1
|
Fouad MA, Abdel-Hamid H, Ayoup MS. Two decades of recent advances of Ugi reactions: synthetic and pharmaceutical applications. RSC Adv 2020; 10:42644-42681. [PMID: 35514898 PMCID: PMC9058431 DOI: 10.1039/d0ra07501a] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/24/2020] [Indexed: 12/30/2022] Open
Abstract
Multicomponent reactions (MCRs) are powerful synthetic tools in which more than two starting materials couple with each other to form multi-functionalized compounds in a one-pot process, the so-called "tandem", "domino" or "cascade" reaction, or utilizing an additional step without changing the solvent, the so-called a sequential-addition procedure, to limit the number of synthetic steps, while increasing the complexity and the molecular diversity, which are highly step-economical reactions. The Ugi reaction, one of the most common multicomponent reactions, has recently fascinated chemists with the high diversity brought by its four- or three-component-based isonitrile. The Ugi reaction has been introduced in organic synthesis as a novel, efficient and useful tool for the preparation of libraries of multifunctional peptides, natural products, and heterocyclic compounds with stereochemistry control. In this review, we highlight the recent advances of the Ugi reaction in the last two decades from 2000-2019, mainly in the synthesis of linear or cyclic peptides, heterocyclic compounds with versatile ring sizes, and natural products, as well as the enantioselective Ugi reactions. Meanwhile, the applications of these compounds in pharmaceutical trials are also discussed.
Collapse
Affiliation(s)
- Manar Ahmed Fouad
- Department of Chemistry, Faculty of Science, Alexandria University Alexandria 21321 Egypt
| | - Hamida Abdel-Hamid
- Department of Chemistry, Faculty of Science, Alexandria University Alexandria 21321 Egypt
| | - Mohammed Salah Ayoup
- Department of Chemistry, Faculty of Science, Alexandria University Alexandria 21321 Egypt
| |
Collapse
|
2
|
Recent Developments in Peptidyl Diaryl Phoshonates as Inhibitors and Activity-Based Probes for Serine Proteases. Pharmaceuticals (Basel) 2019; 12:ph12020086. [PMID: 31185654 PMCID: PMC6631691 DOI: 10.3390/ph12020086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 12/12/2022] Open
Abstract
This review presents current achievements in peptidyl diaryl phosphonates as covalent, specific mechanism-based inhibitors of serine proteases. Along three decades diaryl phosphonates have emerged as invaluable tools in fundamental and applicative studies involving these hydrolases. Such an impact has been promoted by advantageous features that characterize the phosphonate compounds and their use. First, the synthesis is versatile and allows comprehensive structural modification and diversification. Accordingly, reactivity and specificity of these bioactive molecules can be easily controlled by appropriate adjustments of the side chains and the leaving groups. Secondly, the phosphonates target exclusively serine proteases and leave other oxygen and sulfur nucleophiles intact. Synthetic accessibility, lack of toxicity, and promising pharmacokinetic properties make them good drug candidates. In consequence, the utility of peptidyl diaryl phosphonates continuously increases and involves novel enzymatic targets and innovative aspects of application. For example, conjugation of the structures of specific inhibitors with reporter groups has become a convenient approach to construct activity-based molecular probes capable of monitoring location and distribution of serine proteases.
Collapse
|
3
|
Edwards SL, Mergan L, Parmar B, Cockx B, De Haes W, Temmerman L, Schoofs L. Exploring neuropeptide signalling through proteomics and peptidomics. Expert Rev Proteomics 2018; 16:131-137. [DOI: 10.1080/14789450.2019.1559733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | - Lucas Mergan
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Bhavesh Parmar
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Bram Cockx
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Wouter De Haes
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Assiri MA, Ali TE, Ali MM, Yahia IS. Synthesis and anticancer activity of some novel diethyl {(chromonyl/pyrazolyl) [(4-oxo-2-phenyl-quinazolin-3(4H)-yl)amino]methyl}phosphonates. PHOSPHORUS SULFUR 2018. [DOI: 10.1080/10426507.2018.1487969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Mohammed A. Assiri
- Advanced Materials and Green Chemistry Chemistry Department Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
| | - Tarik E. Ali
- Advanced Materials and Green Chemistry Chemistry Department Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Department of Chemistry Faculty of Education, Ain Shams University Roxy, Cairo, Egypt
| | - Mamdouh M. Ali
- Department of Biochemistry Division of Genetic Engineering and Biotechnology, National Research Centre, Dokki Giza, Egypt
| | - I. S. Yahia
- Advanced Functional Materials & Optoelectronic Laboratory Department of Physics Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Nanoscience Laboratory for Environmental and Biomedical Applications, Semiconductor Lab, Department of Physics Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt
| |
Collapse
|
5
|
Schulz-Fincke AC, Blaut M, Braune A, Gütschow M. A BODIPY-Tagged Phosphono Peptide as Activity-Based Probe for Human Leukocyte Elastase. ACS Med Chem Lett 2018; 9:345-350. [PMID: 29670698 DOI: 10.1021/acsmedchemlett.7b00533] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/04/2018] [Indexed: 02/08/2023] Open
Abstract
Human leukocyte elastase plays a crucial role in a variety of inflammatory disorders and represents an important subject of biomedical studies. The chemotype of peptidic phosphonates was employed for the design of a new activity-based probe for human leukocyte elastase. Its structure combines the phosphonate warhead with an adequate peptide portion and a BODIPY fluorophore with a clickable ethinylphenyl moiety at meso position. The probe 6 was assembled by copper-catalyzed alkyne-azide 1,3-dipolar cycloaddition. It was characterized as an active site-directed elastase inhibitor exhibiting a second-order rate constant of inactivation of 88400 M-1s-1. The suitability of 6 as a fluorescent probe for human leukocyte elastase was demonstrated by in-gel fluorescence analysis. Labeling experiments and inhibition data toward a panel of related proteases underlined the selectivity of the probe for the targeted leukocyte elastase.
