1
|
Goodman DM, Ritter CU, Chen E, Tong KKH, Riisom M, Söhnel T, Jamieson SMF, Anderson RF, Brothers PJ, Ware DC, Hartinger CG. Masking the Bioactivity of Hydroxamic Acids by Coordination to Cobalt: Towards Bioreductive Anticancer Agents. Chemistry 2024; 30:e202401724. [PMID: 38853639 DOI: 10.1002/chem.202401724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
The clinical use of many potent anticancer agents is limited by their non-selective toxicity to healthy tissue. One of these examples is vorinostat (SAHA), a pan histone deacetylase inhibitor, which shows high cytotoxicity with limited discrimination for cancerous over healthy cells. In an attempt to improve tumor selectivity, we exploited the properties of cobalt(III) as a redox-active metal center through stabilization with cyclen and cyclam tetraazamacrocycles, masking the anticancer activity of SAHA and other hydroxamic acid derivatives to allow for the complex to reach the hypoxic microenvironment of the tumor. Biological assays demonstrated the desired low in vitro anticancer activity of the complexes, suggesting effective masking of the activity of SAHA. Once in the tumor, the bioactive moiety may be released through the reduction of the CoIII center. Investigations revealed long-term stability of the complexes, with cyclic voltammetry and chemical reduction experiments supporting the design hypothesis of SAHA release through the reduction of the CoIII prodrug. The results highlight the potential for further developing this complex class as novel anticancer agents by masking the high cytotoxicity of a given drug, however, the cellular uptake needs to be improved.
Collapse
Affiliation(s)
- David M Goodman
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Cornelia U Ritter
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Erin Chen
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Kelvin K H Tong
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Mie Riisom
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Tilo Söhnel
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Robert F Anderson
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Penelope J Brothers
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - David C Ware
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| |
Collapse
|
2
|
Felber JG, Thorn-Seshold O. 40 Years of Duocarmycins: A Graphical Structure/Function Review of Their Chemical Evolution, from SAR to Prodrugs and ADCs. JACS AU 2022; 2:2636-2644. [PMID: 36590260 PMCID: PMC9795467 DOI: 10.1021/jacsau.2c00448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 05/16/2023]
Abstract
Synthetic analogues of the DNA-alkylating cytotoxins of the duocarmycin class have been extensively investigated in the past 40 years, driven by their high potency, their unusual mechanism of bioactivity, and the beautiful modularity of their structure-activity relationship (SAR). This Perspective analyzes how the molecular designs of synthetic duocarmycins have evolved: from (1) early SAR studies, through to modern applications for directed cancer therapy as (2) prodrugs and (3) antibody-drug conjugates in late-stage clinical development. Analyzing 583 primary research articles and patents from 1978 to 2022, we distill out a searchable A0-format "Minard map" poster of ca. 200 key structure/function-tuning steps tracing chemical developments across these three key areas. This structure-based overview showcases the ingenious approaches to tune and target bioactivity, that continue to drive development of the elegant and powerful duocarmycin platform.
Collapse
|
3
|
Phillips AM, Pombeiro AJ. Transition Metal-Based Prodrugs for Anticancer Drug Delivery. Curr Med Chem 2020; 26:7476-7519. [DOI: 10.2174/0929867326666181203141122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/14/2022]
Abstract
:
Transition metal complexes, of which the platinum(II) complex cisplatin is an example,
have been used in medicine to treat cancer for more than 40 years. Although many successes have
been achieved, there are problems associated with the use of these drugs, such as side effects and
drug resistance. Converting them into prodrugs, to make them more inert, so that they can travel to
the tumour site unchanged and release the drug in its active form only there, is a strategy which is
the subject of much research nowadays. The new prodrugs may be activated and release the cytotoxic
agent by differences in oxygen concentration or in pH, by the action of overexpressed enzymes,
by differences in metabolic rates, etc., which characteristically distinguish cancer cells from
normal ones, or even by the input of radiation, which can be visible light. Converting a metal complex
into a prodrug may also be used to improve its pharmacological properties. In some cases, the
metal complex is a carrier which transports the active drug as a ligand. Some platinum prodrugs
have reached clinical trials. So far platinum, ruthenium and cobalt have been the most studied metals.
This review presents the recent developments in this area, including the types of complexes
used, the mechanisms of drug action and in some cases the techniques applied to monitor drug delivery
to cells.
