1
|
Latambale G, Juvale K. Thiazolidinedione derivatives: emerging role in cancer therapy. Mol Divers 2025:10.1007/s11030-024-11093-3. [PMID: 39899123 DOI: 10.1007/s11030-024-11093-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/19/2024] [Indexed: 02/04/2025]
Abstract
Cancer remains the leading cause of death worldwide, with the Globocan 2022 study reporting an estimated 9.7 million cancer deaths. Without the selectivity built for tumour cells, chemotherapeutic agents could be toxic to non-cancerous cells. Administration of such non-selective cytotoxic compounds causes severe side effects and could lead to death. Improved cancer treatments are required to overcome the limitations of the current cancer treatment. The potential of thiazolidinedione derivatives as anticancer drugs has recently drawn attention, despite their primary use as insulin sensitizers in the treatment of type 2 diabetes. The ability of thiazolidinedione derivatives to alter important molecular pathways implicated in carcinogenesis, such as cell proliferation, apoptosis, angiogenesis, Raf kinase, EGFR and HER-2 kinases, HDAC, COX-2 enzyme and metastasis, is highlighted in this review, which examines the growing relevance of these compounds in cancer treatment. Thiazolidinediones have anti-inflammatory, antioxidant, and antiproliferative properties in a variety of cancer types, including breast, colon, and prostate cancers, via activating the peroxisome proliferator-activated gamma receptor (PPARγ). In addition to examining the safety profile and difficulties in clinical translation, the paper looks at preclinical and clinical research that points to these medicines potential to improve the effectiveness of immunotherapy and chemotherapy. This review highlights the encouraging therapeutic possibilities and structure-activity relationship insight of TZDs for their anticancer activity and highlights the molecular level facets of the 'glitazone' pharmacophore for its anticancer activity.
Collapse
Affiliation(s)
- Ganesh Latambale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Kapil Juvale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
2
|
Karamanolis NN, Kounatidis D, Vallianou NG, Dimitriou K, Tsaroucha E, Tsioulos G, Anastasiou IA, Mavrothalassitis E, Karampela I, Dalamaga M. Unraveling the Anti-Cancer Mechanisms of Antibiotics: Current Insights, Controversies, and Future Perspectives. Antibiotics (Basel) 2024; 14:9. [PMID: 39858295 PMCID: PMC11762948 DOI: 10.3390/antibiotics14010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Cancer persists as a significant global health challenge, claiming millions of lives annually despite remarkable strides in therapeutic innovation. Challenges such as drug resistance, toxicity, and suboptimal efficacy underscore the need for novel treatment paradigms. In this context, the repurposing of antibiotics as anti-cancer agents has emerged as an attractive prospect for investigation. Diverse classes of antibiotics have exhibited promising anti-cancer properties in both in vitro and in vivo studies. These mechanisms include the induction of apoptosis and cell cycle arrest, generation of reactive oxygen species, and inhibition of key regulators of cell proliferation and migration. Additional effects involve the disruption of angiogenesis and modulation of pivotal processes such as inflammation, immune response, mitochondrial dynamics, ferroptosis, and autophagy. Furthermore, antibiotics have demonstrated the potential to enhance the efficacy of conventional modalities like chemotherapy and radiotherapy, while alleviating treatment-induced toxicities. Nevertheless, the integration of antibiotics into oncological applications remains contentious, with concerns centered on their disruption of gut microbiota, interference with immunotherapeutic strategies, contribution to microbial resistance, and potential association with tumorigenesis. This narrative review explores the mechanisms of antibiotics' anti-cancer activity, addresses controversies about their dual role in cancer biology, and envisions future perspectives that include the development of novel derivatives and innovative frameworks for their incorporation into cancer treatment paradigms.
Collapse
Affiliation(s)
- Nikolaos Nektarios Karamanolis
- Second Department of Internal Medicine, Hippokratio General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.N.K.); (K.D.)
| | - Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (I.A.A.)
| | - Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (E.T.); (E.M.)
| | - Krystalia Dimitriou
- Second Department of Internal Medicine, Hippokratio General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.N.K.); (K.D.)
| | - Eleni Tsaroucha
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (E.T.); (E.M.)
| | - Georgios Tsioulos
- Fourth Department of Internal Medicine, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Ioanna A. Anastasiou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (I.A.A.)
| | - Evangelos Mavrothalassitis
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (E.T.); (E.M.)
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12461 Athens, Greece;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
3
|
Salem ME, Mahrous EM, Ragab EA, Nafie MS, Dawood KM. Synthesis of novel mono- and bis-pyrazolylthiazole derivatives as anti-liver cancer agents through EGFR/HER2 target inhibition. BMC Chem 2023; 17:51. [PMID: 37291635 DOI: 10.1186/s13065-023-00921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/23/2023] [Indexed: 06/10/2023] Open
Abstract
3-Bromoacetyl-4-(2-naphthoyl)-1-phenyl-1H-pyrazole (6) was synthesized from 2-acetylnaphthalene and was used as a new key building block for constructing the title targets. Thus, the reaction of 6 with the thiosemicarbazones 7a-d and 9-11 afforded the corresponding simple naphthoyl-(3-pyrazolyl)thiazole hybrids 8a-d and 12 ~ 14. The symmetric bis-(2-naphthoyl-pyrazol-3-yl)thiazol-2-yl)hydrazono)methyl)phenoxy)alkanes 18a-c and 21a-c were similarly synthesized from reaction of 6 with the appropriate bis-thiosemicarbazones 17a-c and 19a-c, respectively. The synthesized two series of simple and symmetrical bis-molecular hybrid merging naphthalene, thiazole, and pyrazole were evaluated for their cytotoxicity. Compounds 18b,c and 21a showed the most potent cytotoxicity (IC50 = 0.97-3.57 µM) compared to Lapatinib (IC50 = 7.45 µM). Additionally, they were safe (non-cytotoxic) against the THLE2 cells with higher IC50 values. Compounds 18c exhibited promising EGFR and HER-2 inhibitory activities with IC50 = 4.98 and 9.85 nM, respectively, compared to Lapatinib (IC50 = 6.1 and 17.2 nM). Apoptosis investigation revealed that 18c significantly activated apoptotic cell death in HepG2 cells, increasing the death rate by 63.6-fold and arresting cell proliferation at the S-phase. Compound 18c upregulated P53 by 8.6-fold, Bax by 8.9-fold, caspase-3,8,9 by 9, 2.3, and 7.6-fold, while it inhibited the Bcl-2 expression by 0.34-fold. Thereby, compound 18c exhibited promising cytotoxicity against EGFR/HER2 inhibition against liver cancer.
