] [Indexed: 12/22/2022]
Abstract
For further investigation of BACE1 inhibitors using conformational restriction with sp(3) hybridized carbon, we applied this approach to 6-substituted aminopyrimidone derivatives 3 to improve the inhibitory activity by reducing the entropic energy loss upon binding to BACE1. Among eight stereoisomers synthesized, [trans-(1'R,2'R),6S] isomer 6 exhibited the best BACE1 inhibitory activity, which was statistically superior to that of the corresponding ethylene linker compound (R)-3. Combinational examinations of the binding mode of 6 were performed, which included isothermal titration calorimetry (ITC), X-ray crystallographic structure analysis and theoretical calculations, to clarify the effect of our conformational restriction approach. From the ITC measurement, the binding entropy of 6 was found to be ∼0.5kcal larger than that of (R)-3, which is considered to be affected by conformational restriction with a cyclopropane ring.
Collapse
Affiliation(s)
- Shuji Yonezawa
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd, Kita-21 Nishi-11 Kita-ku, Sapporo 001-0021, Japan; Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
INTRODUCTION Alzheimer's disease (AD), which is characterized by progressive intellectual deterioration, is the most common cause of dementia. β-Secretase (or BACE1) expression is a trigger for amyloid β peptide formation, a cause of AD, and thus is a molecular target for the development of drugs against AD. Many BACE1 inhibitors have been identified by academic and pharmaceutical research groups and a number of advanced technologies in drug discovery have been applied to the drug discovery. AREAS COVERED The purpose of this review is to present and discuss the methodologies used for BACE1 inhibitor drug discovery via substrate- and structure-based design, high-throughput screening and fragment-based drug design. The authors also review the advantages and disadvantages of these methodologies. EXPERT OPINION Many BACE1 inhibitors have been designed using X-ray crystal structure-based drug design as well as through in silico screening. Nevertheless, there are serious problems with regards to deciding the best X-ray crystal structure for designing BACE1 inhibitors through computational approaches. There are two prominent configurations of BACE1 but there is still room for improvement. Future developments may make it possible to identify BACE1 inhibitors as potential drug candidates.
Collapse
Affiliation(s)
- Yoshio Hamada
- Kobe Gakuin University, Faculty of Pharmaceutical Sciences, Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | | |
Collapse
|
31
|
Yuan J, Venkatraman S, Zheng Y, McKeever BM, Dillard LW, Singh SB. Structure-based design of β-site APP cleaving enzyme 1 (BACE1) inhibitors for the treatment of Alzheimer's disease. J Med Chem 2013; 56:4156-80. [PMID: 23509904 DOI: 10.1021/jm301659n] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The amyloid hypothesis asserts that excess production or reduced clearance of the amyloid-β (Aβ) peptides in the brain initiates a sequence of events that ultimately lead to Alzheimer's disease and dementia. The Aβ hypothesis has identified BACE1 as a therapeutic target to treat Alzheimer's and led to medicinal chemistry efforts to design its inhibitors both in the pharmaceutical industry and in academia. This review summarizes two distinct categories of inhibitors designed based on conformational states of "closed" and "open" forms of the enzyme. In each category the inhibitors are classified based on the core catalytic interaction group or the aspartyl binding motif (ABM). This review covers the description of inhibitors in each ABM class with X-ray crystal structures of key compounds, their binding modes, related structure-activity data highlighting potency advances, and additional properties such as selectivity profile, P-gp efflux, pharmacokinetic, and pharmacodynamic data.
Collapse
Affiliation(s)
- Jing Yuan
- Vitae Pharmaceuticals, 502 W. Office Center Drive, Fort Washington, Pennsylvania 19034, USA
| | | | | | | | | | | |
Collapse
|
32
|
Kim T, Kim H, Lee KM, Lee YS, Lee MH. Phosphorescence Color Tuning of Cyclometalated Iridium Complexes by o-Carborane Substitution. Inorg Chem 2012; 52:160-8. [DOI: 10.1021/ic3015699] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Taewon Kim
- Department of Chemistry and EHSRC, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry, KAIST, Daejeon 305-701, Republic of Korea
| | - Kang Mun Lee
- Department of Chemistry, KAIST, Daejeon 305-701, Republic of Korea
| | - Yoon Sup Lee
- Department of Chemistry, KAIST, Daejeon 305-701, Republic of Korea
| | - Min Hyung Lee
- Department of Chemistry and EHSRC, University of Ulsan, Ulsan 680-749, Republic of Korea
| |
Collapse
|
33
|
Gerritz SW, Zhai W, Shi S, Zhu S, Toyn JH, Meredith JE, Iben LG, Burton CR, Albright CF, Good AC, Tebben AJ, Muckelbauer JK, Camac DM, Metzler W, Cook LS, Padmanabha R, Lentz KA, Sofia MJ, Poss MA, Macor JE, Thompson LA. Acyl Guanidine Inhibitors of β-Secretase (BACE-1): Optimization of a Micromolar Hit to a Nanomolar Lead via Iterative Solid- and Solution-Phase Library Synthesis. J Med Chem 2012; 55:9208-23. [DOI: 10.1021/jm300931y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Samuel W. Gerritz
- Bristol-Myers Squibb Research,
5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Weixu Zhai
- Bristol-Myers Squibb Research,
5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Shuhao Shi
- Bristol-Myers Squibb Research,
5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Shirong Zhu
- Bristol-Myers Squibb Research,
5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jeremy H. Toyn
- Bristol-Myers Squibb Research,
5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jere E. Meredith
- Bristol-Myers Squibb Research,
5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Lawrence G. Iben
- Bristol-Myers Squibb Research,
5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Catherine R. Burton