Collapse
Affiliation(s)
- Ana M.F. Phillips
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Armando J.L. Pombeiro
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
4
|
Sharma A, Arambula JF, Koo S, Kumar R, Singh H, Sessler JL, Kim JS. Hypoxia-targeted drug delivery. Chem Soc Rev 2019; 48:771-813. [PMID: 30575832 PMCID: PMC6361706 DOI: 10.1039/c8cs00304a] [Citation(s) in RCA: 324] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypoxia is a state of low oxygen tension found in numerous solid tumours. It is typically associated with abnormal vasculature, which results in a reduced supply of oxygen and nutrients, as well as impaired delivery of drugs. The hypoxic nature of tumours often leads to the development of localized heterogeneous environments characterized by variable oxygen concentrations, relatively low pH, and increased levels of reactive oxygen species (ROS). The hypoxic heterogeneity promotes tumour invasiveness, metastasis, angiogenesis, and an increase in multidrug-resistant proteins. These factors decrease the therapeutic efficacy of anticancer drugs and can provide a barrier to advancing drug leads beyond the early stages of preclinical development. This review highlights various hypoxia-targeted and activated design strategies for the formulation of drugs or prodrugs and their mechanism of action for tumour diagnosis and treatment.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Chemistry, Korea University, Seoul, 02841, Korea.
| | | | | | | | | | | | | |
Collapse
|
5
|
Zeng Y, Ma J, Zhan Y, Xu X, Zeng Q, Liang J, Chen X. Hypoxia-activated prodrugs and redox-responsive nanocarriers. Int J Nanomedicine 2018; 13:6551-6574. [PMID: 30425475 PMCID: PMC6202002 DOI: 10.2147/ijn.s173431] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypoxia is one of the marked features of malignant tumors, which is associated with several adaptation changes in the microenvironment of tumor cells. Therefore, targeting tumor hypoxia is a research hotspot for cancer therapy. In this review, we summarize the developing chemotherapeutic drugs for targeting hypoxia, including quinones, nitroaromatic/nitroimidazole, N-oxides, and transition metal complexes. In addition, redox-responsive bonds, such as nitroimidazole groups, azogroups, and disulfide bonds, are frequently used in drug delivery systems for targeting the redox environment of tumors. Both hypoxia-activated prodrugs and redox-responsive drug delivery nanocarriers have significant effects on targeting tumor hypoxia for cancer therapy. Hypoxia-activated prodrugs are commonly used in clinical trials with favorable prospects, while redox-responsive nanocarriers are currently at the experimental stage.
Collapse
Affiliation(s)
- Yun Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, People's Republic of China, ,
| | - Jingwen Ma
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, People's Republic of China
| | - Yonghua Zhan
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, People's Republic of China, ,
| | - Xinyi Xu
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, People's Republic of China, ,
| | - Qi Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, People's Republic of China, ,
| | - Jimin Liang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, People's Republic of China, ,
| | - Xueli Chen
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, People's Republic of China, ,
| |
Collapse
|
6
|
Cressey PB, Eskandari A, Bruno PM, Lu C, Hemann MT, Suntharalingam K. The Potent Inhibitory Effect of a Naproxen-Appended Cobalt(III)-Cyclam Complex on Cancer Stem Cells. Chembiochem 2016; 17:1713-8. [PMID: 27377813 DOI: 10.1002/cbic.201600368] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Indexed: 12/31/2022]
Abstract
We report the potency against cancer stem cells (CSCs) of a new cobalt(III)-cyclam complex (1) that bears the nonsteroidal anti-inflammatory drug, naproxen. The complex displays selective potency for breast CSC-enriched HMLER-shEcad cells over breast CSC-depleted HMLER cells. Additionally, it inhibited the formation of three-dimensional tumour-like mammospheres, and reduced their viability to a greater extent than clinically used breast cancer drugs (vinorelbine, cisplatin and paclitaxel). The anti-mammosphere potency of 1 was enhanced under hypoxia-mimicking conditions. Detailed mechanistic studies revealed that DNA damage and cyclooxygenase-2 (COX-2) inhibition contribute to the cytotoxic mechanism of 1. To the best of our knowledge, 1 is the first cobalt-containing compound to show selective potency for CSCs over bulk cancer cells.