Collapse
Affiliation(s)
- Mostafa E Salem
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Esraa M Mahrous
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Eman A Ragab
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mohamed S Nafie
- Department of Chemistry (Biochemistry program), Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
4
|
Taghiyar H, Yadollahi B, Kajani AA. Controlled drug delivery and cell adhesion for bone tissue regeneration by Keplerate polyoxometalate (Mo 132)/metronidazole/PMMA scaffolds. Sci Rep 2022; 12:14443. [PMID: 36002474 PMCID: PMC9402948 DOI: 10.1038/s41598-022-18622-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this study is to fabricate a new scaffold appropriate for tissue regeneration with antimicrobial activity and ability of controlled drug delivery. In this regard, scaffold nanofibers were produced using poly (methyl methacrylate) (PMMA), Mo132 as a Keplerate polyoxometalate and metronidazole. The final scaffolds, obtained by electrospinning, represent the intrinsic features including exceptional doubling tensile strength, high hydrophilicity (126 ± 5.2° to 83.9 ± 3.2° for contact angle and 14.18 ± 0.62% to 35.62 ± 0.24% for water uptake), proper bioactivity and cell adhesion. Moreover, the addition of Mo132 and metronidazole enhances the biodegradation rate of resulted scaffolds compared to the pure PMMA membrane. The controlled release of metronidazole over 14 days efficiently inhibits the colonization of anaerobic microorganisms. Overall, the results demonstrate high potential of Mo132 and metronidazole-loaded PMMA scaffold for guided bone regeneration/guided tissue regeneration.
Collapse
Affiliation(s)
- Hamid Taghiyar
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Bahram Yadollahi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran.
| | - Abolghasem Abbasi Kajani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| |
Collapse
|
5
|
Yang JF, Chen WJ, Zhou LM, Hewage KAH, Fu YX, Chen MX, He B, Pei RJ, Song K, Zhang JH, Yin J, Hao GF, Yang GF. Real-Time Fluorescence Imaging of the Abscisic Acid Receptor Allows Nondestructive Visualization of Plant Stress. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28489-28500. [PMID: 35642545 DOI: 10.1021/acsami.2c02156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Environmental stress greatly decreases crop yield. The application of noninvasive techniques is one of the most practical and feasible ways of monitoring the health condition of plants under stress. However, it remains largely unsolved. A chemical fluorescent probe can be applied as a typical nondestructive method, but it has not been applied in living plants for stress detection to date. The abscisic acid (ABA) receptor plays a central role in conferring tolerance to environmental stresses and is an excellent target for developing fluorescent probes. Herein, we developed a fluorescence molecular imaging technology to monitor live plant stress by visualizing the protein expression level of the ABA receptor PYR1. A computer-aided designed indicator dye, flubactin, exhibited an 8-fold enhancement in fluorescence intensity upon interaction with PYR1. In vitro and in vivo experiments showed that flubactin is suitable to be used to detect salt stress in plants in real time. Moreover, the low toxicity of flubactin promotes its application in the future. Our work opens a new era for the nondestructive visualization of plant stress in vivo.