Collapse
Affiliation(s)
- Anna-Christina Schulz-Fincke
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Michael Blaut
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Annett Braune
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
6
|
Schulz-Fincke AC, Tikhomirov AS, Braune A, Girbl T, Gilberg E, Bajorath J, Blaut M, Nourshargh S, Gütschow M. Design of an Activity-Based Probe for Human Neutrophil Elastase: Implementation of the Lossen Rearrangement To Induce Förster Resonance Energy Transfers. Biochemistry 2018; 57:742-752. [PMID: 29286643 DOI: 10.1021/acs.biochem.7b00906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human neutrophil elastase is an important regulator of the immune response and plays a role in host defense mechanisms and further physiological processes. The uncontrolled activity of this serine protease may cause severe tissue alterations and impair inflammatory states. The design of an activity-based probe for human neutrophil elastase reported herein relies on a sulfonyloxyphthalimide moiety as a new type of warhead that is linker-connected to a coumarin fluorophore. The inhibitory potency of the activity-based probe was assessed against several serine and cysteine proteases, and the selectivity for human neutrophil elastase (Ki = 6.85 nM) was determined. The adequate fluorescent tag of the probe allowed for the in-gel fluorescence detection of human neutrophil elastase in the low nanomolar range. The coumarin moiety and the anthranilic acid function of the probe, produced in the course of a Lossen rearrangement, were part of two different Förster resonance energy transfers.
Collapse
Affiliation(s)
- Anna-Christina Schulz-Fincke
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn , An der Immenburg 4, 53121 Bonn, Germany
| | - Alexander S Tikhomirov
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn , An der Immenburg 4, 53121 Bonn, Germany.,Gause Institute of New Antibiotics , 11 Bolshaya Pirogovskaya Street, Moscow 119021, Russia
| | - Annett Braune
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke , Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Tamara Girbl
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London , Charterhouse Square, London EC1M 6BQ, U.K
| | - Erik Gilberg
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn , An der Immenburg 4, 53121 Bonn, Germany.,Department of Life Science Informatics, B-IT, LIMES Program Unit of Chemical Biology and Medicinal Chemistry, University of Bonn , Dahlmannstrasse 2, 53113 Bonn, Germany
| | - Jürgen Bajorath
- Department of Life Science Informatics, B-IT, LIMES Program Unit of Chemical Biology and Medicinal Chemistry, University of Bonn , Dahlmannstrasse 2, 53113 Bonn, Germany
| | - Michael Blaut
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke , Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Sussan Nourshargh
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London , Charterhouse Square, London EC1M 6BQ, U.K
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn , An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
7
|
Häußler D, Schulz-Fincke AC, Beckmann AM, Keils A, Gilberg E, Mangold M, Bajorath J, Stirnberg M, Steinmetzer T, Gütschow M. A Fluorescent-Labeled Phosphono Bisbenzguanidine As an Activity-Based Probe for Matriptase. Chemistry 2017; 23:5205-5209. [DOI: 10.1002/chem.201700319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 02/24/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Daniela Häußler
- Pharmaceutical Institute, Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | | | - Anna-Madeleine Beckmann
- Pharmaceutical Institute, Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Aline Keils
- Institute of Pharmaceutical Chemistry; Philipps University of Marburg; Marbacher Weg 6 35032 Marburg Germany
| | - Erik Gilberg
- Pharmaceutical Institute, Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry; University of Bonn; Dahlmannstr. 2 53113 Bonn Germany
| | - Martin Mangold
- Pharmaceutical Institute, Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Jürgen Bajorath
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry; University of Bonn; Dahlmannstr. 2 53113 Bonn Germany
| | - Marit Stirnberg