Collapse
Affiliation(s)
- Paul B Cressey
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Arvin Eskandari
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Peter M Bruno
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Building 76, 500 Main Street, Cambridge, MA, 02139, USA
| | - Chunxin Lu
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Michael T Hemann
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Building 76, 500 Main Street, Cambridge, MA, 02139, USA
| | | |
Collapse
|
7
|
Karaoun N, Renfrew AK. A luminescent ruthenium(II) complex for light-triggered drug release and live cell imaging. Chem Commun (Camb) 2016; 51:14038-41. [PMID: 26248575 DOI: 10.1039/c5cc05172j] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We report a novel ruthenium(II) complex for selective release of the imidazole-based drug econazole. While the complex is highly stable and luminescent in the dark, irradiation with green light induces release of one of the econazole ligands, which is accompanied by a turn-off luminescence response and up to a 34-fold increase in cytotoxicity towards tumour cells.
Collapse
Affiliation(s)
- Nora Karaoun
- School of Chemistry, University of Sydney, Sydney, Australia.
| | | |
Collapse
|
8
|
Munteanu CR, Suntharalingam K. Advances in cobalt complexes as anticancer agents. Dalton Trans 2016; 44:13796-808. [PMID: 26148776 DOI: 10.1039/c5dt02101d] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The evolution of resistance to traditional platinum-based anticancer drugs has compelled researchers to investigate the cytostatic properties of alternative transition metal-based compounds. The anticancer potential of cobalt complexes has been extensively studied over the last three decades, and much time has been devoted to understanding their mechanisms of action. This perspective catalogues the development of antiproliferative cobalt complexes, and provides an in depth analysis of their mode of action. Early studies on simple cobalt coordination complexes, Schiff base complexes, and cobalt-carbonyl clusters will be documented. The physiologically relevant redox properties of cobalt will be highlighted and the role this plays in the preparation of hypoxia selective prodrugs and imaging agents will be discussed. The use of cobalt-containing cobalamin as a cancer specific delivery agent for cytotoxins will also be described. The work summarised in this perspective shows that the biochemical and biophysical properties of cobalt-containing compounds can be fine-tuned to produce new generations of anticancer agents with clinically relevant efficacies.
Collapse
|
9
|
Trudu F, Amato F, Vaňhara P, Pivetta T, Peña-Méndez E, Havel J. Coordination compounds in cancer: Past, present and perspectives. J Appl Biomed 2015. [DOI: 10.1016/j.jab.2015.03.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
10
|
Renfrew AK. Transition metal complexes with bioactive ligands: mechanisms for selective ligand release and applications for drug delivery. Metallomics 2015; 6:1324-35. [PMID: 24850462 DOI: 10.1039/c4mt00069b] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The unique properties of transition metal complexes, such as environment-responsive ligand exchange kinetics, diverse photochemical and photophysical properties, and the ability to form specific interactions with biomolecules, make them interesting platforms for selective drug delivery. This minireview will focus on recent examples of rationally designed complexes with bioactive ligands, exploring the different roles of the metal, and mechanisms of ligand release. Developments in the techniques used to study the mechanisms of action of metal-drug complexes will also be discussed, including X-ray protein crystallography, fluorescence lifetime imaging, and X-ray absorption spectroscopy.
Collapse
Affiliation(s)
- Anna K Renfrew
- The University of Sydney, Chemistry, School of Chemistry, Building F11, Sydney, New South Wales, Australia.