Collapse
Affiliation(s)
- Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Wei-Jie Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Li-Ming Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Kamalani Achala H Hewage
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Yi-Xuan Fu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China & Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Bo He
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Rong-Jie Pei
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Ke Song
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Jian-Hua Zhang
- Department of Biology, Hong Kong Baptist University and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong 300072, China
| | - Jun Yin
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
6
|
Huang Z, Li Z, He B, Li W, Yang P, Chen L. Efficient Ultrasound-Assisted Approach to N-Benzensulfonyl Phenylacetamide via CuSO 4/NaAsc Catalysis in Water and Its Inhibition Activity of Seed Germination. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202201010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Chen N, Yang L, Ding N, Li G, Cai J, An X, Wang Z, Qin J, Niu Y. Recurrent neural network (RNN) model accelerates the development of antibacterial metronidazole derivatives. RSC Adv 2022; 12:22893-22901. [PMID: 36105994 PMCID: PMC9377161 DOI: 10.1039/d2ra01807a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
Metronidazole is a specific drug against trichomonas and anaerobic bacteria, and is widely used in the clinic. However, extensive clinical application is often accompanied by extensive side effects, so it is still of great significance to develop metronidazole derivatives with a new skeleton. Compared with other traditional receptor-based drug design methods, the computational model based on a neural network has higher accuracy and reliability. In this work, a Recurrent Neural Network (RNN) model is applied to the discovery of metronidazole drugs with a new skeleton. Firstly, the generation model based on a Gated Recurrent Unit (GRU) is trained to generate an effective Simplified Molecular-Input Line-Entry System (SMILES) string library with high precision. Then, transfer learning is introduced to fine-tune the GRU model, and many molecules with structures similar to known active drugs are generated. After cluster analysis of the structures of the new compounds, 20 small molecular compounds with metronidazole structures of all different categories were selected, of which 19 may not belong to any published patents or applications. Through prediction and personal experience, the difficulty of synthesizing these 20 new structures was analyzed, and compound 0001 was chosen as our synthetic target, and a series of structures (8a–l) similar to compound 0001 were synthesized. Finally, the inhibitory activities of these compounds against bacteria E. coli, P. aeruginosa, B. subtilis and S. aureus were determined. The results showed that compound 8a–l had obvious inhibitory activity against these four bacteria, which proved the accuracy of our compound generation model. Generating antibacterial metronidazole derivatives using a recurrent neural network model.![]()
Collapse
Affiliation(s)
- Nannan Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049 Shandong, China
| | - Lijuan Yang
- Institute of Modern Physics, Chinese Academy of Science, Lanzhou, 730000 Gansu, China
- School of Physics and Technology, Lanzhou University, Lanzhou 730000, China
| | - Na Ding
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049 Shandong, China
| | - Guiwen Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049 Shandong, China
| | - Jiajing Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049 Shandong, China
| | - Xiaoli An
- Institute of Modern Physics, Chinese Academy of Science, Lanzhou, 730000 Gansu, China
| | - Zhijie Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049 Shandong, China
| | - Jie Qin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049 Shandong, China
| | - Yuzhen Niu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049 Shandong, China
| |
Collapse
|
8
|
Zimmerling J, Oelschlägel M, Großmann C, Voitel M, Schlömann M, Tischler D. Biochemical Characterization of Phenylacetaldehyde Dehydrogenases from Styrene-degrading Soil Bacteria. Appl Biochem Biotechnol 2021; 193:650-667. [PMID: 33106986 PMCID: PMC7910268 DOI: 10.1007/s12010-020-03421-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/11/2020] [Indexed: 10/24/2022]
Abstract
Four phenylacetaldehyde dehydrogenases (designated as FeaB or StyD) originating from styrene-degrading soil bacteria were biochemically investigated. In this study, we focused on the Michaelis-Menten kinetics towards the presumed native substrate phenylacetaldehyde and the obviously preferred co-substrate NAD+. Furthermore, the substrate specificity on four substituted phenylacetaldehydes and the co-substrate preference were studied. Moreover, these enzymes were characterized with respect to their temperature as well as long-term stability. Since aldehyde dehydrogenases are known to show often dehydrogenase as well as esterase activity, we tested this capacity, too. Almost all results showed clearly different characteristics between the FeaB and StyD enzymes. Furthermore, FeaB from Sphingopyxis fribergensis Kp5.2 turned out to be the most active enzyme with an apparent specific activity of 17.8 ± 2.1 U mg-1. Compared with that, both StyDs showed only activities less than 0.2 U mg-1 except the overwhelming esterase activity of StyD-CWB2 (1.4 ± 0.1 U mg-1). The clustering of both FeaB and StyD enzymes with respect to their characteristics could also be mirrored in the phylogenetic analysis of twelve dehydrogenases originating from different soil bacteria.
Collapse
Affiliation(s)
- Juliane Zimmerling
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany.
| | - Michel Oelschlägel
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Carolin Großmann
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Matthias Voitel
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Michael Schlömann
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Dirk Tischler
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany.
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
| |
Collapse
|
9
|
Metronidazole-conjugates: A comprehensive review of recent developments towards synthesis and medicinal perspective. Eur J Med Chem 2020; 210:112994. [PMID: 33234343 DOI: 10.1016/j.ejmech.2020.112994] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Nitroimidazoles based compounds remain a hot topic of research in medicinal chemistry due to their numerous biological activities. Moreover, many clinical candidates based on this chemical core have been reported to be valuable in the treatment of human diseases. Metronidazole (MTZ) derived conjugates demonstrated a potential application in medicinal chemistry research over the last decade. In this review, we summarize the synthesis, key structure-activity-relationship (SAR) and associated biological activities such as antimicrobial, anticancer, antidiabetic, anti-inflammatory, anti-HIV and anti-parasitic (Anti-trichomonas, antileishmanial, antiamoebic and anti-giardial) of explored MTZ-conjugates. The molecular docking analysis is also presented simultaneously, which will assist in developing an understanding towards designing of new MTZ-conjugates for target-based drug discovery against multiple disease areas.