- Pharmaceutical Institute, Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry; Philipps University of Marburg; Marbacher Weg 6 35032 Marburg Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| |
Collapse
|
8
|
Häußler D, Mangold M, Furtmann N, Braune A, Blaut M, Bajorath J, Stirnberg M, Gütschow M. Phosphono Bisbenzguanidines as Irreversible Dipeptidomimetic Inhibitors and Activity-Based Probes of Matriptase-2. Chemistry 2016; 22:8525-35. [DOI: 10.1002/chem.201600206] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Daniela Häußler
- Pharmaceutical Institute; Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Martin Mangold
- Pharmaceutical Institute; Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Norbert Furtmann
- Pharmaceutical Institute; Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
- Department of Life Science Informatics, B-IT; LIMES Program Unit Chemical Biology and Medicinal Chemistry; University of Bonn; Dahlmannstrasse 2 53113 Bonn Germany
| | - Annett Braune
- Department of Gastrointestinal Microbiology; German Institute of Human Nutrition Potsdam-Rehbruecke; Arthur-Scheunert-Allee 114-116 14558 Nuthetal Germany
| | - Michael Blaut
- Department of Gastrointestinal Microbiology; German Institute of Human Nutrition Potsdam-Rehbruecke; Arthur-Scheunert-Allee 114-116 14558 Nuthetal Germany
| | - Jürgen Bajorath
- Department of Life Science Informatics, B-IT; LIMES Program Unit Chemical Biology and Medicinal Chemistry; University of Bonn; Dahlmannstrasse 2 53113 Bonn Germany
| | - Marit Stirnberg
- Pharmaceutical Institute; Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Michael Gütschow
- Pharmaceutical Institute; Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| |
Collapse
|
9
|
Häußler D, Scheidt T, Stirnberg M, Steinmetzer T, Gütschow M. A Bisbenzamidine Phosphonate as a Janus-faced Inhibitor for Trypsin-like Serine Proteases. ChemMedChem 2015; 10:1641-6. [PMID: 26306030 DOI: 10.1002/cmdc.201500319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 12/19/2022]
Abstract
A hybrid approach was applied for the design of an inhibitor of trypsin-like serine proteases. Compound 16 [(R,R)- and (R,S)-diphenyl (4-(1-(4-amidinobenzylamino)-1-oxo-3-phenylpropan-2-ylcarbamoyl)phenylamino)(4-amidinophenyl)methylphosphonate hydrochloride], prepared in a convergent synthetic procedure, possesses a phosphonate warhead prone to react with the active site serine residue in a covalent, irreversible manner. Each of the two benzamidine moieties of 16 can potentially be accommodated in the S1 pocket of the target enzyme, but only the benzamidine close to the phosphonate group would then promote an irreversible interaction. The Janus-faced inhibitor 16 was evaluated against several serine proteases and caused a pronounced inactivation of human thrombin with a second-order rate constant (kinac /Ki) of 59 500 M(-1) s(-1). With human matriptase, 16 showed preference for a reversible mode of inhibition (IC50 =2.6 μM) as indicated by linear progress curves and enzyme reactivation.
Collapse
Affiliation(s)
- Daniela Häußler
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn (Germany)
| | - Tamara Scheidt
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn (Germany)
| | - Marit Stirnberg
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn (Germany)
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032 Marburg (Germany)
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn (Germany).
| |
Collapse
|
10
|
Ordóñez M, Viveros-Ceballos JL, Cativiela C, Sayago FJ. An update on the stereoselective synthesis of α-aminophosphonic acids and derivatives. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.01.029] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Goulioukina NS, Mitrofanov AY, Beletskaya IP. Convenient synthesis of α-perfluoroaryl and α-perfluorohetaryl substituted α-aminomethanephosphonates. J Fluor Chem 2012. [DOI: 10.1016/j.jfluchem.2012.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Sieńczyk M, Podgórski D, Błażejewska A, Kulbacka J, Saczko J, Oleksyszyn J. Phosphonic pseudopeptides as human neutrophil elastase inhibitors—a combinatorial approach. Bioorg Med Chem 2011; 19:1277-84. [DOI: 10.1016/j.bmc.2010.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 12/02/2010] [Accepted: 12/04/2010] [Indexed: 10/18/2022]
|