| |
Collapse
|
11
|
Bustamante FL, Miranda FS, Castro FA, Resende JA, Pereira MD, Lanznaster M. A study on the properties and reactivity of naphthoquinone–cobalt(III) prototypes for bioreductive prodrugs. J Inorg Biochem 2014; 132:37-44. [DOI: 10.1016/j.jinorgbio.2013.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/14/2013] [Accepted: 11/19/2013] [Indexed: 12/17/2022]
|
12
|
Chang JYC, Lu GL, Stevenson RJ, Brothers PJ, Clark GR, Botting KJ, Ferry DM, Tercel M, Wilson WR, Denny WA, Ware DC. Cross-Bridged Cyclen or Cyclam Co(III) Complexes Containing Cytotoxic Ligands as Hypoxia-Activated Prodrugs. Inorg Chem 2013; 52:7688-98. [DOI: 10.1021/ic4006967] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- John Yu-Chih Chang
- School of Chemical Sciences and ‡Auckland Cancer Society Research
Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Guo-Liang Lu
- School of Chemical Sciences and ‡Auckland Cancer Society Research
Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ralph J. Stevenson
- School of Chemical Sciences and ‡Auckland Cancer Society Research
Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Penelope J. Brothers
- School of Chemical Sciences and ‡Auckland Cancer Society Research
Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - George R. Clark
- School of Chemical Sciences and ‡Auckland Cancer Society Research
Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - K. Jane Botting
- School of Chemical Sciences and ‡Auckland Cancer Society Research
Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Dianne M. Ferry
- School of Chemical Sciences and ‡Auckland Cancer Society Research
Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Moana Tercel
- School of Chemical Sciences and ‡Auckland Cancer Society Research
Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - William R. Wilson
- School of Chemical Sciences and ‡Auckland Cancer Society Research
Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - William A. Denny
- School of Chemical Sciences and ‡Auckland Cancer Society Research
Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - David C. Ware
- School of Chemical Sciences and ‡Auckland Cancer Society Research
Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
13
|
Downward AM, Polson MI, Kerr WR, Kariyawasam J, Hartshorn RM. Synthesis of a nitrogen mustard ligand on a cobalt(III) metal centre. Polyhedron 2013. [DOI: 10.1016/j.poly.2012.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Yamamoto N, Renfrew AK, Kim BJ, Bryce NS, Hambley TW. Dual targeting of hypoxic and acidic tumor environments with a cobalt(III) chaperone complex. J Med Chem 2012. [PMID: 23199008 DOI: 10.1021/jm3014713] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rational design of prodrugs for selective accumulation and activation in tumor microenvironments is one of the most promising strategies for minimizing the toxicity of anticancer drugs. Manipulation of the charge of the prodrug represents a potential mechanism to selectively deliver the prodrug to the acidic tumor microenvironment. Here we present delivery of a fluorescent coumarin using a cobalt(III) chaperone to target hypoxic regions, and charged ligands for pH selectivity. Protonation or deprotonation of the complexes over a physiologically relevant pH range resulted in pH dependent accumulation of the fluorophore in colon cancer cells. Furthermore, in a spheroid solid tumor model, the anionic complexes exhibited preferential release of the fluorophore in the acidic/hypoxic region. By fine-tuning the physicochemical properties of the cobalt-chaperone moiety, we have demonstrated selective drug release in the acidic and hypoxic tumor microenvironment.
Collapse
Affiliation(s)
- Natsuho Yamamoto
- School of Chemistry, University of Sydney, 412C F11, Sydney 2006, New South Wales, Australia
| | | | | | | | | |
Collapse
|
15
|
Bonnitcha PD, Kim BJ, Hocking RK, Clegg JK, Turner P, Neville SM, Hambley TW. Cobalt complexes with tripodal ligands: implications for the design of drug chaperones. Dalton Trans 2012; 41:11293-304. [PMID: 22885674 DOI: 10.1039/c2dt30727h] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extensive research is currently being conducted into metal complexes that can selectively deliver cytotoxins to hypoxic regions in tumours. The development of pharmacologically suitable agents requires an understanding of appropriate ligand-metal systems for chaperoning cytotoxins. In this study, cobalt complexes with tripodal tren (tris-(2-aminoethyl)amine) and tpa (tris-(2-pyridylmethyl)amine) ligands were prepared with ancillary hydroxamic acid, β-diketone and catechol ligands and several parameters, including: pK(a), reduction potential and cytotoxicity were investigated. Fluorescence studies demonstrated that only tpa complexes with β-diketones showed any reduction by ascorbate in situ and similarly, cellular cytotoxicity results demonstrated that ligation to cobalt masked the cytotoxicity of the ancillary groups in all complexes except the tpa diketone derivative [Co(naac)tpa](ClO(4))(2) (naac = 1-methyl-3-(2-naphthyl)propane-1,3-dione). Additionally, it was shown that the hydroxamic acid complexes could be isolated in both the hydroxamate and hydroximate form and the pK(a) values (5.3-8.5) reveal that the reversible protonation/deprotonation of the complexes occurs at physiologically relevant pHs. These results have clear implications for the future design of prodrugs using cobalt moieties as chaperones, providing a basis for the design of cobalt complexes that are both more readily reduced and more readily taken up by cells in hypoxic and acidic environments.
Collapse
Affiliation(s)
- Paul D Bonnitcha
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | | | | | | | | | | | | |
Collapse
|
16
|
The effect of a bromide leaving group on the properties of nitro analogs of the duocarmycins as hypoxia-activated prodrugs and phosphate pre-prodrugs for antitumor therapy. Bioorg Med Chem 2011; 19:5989-98. [DOI: 10.1016/j.bmc.2011.08.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 08/17/2011] [Accepted: 08/20/2011] [Indexed: 11/20/2022]
|