Collapse
|
10
|
Patel H, Ansari A, Pawara R, Ansari I, Jadhav H, Surana S. Design and synthesis of novel 2,4-disubstituted aminopyrimidines: reversible non-covalent T790M EGFR inhibitors. J Recept Signal Transduct Res 2019; 38:393-412. [DOI: 10.1080/10799893.2018.1557207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Harun Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Azim Ansari
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Rahul Pawara
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Iqrar Ansari
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Harsha Jadhav
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Sanjay Surana
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| |
Collapse
|
11
|
Ji Y, Chen X, Chen H, Zhang X, Fan Z, Xie L, Ma B, Zhu C. Designing of acyl sulphonamide based quinoxalinones as multifunctional aldose reductase inhibitors. Bioorg Med Chem 2019; 27:1658-1669. [PMID: 30858026 DOI: 10.1016/j.bmc.2019.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 02/07/2023]
Abstract
A series of quinoxalinone scaffold-based acyl sulfonamides were designed as aldose reductase inhibitors and evaluated for aldose reductase (ALR2)/aldehyde reductase (ALR1) inhibition and antioxidation. Compounds 9b-g containing styryl side chains at C3-side exhibited good ALR2 inhibitory activity and selectivity. Of them, 9g demonstrated the most potent inhibitory activity with an IC50 value of 0.100 μM, and also exhibited excellent antioxidant activity, even comparable to the typical antioxidant Trolox. Compounds 9 had higher lipid-water partition coefficients relative to the carboxylic acid compounds 8, indicating that they may have better lipophilicity and membrane permeability. Structure-activity relationship (SAR) studies found that acyl trifluoromethanesulfonamide group at N1 and the C3-dihydroxystyryl side chain were the key structure for improving the aldose reductase inhibitory activity and antioxidant activity.
Collapse
Affiliation(s)
- Yunpeng Ji
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081 Beijing, China
| | - Xin Chen
- ME Genomics Inc., Software Industry Base, Shenzhen 518061, China
| | - Huan Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081 Beijing, China
| | - Xin Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081 Beijing, China
| | - Zhenya Fan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081 Beijing, China
| | - Lina Xie
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081 Beijing, China
| | - Bing Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081 Beijing, China.
| | - Changjin Zhu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081 Beijing, China.
| |
Collapse
|
12
|
Faghih-Mirzaei E, Sabouri S, Zeidabadinejad L, AbdolahRamazani S, Abaszadeh M, Khodadadi A, Shamsadinipour M, Jafari M, Pirhadi S. Metronidazole aryloxy, carboxy and azole derivatives: Synthesis, anti-tumor activity, QSAR, molecular docking and dynamics studies. Bioorg Med Chem 2019; 27:305-314. [DOI: 10.1016/j.bmc.2018.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 01/11/2023]
|
13
|
Design, synthesis and anticancer evaluation of novel spirobenzo[h]chromene and spirochromane derivatives with dual EGFR and B-RAF inhibitory activities. Eur J Med Chem 2018; 150:567-578. [DOI: 10.1016/j.ejmech.2018.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 01/16/2023]
|
14
|
Abdelazeem AH, El-Saadi MT, Said EG, Youssif BGM, Omar HA, El-Moghazy SM. Novel diphenylthiazole derivatives with multi-target mechanism: Synthesis, docking study, anticancer and anti-inflammatory activities. Bioorg Chem 2017; 75:127-138. [PMID: 28938224 DOI: 10.1016/j.bioorg.2017.09.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 12/22/2022]
Abstract
Over the last few decades, a growing body of studies addressed the anticancer activity of NSAIDs, particularly selective COX-2 inhibitors. However, their exact molecular mechanism is still unclear and is not fully investigated. In this regard, a novel series of compounds bearing a COXs privilege scaffold, diphenyl thiazole, was synthesized and evaluated for their anticancer activity against a panel of cancer cell lines. The most active compounds 10b, 14a,b, 16a, 17a,b and 18b were evaluated in vitro for COX-1/COX-2 inhibitory activity. These compounds were suggested to exert their anticancer activity through a multi-target mechanism based on their structural features. Thus, compounds 10b and 17b with the least IC50 values in MTT assay were tested against three known anticancer targets; EGFR, BRAF and tubulin. Compounds 10b and 17b showed remarkable activity against EGFR with IC50 values of 0.4 and 0.2μM, respectively and good activity against BRAF with IC50 values of 1.3 and 1.7μM, respectively. In contrast, they showed weak activity in tubulin polymerization assay. The in vivo anti-inflammatory potential was assessed and interestingly, compound 17b was the most potent compound. Together, this study offers some important insights into the correlation between COXs inhibition and cancer treatment. Additionally, the results demonstrated the promising activity of these compounds with a multi-target mechanism as good candidates for further development into potential anticancer agents.
Collapse
Affiliation(s)
- Ahmed H Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Mohammed T El-Saadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Eman G Said
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Bahaa G M Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; Department of Pharmaceutical Chemistry, College of Pharmacy, Aljouf University, Aljouf, Sakaka 2014, Saudi Arabia
| | - Hany A Omar
- Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Samir M El-Moghazy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
15
|
Design, synthesis and cytotoxic evaluation of a novel series of benzo[d]thiazole-2-carboxamide derivatives as potential EGFR inhibitors. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1925-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Qu D, Yan A, Zhang JS. SAR and QSAR study on the bioactivities of human epidermal growth factor receptor-2 (HER2) inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017; 28:111-132. [PMID: 28235391 DOI: 10.1080/1062936x.2017.1284898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/16/2017] [Indexed: 06/06/2023]
Abstract
In this paper, structure-activity relationship (SAR, classification) and quantitative structure-activity relationship (QSAR) models have been established to predict the bioactivity of human epidermal growth factor receptor-2 (HER2) inhibitors. For the SAR study, we established six SAR (or classification) models to distinguish highly and weakly active HER2 inhibitors. The dataset contained 868 HER2 inhibitors, which was split into a training set including 580 inhibitors and a test set including 288 inhibitors by a Kohonen's self-organizing map (SOM), or a random method. The SAR models were performed using support vector machine (SVM), random forest (RF) and multilayer perceptron (MLP) methods. Among the six models, SVM models obtained superior results compared with other models. The prediction accuracy of the best model (model 1A) was 90.27% and the Matthews correlation coefficient (MCC) was 0.80 on the test set. For the QSAR study, we chose 286 HER2 inhibitors to establish six quantitative prediction models using MLR, SVM and MLP methods. The correlation coefficient (r) of the best model (model 4B) was 0.92 on the test set. The descriptors analysis showed that HAccN, lone pair electronegativity and π electronegativity were closely related to the bioactivity of HER2 inhibitors.
