1
|
An Isochroman Analog of CD3254 and Allyl-, Isochroman-Analogs of NEt-TMN Prove to Be More Potent Retinoid-X-Receptor (RXR) Selective Agonists Than Bexarotene. Int J Mol Sci 2022; 23:ijms232416213. [PMID: 36555852 PMCID: PMC9782500 DOI: 10.3390/ijms232416213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Bexarotene is an FDA-approved drug for the treatment of cutaneous T-cell lymphoma (CTCL); however, its use provokes or disrupts other retinoid-X-receptor (RXR)-dependent nuclear receptor pathways and thereby incites side effects including hypothyroidism and raised triglycerides. Two novel bexarotene analogs, as well as three unique CD3254 analogs and thirteen novel NEt-TMN analogs, were synthesized and characterized for their ability to induce RXR agonism in comparison to bexarotene (1). Several analogs in all three groups possessed an isochroman ring substitution for the bexarotene aliphatic group. Analogs were modeled for RXR binding affinity, and EC50 as well as IC50 values were established for all analogs in a KMT2A-MLLT3 leukemia cell line. All analogs were assessed for liver-X-receptor (LXR) activity in an LXRE system to gauge the potential for the compounds to provoke raised triglycerides by increasing LXR activity, as well as to drive LXRE-mediated transcription of brain ApoE expression as a marker for potential therapeutic use in neurodegenerative disorders. Preliminary results suggest these compounds display a broad spectrum of off-target activities. However, many of the novel compounds were observed to be more potent than 1. While some RXR agonists cross-signal the retinoic acid receptor (RAR), many of the rexinoids in this work displayed reduced RAR activity. The isochroman group did not appear to substantially reduce RXR activity on its own. The results of this study reveal that modifying potent, selective rexinoids like bexarotene, CD3254, and NEt-TMN can provide rexinoids with increased RXR selectivity, decreased potential for cross-signaling, and improved anti-proliferative characteristics in leukemia models compared to 1.
Collapse
|
2
|
Jurutka PW, di Martino O, Reshi S, Mallick S, Sabir ZL, Staniszewski LJP, Warda A, Maiorella EL, Minasian A, Davidson J, Ibrahim SJ, Raban S, Haddad D, Khamisi M, Suban SL, Dawson BJ, Candia R, Ziller JW, Lee MY, Liu C, Liu W, Marshall PA, Welch JS, Wagner CE. Modeling, Synthesis, and Biological Evaluation of Potential Retinoid-X-Receptor (RXR) Selective Agonists: Analogs of 4-[1-(3,5,5,8,8-Pentamethyl-5,6,7,8-tetrahyro-2-naphthyl)ethynyl]benzoic Acid (Bexarotene) and 6-(Ethyl(4-isobutoxy-3-isopropylphenyl)amino)nicotinic Acid (NEt-4IB). Int J Mol Sci 2021; 22:ijms222212371. [PMID: 34830251 PMCID: PMC8624485 DOI: 10.3390/ijms222212371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/05/2022] Open
Abstract
Five novel analogs of 6-(ethyl)(4-isobutoxy-3-isopropylphenyl)amino)nicotinic acid—or NEt-4IB—in addition to seven novel analogs of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (bexarotene) were prepared and evaluated for selective retinoid-X-receptor (RXR) agonism alongside bexarotene (1), a FDA-approved drug for cutaneous T-cell lymphoma (CTCL). Bexarotene treatment elicits side-effects by provoking or disrupting other RXR-dependent pathways. Analogs were assessed by the modeling of binding to RXR and then evaluated in a human cell-based RXR-RXR mammalian-2-hybrid (M2H) system as well as a RXRE-controlled transcriptional system. The analogs were also tested in KMT2A-MLLT3 leukemia cells and the EC50 and IC50 values were determined for these compounds. Moreover, the analogs were assessed for activation of LXR in an LXRE system as drivers of ApoE expression and subsequent use as potential therapeutics in neurodegenerative disorders, and the results revealed that these compounds exerted a range of differential LXR-RXR activation and selectivity. Furthermore, several of the novel analogs in this study exhibited reduced RARE cross-signaling, implying RXR selectivity. These results demonstrate that modification of partial agonists such as NEt-4IB and potent rexinoids such as bexarotene can lead to compounds with improved RXR selectivity, decreased cross-signaling of other RXR-dependent nuclear receptors, increased LXRE-heterodimer selectivity, and enhanced anti-proliferative potential in leukemia cell lines compared to therapeutics such as 1.