- Bristol-Myers Squibb Research,
5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Charles F. Albright
- Bristol-Myers Squibb Research,
5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Andrew C. Good
- Bristol-Myers Squibb Research,
5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Andrew J. Tebben
- Bristol-Myers Squibb Research,
P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Jodi K. Muckelbauer
- Bristol-Myers Squibb Research,
P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Daniel M. Camac
- Bristol-Myers Squibb Research,
P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - William Metzler
- Bristol-Myers Squibb Research,
P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Lynda S. Cook
- Bristol-Myers Squibb Research,
5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Ramesh Padmanabha
- Bristol-Myers Squibb Research,
5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Kimberley A. Lentz
- Bristol-Myers Squibb Research,
5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Michael J. Sofia
- Bristol-Myers Squibb Research,
5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Michael A. Poss
- Bristol-Myers Squibb Research,
P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - John E. Macor
- Bristol-Myers Squibb Research,
5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Lorin A. Thompson
- Bristol-Myers Squibb Research,
5 Research Parkway, Wallingford, Connecticut 06492, United States
| |
Collapse
|
34
|
Probst G, Xu YZ. Small-molecule BACE1 inhibitors: a patent literature review (2006 - 2011). Expert Opin Ther Pat 2012; 22:511-40. [PMID: 22512789 DOI: 10.1517/13543776.2012.681302] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Alzheimer's disease is a devastating neurodegenerative disorder for which no disease-modifying therapy exists. The amyloid hypothesis, which implicates Aβ as the toxin initiating a biological cascade leading to neurodegeneration, is the most prominent theory concerning the underlying cause of the disease. BACE1 is one of two aspartyl proteinases that generate Aβ, thus inhibition of BACE1 has the potential to ameliorate the progression of Alzheimer's disease by abating the production of Aβ. AREAS COVERED This review chronicles small-molecule BACE1 inhibitors as described in the patent literature between 2006 and 2011 and their potential use as disease-modifying treatments for Alzheimer's disease. Over the past half a dozen years, numerous BACE1 inhibitors have been published in the patent applications, but often these contain a paltry amount of pertinent biological data (e.g. potency, selectivity, and efficacy). Fortunately, numerous relevant publications containing important data have appeared in the journal literature during this period. The goal in this effort was to create an amalgam of the two records to add value to this review. EXPERT OPINION The pharmaceutical industry has made tremendous progress in the development of small-molecule BACE1 inhibitors that lower Aβ in the central nervous system. Assuming the amyloid hypothesis is veracious, we anticipate a disease-modifying therapy to combat Alzheimer's disease is near.
Collapse
Affiliation(s)
- Gary Probst
- Elan Pharmaceuticals, Molecular Design, 180 Oyster Point Boulevard, South San Francisco, CA 94080, USA.
| | | |
Collapse
|
35
|
Winkelhaus D, Neumann B, Stammler HG, Mitzel NW. Intramolecular Lewis acid–base pairs based on 4-ethynyl-2,6-lutidine. Dalton Trans 2012; 41:9143-50. [DOI: 10.1039/c2dt30719g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Xu Y, Li MJ, Greenblatt H, Chen W, Paz A, Dym O, Peleg Y, Chen T, Shen X, He J, Jiang H, Silman I, Sussman JL. Flexibility of the flap in the active site of BACE1 as revealed by crystal structures and molecular dynamics simulations. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 68:13-25. [DOI: 10.1107/s0907444911047251] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 11/08/2011] [Indexed: 11/10/2022]
|
37
|
New pyrazolyl and thienyl aminohydantoins as potent BACE1 inhibitors: exploring the S2' region. Bioorg Med Chem Lett 2011; 21:5164-70. [PMID: 21835615 DOI: 10.1016/j.bmcl.2011.07.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 11/23/2022]
Abstract
The proteolytic enzyme β-secretase (BACE1) plays a central role in the synthesis of the pathogenic β-amyloid in Alzheimer's disease. SAR studies of the S2' region of the BACE1 ligand binding pocket with pyrazolyl and thienyl P2' side chains are reported. These analogs exhibit low nanomolar potency for BACE1, and demonstrate >50- to 100-fold selectivity for the structurally related aspartyl proteases BACE2 and cathepsin D. Small groups attached at the nitrogen of the P2' pyrazolyl moiety, together with the P3 pyrimidine nucleus projecting into the S3 region of the binding pocket, are critical components to ligand's potency and selectivity. P2' thiophene side chain analogs are highly potent BACE1 inhibitors with excellent selectivity against cathepsin D, but only modest selectivity against BACE2. The cell-based activity of these new analogs tracked well with their increased molecular binding with EC(50) values of 0.07-0.2 μM in the ELISA assay for the most potent analogs.
Collapse
|
38
|
Li Z, Zhou M, Wu F, Li R, Ding Z. Self-organizing molecular field analysis on human β-secretase nonpeptide inhibitors: 5, 5-disubstituted aminohydantoins. Eur J Med Chem 2011; 46:58-64. [DOI: 10.1016/j.ejmech.2010.10.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 11/24/2022]
|
39
|
Malamas MS, Robichaud A, Erdei J, Quagliato D, Solvibile W, Zhou P, Morris K, Turner J, Wagner E, Fan K, Olland A, Jacobsen S, Reinhart P, Riddell D, Pangalos M. Design and synthesis of aminohydantoins as potent and selective human β-secretase (BACE1) inhibitors with enhanced brain permeability. Bioorg Med Chem Lett 2010; 20:6597-605. [DOI: 10.1016/j.bmcl.2010.09.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 08/31/2010] [Accepted: 09/07/2010] [Indexed: 11/29/2022]
|