Collapse
Affiliation(s)
- D Qu
- a State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing , P.R. China
| | - A Yan
- a State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing , P.R. China
| | - J S Zhang
- b The High School Affiliated to Renmin University of China , Beijing , P.R. China
| |
Collapse
|
17
|
Zimmerling J, Tischler D, Großmann C, Schlömann M, Oelschlägel M. Characterization of Aldehyde Dehydrogenases Applying an Enzyme Assay with In Situ Formation of Phenylacetaldehydes. Appl Biochem Biotechnol 2017; 182:1095-1107. [PMID: 28062952 DOI: 10.1007/s12010-016-2384-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/27/2016] [Indexed: 11/29/2022]
Abstract
Herein, different dehydrogenases (DH) were characterized by applying a novel two-step enzyme assay. We focused on the NAD(P)+-dependent phenylacetaldehyde dehydrogenases because they produce industrially relevant phenylacetic acids, but they are not well studied due to limited substrate availability. The first assay step comprises a styrene oxide isomerase (440 U mg-1protein) which allows the production of pure phenylacetaldehydes (>70 mmol L-1) from commercially available styrene oxides. Thereafter, a DH of interest can be added to convert phenylacetaldehydes in a broad concentration range (0.05 to 1.25 mmol L-1). DH activity can be determined spectrophotometrically by following cofactor reduction or alternatively by RP-HPLC. This assay allowed the comparison of four aldehyde dehydrogenases and even of an alcohol dehydrogenase with respect to the production of phenylacetic acids (up to 8.4 U mg-1protein). FeaB derived from Escherichia coli K-12 was characterized in more detail, and for the first time, substituted phenylacetaldehydes had been converted. With this enzyme assay, characterization of dehydrogenases is possible although the substrates are not commercially available in sufficient quality but enzymatically producible. The advantages of this assay in comparison to the former one are discussed.
Collapse
Affiliation(s)
- Juliane Zimmerling
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany.
| | - Dirk Tischler
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany.
| | - Carolin Großmann
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Michael Schlömann
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Michel Oelschlägel
- Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| |
Collapse
|
18
|
Gogoi D, Baruah VJ, Chaliha AK, Kakoti BB, Sarma D, Buragohain AK. 3D pharmacophore-based virtual screening, docking and density functional theory approach towards the discovery of novel human epidermal growth factor receptor-2 (HER2) inhibitors. J Theor Biol 2016; 411:68-80. [PMID: 27693363 DOI: 10.1016/j.jtbi.2016.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/06/2016] [Accepted: 09/20/2016] [Indexed: 11/24/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2) is one of the four members of the epidermal growth factor receptor (EGFR) family and is expressed to facilitate cellular proliferation across various tissue types. Therapies targeting HER2, which is a transmembrane glycoprotein with tyrosine kinase activity, offer promising prospects especially in breast and gastric/gastroesophageal cancer patients. Persistence of both primary and acquired resistance to various routine drugs/antibodies is a disappointing outcome in the treatment of many HER2 positive cancer patients and is a challenge that requires formulation of new and improved strategies to overcome the same. Identification of novel HER2 inhibitors with improved therapeutics index was performed with a highly correlating (r=0.975) ligand-based pharmacophore model (Hypo1) in this study. Hypo1 was generated from a training set of 22 compounds with HER2 inhibitory activity and this well-validated hypothesis was subsequently used as a 3D query to screen compounds in a total of four databases of which two were natural product databases. Further, these compounds were analyzed for compliance with Veber's drug-likeness rule and optimum ADMET parameters. The selected compounds were then subjected to molecular docking and Density Functional Theory (DFT) analysis to discern their molecular interactions at the active site of HER2. The findings thus presented would be an important starting point towards the development of novel HER2 inhibitors using well-validated computational techniques.
Collapse
Affiliation(s)
- Dhrubajyoti Gogoi
- DBT-Bioinformatics Infrastructure Facility, Centre for Biotechnology and Bioinformatics, School of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Vishwa Jyoti Baruah
- DBT-Bioinformatics Infrastructure Facility, Centre for Biotechnology and Bioinformatics, School of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Amrita Kashyap Chaliha
- DBT-Bioinformatics Infrastructure Facility, Centre for Biotechnology and Bioinformatics, School of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Bibhuti Bhushan Kakoti
- DBT-Bioinformatics Infrastructure Facility, Centre for Biotechnology and Bioinformatics, School of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Diganta Sarma
- Department of Chemistry, School of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Alak Kumar Buragohain
- DBT-Bioinformatics Infrastructure Facility, Centre for Biotechnology and Bioinformatics, School of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India.