Collapse
Affiliation(s)
- Peter W. Jurutka
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
- Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Orsola di Martino
- Department of Internal Medicine, Washington University, St. Louis, MO 63110, USA; (O.d.M.); (J.S.W.)
| | - Sabeeha Reshi
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Sanchita Mallick
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Zhela L. Sabir
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Lech J. P. Staniszewski
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Ankedo Warda
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
- Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Emma L. Maiorella
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Ani Minasian
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Jesse Davidson
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Samir J. Ibrahim
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - San Raban
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Dena Haddad
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Madleen Khamisi
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Stephanie L. Suban
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Bradley J. Dawson
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Riley Candia
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Joseph W. Ziller
- Department of Chemistry, University of California, Irvine, CA 92697, USA;
| | - Ming-Yue Lee
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85201, USA; (M.-Y.L.); (C.L.); (W.L.)
| | - Chang Liu
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85201, USA; (M.-Y.L.); (C.L.); (W.L.)
| | - Wei Liu
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85201, USA; (M.-Y.L.); (C.L.); (W.L.)
| | - Pamela A. Marshall
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - John S. Welch
- Department of Internal Medicine, Washington University, St. Louis, MO 63110, USA; (O.d.M.); (J.S.W.)
| | - Carl E. Wagner
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
- Correspondence: ; Tel.: +1-602-543-6937
| |
Collapse
|
3
|
Mallick S, Marshall PA, Wagner CE, Heck MC, Sabir ZL, Sabir MS, Dussik CM, Grozic A, Kaneko I, Jurutka PW. Evaluating Novel RXR Agonists That Induce ApoE and Tyrosine Hydroxylase in Cultured Human Glioblastoma Cells. ACS Chem Neurosci 2021; 12:857-871. [PMID: 33570383 DOI: 10.1021/acschemneuro.0c00707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
There is considerable interest in identifying effective and safe drugs for neurodegenerative disorders. Cell culture and animal model work have demonstrated that modulating gene expression through RXR-mediated pathways may mitigate or reverse cognitive decline. However, because RXR is a dimeric partner for several transcription factors, activating off-target transcription is a concern with RXR ligands (rexinoids). This off-target gene modulation leads to unwanted side effects that can include low thyroid function and significant hyperlipidemia. There is a need to develop rexinoids that have binding specificity for subsets of RXR heterodimers, to drive desired gene modulation, but that do not induce spurious effects. Herein, we describe experiments in which we analyze a series of novel and previously reported rexinoids for their ability to modulate specific gene pathways implicated in neurodegenerative disorders employing a U87 cell culture model. We demonstrate that, compared to the FDA-approved rexinoid bexarotene (1), several of these compounds are equally or more effective at stimulating gene expression via LXREs or Nurr1/NBREs and are superior at inducing ApoE and/or tyrosine hydroxylase (TH) gene and protein expression, including analogs 8, 9, 13, 14, 20, 23, and 24, suggesting a possible therapeutic role for these compounds in Alzheimer's or Parkinson's disease (PD). A subset of these potent RXR agonists can synergize with a presumed Nurr1 ligand and antimalarial drug (amodiaquine) to further enhance Nurr1/NBREs-directed transcription. This novel discovery has potential clinical implications for treatment of PD since it suggests that the combination of an RXR agonist and a Nurr1 ligand can significantly enhance RXR-Nurr1 heterodimer activity and drive enhanced therapeutic expression of the TH gene to increase endogenous synthesis of dopamine. These data indicate that is it possible and prudent to develop novel rexinoids for testing of gene expression and side effect profiles for use in potential treatment of neurodegenerative disorders, as individual rexinoids can have markedly different gene expression profiles but similar structures.
Collapse
Affiliation(s)
- Sanchita Mallick
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85306, United States
| | - Pamela A. Marshall
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85306, United States
| | - Carl E. Wagner
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85306, United States
| | - Michael C. Heck
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85306, United States
| | - Zhela L. Sabir
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85306, United States
| | - Marya S. Sabir
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85306, United States
| | - Christoper M. Dussik
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85306, United States
| | - Aleksandra Grozic
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85306, United States
| | - Ichiro Kaneko
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85306, United States
| | - Peter W. Jurutka
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85306, United States
| |
Collapse
|
4
|
Abstract
Retinoid X receptors (RXRs) are promiscuous partners of heterodimeric associations with other members of the Nuclear Receptor (NR) superfamily. RXR ligands ("rexinoids") either transcriptionally activate the "permissive" subclass of heterodimers or synergize with partner ligands in the "nonpermissive" subclass of heterodimers. The rationale for rexinoid design with a wide structural diversity going from the structures of existing complexes with RXR determined by X-Ray, to natural products and other ligands discovered by high-throughput screening (HTS), mere serendipity, and rationally designed based on Molecular Modeling, will be described. Included is the new generation of ligands that modulate the structure of specific receptor surfaces that serve to communicate with other regulators. The panel of the known RXR agonists, partial (ant)agonists, and/or heterodimer-selective rexinoids require the exploration of their therapeutic potential in order to overcome some of the current limitations of rexinoids in therapy.