| |
Collapse
|
19
|
Aceves-Luquero C, Galiana-Roselló C, Ramis G, Villalonga-Planells R, García-España E, Fernández de Mattos S, Peláez R, Llinares JM, González-Rosende ME, Villalonga P. N-(2-methyl-indol-1H-5-yl)-1-naphthalenesulfonamide: A novel reversible antimitotic agent inhibiting cancer cell motility. Biochem Pharmacol 2016; 115:28-42. [PMID: 27349984 DOI: 10.1016/j.bcp.2016.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/23/2016] [Indexed: 10/21/2022]
Abstract
A series of compounds containing the sulfonamide scaffold were synthesized and screened for their in vitro anticancer activity against a representative panel of human cancer cell lines, leading to the identification of N-(2-methyl-1H-indol-5-yl)-1-naphthalenesulfonamide (8e) as a compound showing a remarkable activity across the panel, with IC50 values in the nanomolar-to-low micromolar range. Cell cycle distribution analysis revealed that 8e promoted a severe G2/M arrest, which was followed by cellular senescence as indicated by the detection of senescence-associated β-galactosidase (SA-β-gal) in 8e-treated cells. Prolonged 8e treatment also led to the onset of apoptosis, in correlation with the detection of increased Caspase 3/7 activities. Despite increasing γ-H2A.X levels, a well-established readout for DNA double-strand breaks, in vitro DNA binding studies with 8e did not support interaction with DNA. In agreement with this, 8e failed to activate the cellular DNA damage checkpoint. Importantly, tubulin staining showed that 8e promoted a severe disorganization of microtubules and mitotic spindle formation was not detected in 8e-treated cells. Accordingly, 8e inhibited tubulin polymerization in vitro in a dose-dependent manner and was also able to robustly inhibit cancer cell motility. Docking analysis revealed a compatible interaction with the colchicine-binding site of tubulin. Remarkably, these cellular effects were reversible since disruption of treatment resulted in the reorganization of microtubules, cell cycle re-entry and loss of senescent markers. Collectively, our data suggest that this compound may be a promising new anticancer agent capable of both reducing cancer cell growth and motility.
Collapse
Affiliation(s)
- Clara Aceves-Luquero
- Cancer Cell Biology Laboratory, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les llles Balears, Palma, Illes Balears, Spain; Institut d'Investigació Sanitària de Palma (IdISPa), Palma, Illes Balears, Spain
| | - Cristina Galiana-Roselló
- Departamento de Farmacia, Universidad CEU-Cardenal Herrera, Moncada, Valencia, Spain; Departamento de Química Orgánica, ICMoL, Universitat de València, Paterna, Spain
| | - Guillem Ramis
- Cancer Cell Biology Laboratory, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les llles Balears, Palma, Illes Balears, Spain; Institut d'Investigació Sanitària de Palma (IdISPa), Palma, Illes Balears, Spain
| | | | | | - Silvia Fernández de Mattos
- Cancer Cell Biology Laboratory, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les llles Balears, Palma, Illes Balears, Spain; Departament de Biologia Fonamental i Ciències de la Salut, Universitat de les llles Balears, Palma, Illes Balears, Spain; Institut d'Investigació Sanitària de Palma (IdISPa), Palma, Illes Balears, Spain
| | - Rafael Peláez
- Departamento de Química Farmacéutica, Universidad de Salamanca, Salamanca, Spain
| | - José M Llinares
- Departamento de Química Orgánica, ICMoL, Universitat de València, Paterna, Spain
| | | | - Priam Villalonga
- Cancer Cell Biology Laboratory, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les llles Balears, Palma, Illes Balears, Spain; Departament de Biologia Fonamental i Ciències de la Salut, Universitat de les llles Balears, Palma, Illes Balears, Spain; Institut d'Investigació Sanitària de Palma (IdISPa), Palma, Illes Balears, Spain.
| |
Collapse
|
20
|
Insights into the value of statistical models and relativistic effects for the investigation of halogenated derivatives of fluorescent probes. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1862-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Shen S, Chai Y, Liu Y, Li C, Pan Y. Benzyl anion transfer in the fragmentation of N-(phenylsulfonyl)-benzeneacetamides: a gas-phase intramolecular S(N)Ar reaction. Org Biomol Chem 2015; 13:10205-11. [PMID: 26309220 DOI: 10.1039/c5ob01582k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, we report a gas-phase benzyl anion transfer via intramolecular aromatic nucleophilic substitution (SNAr) during the course of tandem mass spectrometry of deprotonated N-(phenylsulfonyl)-benzeneacetamide. Upon collisional activation, the formation of the initial ion/neutral complex ([C6H5CH2(-)/C6H5SO2NCO]), which was generated by heterolytic cleavage of the CH2-CO bond, is proposed as the key step. Subsequently, the anionic counterpart, benzyl anion, is transferred to conduct the intra-complex SNAr reaction. After losing neutral HNCO, the intermediate gives rise to product ion B at m/z 231, whose structure is confirmed by comparing the multistage spectra with those of deprotonated 2-benzylbenzenesulfinic acid and (benzylsulfonyl)benzene. In addition, intra-complex proton transfer is also observed within the complex [C6H5CH2(-)/C6H5SO2NCO] to generate product ion C at m/z 182. The INC-mediated mechanism was corroborated by theoretical calculations, isotope experiments, breakdown curve, substituent experiments, etc. This work may provide further understanding of the physicochemical properties of the gaseous benzyl anion.
Collapse
Affiliation(s)
- Shanshan Shen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | | | | | | | | |
Collapse
|
22
|
Silva CRE, Borges FFV, Bernardes A, Perez CN, Silva DDME, Chen-Chen L. Genotoxic, Cytotoxic, Antigenotoxic, and Anticytotoxic Effects of Sulfonamide Chalcone Using the Ames Test and the Mouse Bone Marrow Micronucleus Test. PLoS One 2015; 10:e0137063. [PMID: 26335560 PMCID: PMC4559391 DOI: 10.1371/journal.pone.0137063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 08/12/2015] [Indexed: 12/02/2022] Open
Abstract
Chalcones present several biological activities and sulfonamide chalcone derivatives have shown important biological applications, including antitumor activity. In this study, genotoxic, cytotoxic, antigenotoxic, and anticytotoxic activities of the sulfonamide chalcone N-{4-[3-(4-nitrophenyl)prop-2-enoyl]phenyl} benzenesulfonamide (CPN) were assessed using the Salmonella typhimurium reverse mutation test (Ames test) and the mouse bone marrow micronucleus test. The results showed that CPN caused a small increase in the number of histidine revertant colonies in S. typhimurium strains TA98 and TA100, but not statistically significant (p > 0.05). The antimutagenicity test showed that CPN significantly decreased the number of His+ revertants in strain TA98 at all doses tested (p < 0.05), whereas in strain TA100 this occurred only at doses higher than 50 μg/plate (p < 0.05). The results of the micronucleus test indicated that CPN significantly increased the frequency of micronucleated polychromatic erythrocytes (MNPCE) at 24 h and 48 h, revealing a genotoxic effect of this compound. Also, a significant decrease in polychromatic/normochromatic erythrocyte ratio (PCE/NCE) was observed at the higher doses of CPN at 24 h and 48 h (p < 0.05), indicating its cytotoxic action. CPN co-administered with mitomycin C (MMC) significantly decreased the frequency of MNPCE at almost all doses tested at 24 h (p < 0.05), showing its antigenotoxic activity, and also presented a small decrease in MNPCE at 48 h (p > 0.05). Additionally, CPN co-administered with MMC significantly increased PCE/NCE ratio at all doses tested, demonstrating its anticytotoxic effect. In summary, CPN presented genotoxic, cytotoxic, antigenotoxic, and anticytotoxic properties.
Collapse
Affiliation(s)
- Carolina Ribeiro e Silva
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- * E-mail:
| | | | - Aline Bernardes
- Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Caridad Noda Perez
- Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - Lee Chen-Chen
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
23
|
Ren YJ, Wang ZC, Zhang X, Qiu HY, Wang PF, Gong HB, Jiang AQ, Zhu HL. EGFR/HER-2 inhibitors: synthesis, biological evaluation and 3D-QSAR analysis of dihydropyridine-containing thiazolinone derivatives. RSC Adv 2015. [DOI: 10.1039/c4ra10606g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of dihydropyridin containing thiazolinone derivatives (4a–4r) have been designed, synthesized and their biological activities were also evaluated as potential EGFR and HER-2 kinase inhibitors and tumor cell antiproliferation.
Collapse
Affiliation(s)
- Yu-Jia Ren
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093
- People’s Republic of China
| | - Zhong-Chang Wang
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093
- People’s Republic of China
| | - Xin Zhang
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093
- People’s Republic of China
| | - Han-Yue Qiu
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093
- People’s Republic of China
| | - Peng-Fei Wang
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093
- People’s Republic of China
| | | | - Ai-Qin Jiang
- Medical School of Nanjing University
- Nanjing 210093
- People’s Republic of China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093
- People’s Republic of China
| |
Collapse
|
24
|
Duan YT, Wang ZC, Sang YL, Tao XX, Teraiya SB, Wang PF, Wen Q, Zhou XJ, Ding L, Yang YH, Zhu HL. Design and synthesis of 2-styryl of 5-Nitroimidazole derivatives and antimicrobial activities as FabH inhibitors. Eur J Med Chem 2014; 76:387-96. [DOI: 10.1016/j.ejmech.2014.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 01/07/2014] [Accepted: 02/05/2014] [Indexed: 11/15/2022]
|
25
|
Makawana JA, Sangani CB, Lin L, Zhu HL. Schiff's base derivatives bearing nitroimidazole and quinoline nuclei: new class of anticancer agents and potential EGFR tyrosine kinase inhibitors. Bioorg Med Chem Lett 2014; 24:1734-6. [PMID: 24630412 DOI: 10.1016/j.bmcl.2014.02.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/06/2014] [Accepted: 02/14/2014] [Indexed: 11/28/2022]
Abstract
New Schiff's base derivatives 5a-j have been synthesized by reaction between 2-phenoxyquinoline-3-carbaldehydes 3a-j and 2-(2-methyl-5-nitro-1H-imidazol-1-yl)acetohydrazide 4 in presence of nickel(II) nitrate as a catalyst in ethanol under reflux in good yield (78-92%). All compounds were tested for anticancer and inhibition of EGFR. Of the compounds studied, majority of the compounds showed effective antiproliferation and inhibition of EGFR and HER-2 activities. Compound 5h showed most effective inhibition (IC50=0.12±0.05 μM) by binding in to the active pocket of EGFR receptor with minimum binding energy (ΔGb=-58.3691 kcal/mol). The binding was stabilized by two hydrogen bonds, two π-cation and one π-sigma interactions. Compound 5d showed most effective inhibition (IC50=0.37±0.04 μM).
Collapse
Affiliation(s)
- Jigar A Makawana
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Chetan B Sangani
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Lin Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China.
| |
Collapse
|
26
|
Wang ZC, Duan YT, Qiu HY, Huang WY, Wang PF, Yan XQ, Zhang SF, Zhu HL. Novel metronidazole-sulfonamide derivatives as potent and selective carbonic anhydrase inhibitors: design, synthesis and biology analysis. RSC Adv 2014. [DOI: 10.1039/c4ra03819c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metronidazole–sulfonamide derivatives, a new class of human carbonic anhydrase inhibitors (hCA), were designed, synthesized, isolated, and evaluated for their ability to inhibit the enzymatic activity of the isozymes hCA II and hCA IX.