Collapse
Affiliation(s)
- Claudio Martínez
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, Vigo, Spain
| | - José A Souto
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, Vigo, Spain
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, Vigo, Spain.
| |
Collapse
|
5
|
Wagner CE, Jurutka PW. Methods to Generate an Array of Novel Rexinoids by SAR on a Potent Retinoid X Receptor Agonist: A Case Study with NEt-TMN. Methods Mol Biol 2019; 2019:109-121. [PMID: 31359392 DOI: 10.1007/978-1-4939-9585-1_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The methods described in this chapter concern procedures for the design, synthesis, and in vitro biological evaluation of an array of potent retinoid-X-receptor (RXR) agonists employing 6-(ethyl(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)amino)nicotinic acid (NEt-TMN), and recently reported NEt-TMN analogs, as a case study. These methods have been extensively applied beyond the present case study to generate several analogs of other potent RXR agonists (rexinoids), particularly the RXR agonist known as bexarotene (Bex), a Food and Drug Administration (FDA) approved drug for cutaneous T-cell lymphoma that is also often prescribed, off-label, for breast, lung, and other human cancers. Common side effects with Bex treatment include hypertriglyceridemia and hypothyroidism, because of off-target activation or inhibition of other nuclear receptor pathways impacted by RXR. Because rexinoids are often selective for RXR, versus the retinoic-acid-receptor (RAR), cutaneous toxicity is often avoided as a side effect for rexinoid treatment. Several other potent RXR agonists, and their analogs, have been reported in the literature and rigorously evaluated (often in comparison to Bex) as potential cancer therapeutics with unique activity and side-effect profiles. Some of the more prominent examples include LGD100268, CD3254, and 9-cis-UAB30, to name only a few. Hence, the methods described herein are more widely applicable to a diverse array of RXR agonists.In terms of design, the structure-activity relationship (SAR) study is usually performed by modifying three distinct areas of the rexinoid base structure, either of the nonpolar or polar sides of the rexinoid and/or the linkage that joins them. For the synthesis of the modified base-structure analogs, often identical synthetic strategies used to access the base-structure are applied; however, reasonable alternative synthetic routes may need to be explored if the modified analog intermediates encounter bottlenecks where yields are negligible for a given step in the base-structure route. In fact, this particular problem was encountered and successfully resolved in our case study for generating an array of NEt-TMN analogs.
Collapse
Affiliation(s)
- Carl E Wagner
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, Glendale, AZ, USA.
| | - Peter W Jurutka
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, Glendale, AZ, USA
| |
Collapse
|
6
|
Venkanna A, Kwon OW, Afzal S, Jang C, Cho KH, Yadav DK, Kim K, Park HG, Chun KH, Kim SY, Kim MH. Pharmacological use of a novel scaffold, anomeric N,N-diarylamino tetrahydropyran: molecular similarity search, chemocentric target profiling, and experimental evidence. Sci Rep 2017; 7:12535. [PMID: 28970544 PMCID: PMC5624941 DOI: 10.1038/s41598-017-12082-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/29/2017] [Indexed: 11/30/2022] Open
Abstract
Rational drug design against a determined target (disease, pathway, or protein) is the main strategy in drug discovery. However, regardless of the main strategy, chemists really wonder how to maximize the utility of their new compounds by drug repositioning them as clinical drug candidates in drug discovery. In this study, we started our drug discovery "from curiosity in the chemical structure of a drug scaffold itself" rather than "for a specific target". As a new drug scaffold, anomeric diarylamino cyclic aminal scaffold 1, was designed by combining two known drug scaffolds (diphenylamine and the most popular cyclic ether, tetrahydropyran/tetrahydrofuran) and synthesized through conventional Brønsted acid catalysis and metal-free α-C(sp3)-H functionalized oxidative cyclization. To identify the utility of the new scaffold 1, it was investigated through 2D and 3D similarity screening and chemocentric target prediction. The predicted proteins were investigated by an experimental assay. The scaffold 1 was reported to have an antineuroinflammatory agent to reduce NO production, and compound 10 concentration-dependently regulated the expression level of IL-6, PGE-2, TNF-α, ER-β, VDR, CTSD, and iNOS, thus exhibiting neuroprotective activity.