Collapse
Affiliation(s)
- Zhong-Chang Wang
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, China
| | - Yong-Tao Duan
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, China
| | - Han-Yue Qiu
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, China
| | - Wan-Yun Huang
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, China
- Department of Pharmacology
- Guilin Medical University
| | - Peng-Fei Wang
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, China
| | - Xiao-Qiang Yan
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, China
| | - Shu-Feng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, China
- College of Chemistry
- Tianjin Normal University
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, China
| |
Collapse
|
27
|
Duan YT, Yao YF, Tang DJ, Thumar NJ, Teraiya SB, Makawana JA, Sang YL, Wang ZC, Tao XX, Jiang AQ, Zhu HL. Synthesis and biological evaluation of quinoline–imidazole hybrids as potent telomerase inhibitors: a promising class of antitumor agents. RSC Adv 2014. [DOI: 10.1039/c4ra01936a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
Sang YL, Duan YT, Qiu HY, Wang PF, Makawana JA, Wang ZC, Zhu HL, He ZX. Design, synthesis, biological evaluation and molecular docking of novel metronidazole derivatives as selective and potent JAK3 inhibitors. RSC Adv 2014. [DOI: 10.1039/c4ra01444h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Two series of novel metronidazole derivatives as potential inhibitors targeting JAK have been designed, synthesized and their biological activities were also evaluated.
Collapse
Affiliation(s)
- Ya-Li Sang
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, People's Republic of China
| | - Yong-Tao Duan
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, People's Republic of China
| | - Han-Yue Qiu
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, People's Republic of China
| | - Peng-Fei Wang
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, People's Republic of China
| | - Jigar A. Makawana
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, People's Republic of China
| | - Zhong-Chang Wang
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, People's Republic of China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, People's Republic of China
| | - Zhen-Xiang He
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, People's Republic of China
| |
Collapse
|
29
|
Convenient synthesis, antibacterial activity, and crystal structure of some biologically important hydrazinecarbonyl benzenesulfonamides. RESEARCH ON CHEMICAL INTERMEDIATES 2013. [DOI: 10.1007/s11164-013-1502-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Makawana JA, Sun J, Zhu HL. Schiff’s base derivatives bearing nitroimidazole moiety: New class of antibacterial, anticancer agents and potential EGFR tyrosine kinase inhibitors. Bioorg Med Chem Lett 2013; 23:6264-8. [DOI: 10.1016/j.bmcl.2013.09.086] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/29/2013] [Accepted: 09/26/2013] [Indexed: 10/26/2022]
|
31
|
Zhang L, Peng XM, Damu GLV, Geng RX, Zhou CH. Comprehensive review in current developments of imidazole-based medicinal chemistry. Med Res Rev 2013; 34:340-437. [PMID: 23740514 DOI: 10.1002/med.21290] [Citation(s) in RCA: 487] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Imidazole ring is an important five-membered aromatic heterocycle widely present in natural products and synthetic molecules. The unique structural feature of imidazole ring with desirable electron-rich characteristic is beneficial for imidazole derivatives to readily bind with a variety of enzymes and receptors in biological systems through diverse weak interactions, thereby exhibiting broad bioactivities. The related research and developments of imidazole-based medicinal chemistry have become a rapidly developing and increasingly active topic. Particularly, numerous imidazole-based compounds as clinical drugs have been extensively used in the clinic to treat various types of diseases with high therapeutic potency, which have shown the enormous development value. This work systematically gives a comprehensive review in current developments of imidazole-based compounds in the whole range of medicinal chemistry as anticancer, antifungal, antibacterial, antitubercular, anti-inflammatory, antineuropathic, antihypertensive, antihistaminic, antiparasitic, antiobesity, antiviral, and other medicinal agents, together with their potential applications in diagnostics and pathology. It is hoped that this review will be helpful for new thoughts in the quest for rational designs of more active and less toxic imidazole-based medicinal drugs, as well as more effective diagnostic agents and pathologic probes.
Collapse
Affiliation(s)
- Ling Zhang
- Laboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | | | | | | | | |
Collapse
|
32
|
Amin KM, Eissa AA, Abou-Seri SM, Awadallah FM, Hassan GS. Synthesis and biological evaluation of novel coumarin–pyrazoline hybrids endowed with phenylsulfonyl moiety as antitumor agents. Eur J Med Chem 2013; 60:187-98. [DOI: 10.1016/j.ejmech.2012.12.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Revised: 12/03/2012] [Accepted: 12/05/2012] [Indexed: 10/27/2022]
|
33
|
Wang HH, Qiu KM, Cui HE, Yang YS, Yin-Luo, Xing M, Qiu XY, Bai LF, Zhu HL. Synthesis, molecular docking and evaluation of thiazolyl-pyrazoline derivatives containing benzodioxole as potential anticancer agents. Bioorg Med Chem 2013; 21:448-55. [DOI: 10.1016/j.bmc.2012.11.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/11/2012] [Accepted: 11/12/2012] [Indexed: 10/27/2022]
|
34
|
Qiu KM, Wang HH, Wang LM, Luo Y, Yang XH, Wang XM, Zhu HL. Design, synthesis and biological evaluation of pyrazolyl-thiazolinone derivatives as potential EGFR and HER-2 kinase inhibitors. Bioorg Med Chem 2012; 20:2010-8. [DOI: 10.1016/j.bmc.2012.01.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 01/04/2023]
|