Collapse
Affiliation(s)
- Arramshetti Venkanna
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon, Republic of Korea
| | - Oh Wook Kwon
- Natural F&P Corp. 152 Saemal-ro, Songpa-gu, Seoul, Korea
| | - Sualiha Afzal
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon, Republic of Korea
| | - Cheongyun Jang
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon, Republic of Korea
| | - Kyo Hee Cho
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon, Republic of Korea
| | - Dharmendra K Yadav
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon, Republic of Korea
| | - Kang Kim
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon, Republic of Korea
| | - Hyeung-Geun Park
- Research Institute of Pharmaceutical Science and College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon, Republic of Korea
| | - Sun Yeou Kim
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon, Republic of Korea.
| | - Mi-Hyun Kim
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon, Republic of Korea.
| |
Collapse
|
7
|
Heck MC, Wagner CE, Shahani PH, MacNeill M, Grozic A, Darwaiz T, Shimabuku M, Deans DG, Robinson NM, Salama SH, Ziller JW, Ma N, van der Vaart A, Marshall PA, Jurutka PW. Modeling, Synthesis, and Biological Evaluation of Potential Retinoid X Receptor (RXR)-Selective Agonists: Analogues of 4-[1-(3,5,5,8,8-Pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic Acid (Bexarotene) and 6-(Ethyl(5,5,8,8-tetrahydronaphthalen-2-yl)amino)nicotinic Acid (NEt-TMN). J Med Chem 2016; 59:8924-8940. [DOI: 10.1021/acs.jmedchem.6b00812] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Michael C. Heck
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Carl E. Wagner
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Pritika H. Shahani
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Mairi MacNeill
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Aleksandra Grozic
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Tamana Darwaiz
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Micah Shimabuku
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - David G. Deans
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Nathan M. Robinson
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Samer H. Salama
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Joseph W. Ziller
- Department
of Chemistry, University of California, Irvine, 576 Rowland Hall, Irvine, California 92697, United States
| | - Ning Ma
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE 205, Tampa, Florida 33620, United States
| | - Arjan van der Vaart
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE 205, Tampa, Florida 33620, United States
| | - Pamela A. Marshall
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Peter W. Jurutka
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| |
Collapse
|
8
|
Ohta K, Kawachi E, Shudo K, Kagechika H. Structure-activity relationship study on benzoic acid part of diphenylamine-based retinoids. Bioorg Med Chem Lett 2013; 23:81-4. [PMID: 23217961 DOI: 10.1016/j.bmcl.2012.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/01/2012] [Accepted: 11/06/2012] [Indexed: 10/27/2022]
Abstract
Based on structure-activity relationship studies of the benzoic acid part of diphenylamine-based retinoids, the potent RXR agonist 4 was derivatized to obtain retinoid agonists, synergists, and an antagonist. Cinnamic acid derivatives 5 and phenylpropionic acid derivatives 6 showed retinoid agonistic and synergistic activities, respectively. The difference of the activities is considered to be due to differences in the flexibility of the carboxylic acid-containing substituent on the diphenylamine skeleton. Compound 7, bearing a methyl group at the meta position to the carboxyl group, was an antagonist, dose-dependently inhibiting HL-60 cell differentiation induced by 3.3 × 10(-10)M Am80.
Collapse
Affiliation(s)
- Kiminori Ohta
- Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | | | | | | |
Collapse
|
9
|
Abstract
INTRODUCTION Retinoid X receptors (subtypes RXRα or NR2B1, RXRβ or NR2B2 and RXRγ or NR2B3, which originate from three distinct genes) are promiscuous partners with heterodimeric associations to other members of the Nuclear Receptor (NR) superfamily. Some of the heterodimers are "permissive" and transcriptionally active in the presence of either an RXR ligand ("rexinoid") or a NR partner ligand, whereas others are "non-permissive" and unresponsive to rexinoids alone. In rodent models, rexinoids and partner agonists (mainly PPARγ, LXR, FXR) produce beneficial effects on insulin sensitization, diabetes and obesity, but secondary effects have also been noted, such as a raise in tryglyceride levels, supression of the thyroid hormone axis and induction of hepatomegaly. AREAS COVERED The authors review recent advances in rexinoid design, including further optimization of known scaffolds, and the discovery of novel RXR modulators by virtual ligand screening or from bioactive natural products. The understanding of rexinoid functions in permissive and non-permissive heterodimers is firmly based on structural knowledge. By strenghtening or disrupting the interaction surface with coregulators rexinoids exert agonist or (partial) antagonist activities. The activity state of the heterodimer can also be fine-tuned by the cellular context and the nature of coregulators. EXPERT OPINION The synthetic chemistry toolbox has provided a panel of agonists, partial (ant)agonists and/or heterodimer-selective rexinoids starting from existing, naturally occurring or serendipitously discovered scaffolds. These compounds have an unexplored therapeutic potential that might overcome some of the current limitations of rexinoids in therapy, such as hypertriglyceridemia.
Collapse
Affiliation(s)
- Belén Vaz
- Departamento de Química Orgánica, Facultad de Química and Centro de Investigaciones Biomédicas (CINBIO), Universidade de Vigo, Vigo, Spain
| | | |
Collapse
|