1
|
Najem H, Lea ST, Tripathi S, Hurley L, Chen CH, William I, Sooreshjani M, Bowie M, Hartley G, Dussold C, Pacheco S, Dmello C, Lee-Chang C, McCortney K, Steffens A, Walshon J, Ott M, Wei J, Marisetty A, Balyasnikova I, Stupp R, Lukas RV, Hu J, James CD, Horbinski CM, Lesniak MS, Ashley DM, Priebe W, Platanias LC, Curran MA, Heimberger AB. STING agonist 8803 reprograms the immune microenvironment and increases survival in preclinical models of glioblastoma. J Clin Invest 2024; 134:e175033. [PMID: 38941297 PMCID: PMC11178548 DOI: 10.1172/jci175033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 05/01/2024] [Indexed: 06/30/2024] Open
Abstract
STING agonists can reprogram the tumor microenvironment to induce immunological clearance within the central nervous system. Using multiplexed sequential immunofluorescence (SeqIF) and the Ivy Glioblastoma Atlas, STING expression was found in myeloid populations and in the perivascular space. The STING agonist 8803 increased median survival in multiple preclinical models of glioblastoma, including QPP8, an immune checkpoint blockade-resistant model, where 100% of mice were cured. Ex vivo flow cytometry profiling during the therapeutic window demonstrated increases in myeloid tumor trafficking and activation, alongside enhancement of CD8+ T cell and NK effector responses. Treatment with 8803 reprogrammed microglia to express costimulatory CD80/CD86 and iNOS, while decreasing immunosuppressive CD206 and arginase. In humanized mice, where tumor cell STING is epigenetically silenced, 8803 therapeutic activity was maintained, further attesting to myeloid dependency and reprogramming. Although the combination with a STAT3 inhibitor did not further enhance STING agonist activity, the addition of anti-PD-1 antibodies to 8803 treatment enhanced survival in an immune checkpoint blockade-responsive glioma model. In summary, 8803 as a monotherapy demonstrates marked in vivo therapeutic activity, meriting consideration for clinical translation.
Collapse
Affiliation(s)
- Hinda Najem
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Spencer T. Lea
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shashwat Tripathi
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lisa Hurley
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Chao-Hsien Chen
- Department of Neurology, Houston Methodist Neurological Institute, Houston, Texas, USA
| | - Ivana William
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Moloud Sooreshjani
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Michelle Bowie
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Genevieve Hartley
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Corey Dussold
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sebastian Pacheco
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Crismita Dmello
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kathleen McCortney
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alicia Steffens
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jordain Walshon
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Jun Wei
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Irina Balyasnikova
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Roger Stupp
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rimas V. Lukas
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jian Hu
- Department of Cancer Biology and
| | - Charles David James
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Craig M. Horbinski
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Maciej S. Lesniak
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - David M. Ashley
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Waldemar Priebe
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Moleculin, Houston, Texas, USA
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Michael A. Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery and
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
2
|
Liu P, Fan D, Qiao W, He X, Zhang L, Jiang Y, Yang T. SAR Study and Molecular Mechanism Investigation of Novel Naphthoquinone-furan-2-cyanoacryloyl Hybrids with Antitumor Activity. Pharmaceutics 2022; 14:pharmaceutics14102104. [PMID: 36297539 PMCID: PMC9609996 DOI: 10.3390/pharmaceutics14102104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
A series of novel naphthoquinone-furan-2-cyanoacryloyl hybrids were designed; they were synthesized and preliminarily evaluated for their anti-proliferative activities in vitro against several cancer cell lines and normal cells. The most potent compound, 5c, inhibited the proliferation of HeLa cells (IC50 value of 3.10 ± 0.02 μM) and colony survival, and it induced apoptosis while having relatively weaker effects on normal cells. Compound 5c also triggered ROS generation and accumulation, thus partially contributing to the observed cell apoptosis. A Western blotting analysis demonstrated that compound 5c inhibited the phosphorylation of STAT3. Furthermore, a biolayer interferometry (BLI) analysis confirmed that compound 5c had a direct effect on STAT3, with a KD value of 13.0 μM. Molecular docking showed that 5c specifically occupied the subpockets in the SH2 domain, thereby blocking the whole transmission signaling process. Overall, this study provides an important structural reference for the development of effective antitumor agents.
Collapse
Affiliation(s)
- Pingxian Liu
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dongmei Fan
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenliang Qiao
- Laboratory of Lung Cancer, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinlian He
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lidan Zhang
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yunhan Jiang
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
3
|
Wang L, Song B, Hu Y, Chen J, Zhang S, Chen D, Wang J. Puerarin Ameliorates 5-Fluorouracil-Induced Intestinal Mucositis in Mice by Inhibiting JAKs. J Pharmacol Exp Ther 2021; 379:147-155. [PMID: 34400527 DOI: 10.1124/jpet.121.000677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/06/2021] [Indexed: 01/05/2023] Open
Abstract
Intestinal mucositis resulting from 5-fluorouracil (5-FU)-based chemotherapy subjects patients to great pain and hampers cancer treatment progress. Puerarin, the major active ingredient in Pueraria lobata, exerts anti-inflammatory and antioxidative effects. However, whether puerarin has an effect on 5-FU-induced intestinal mucositis remains unknown. We established a mice model of intestinal mucositis through the intraperitoneal injection of 5-FU and then injected puerarin (50 and 100 mg/kg) intraperitoneally for 7 consecutive days. Routine parameters, such as body weight, food intake, and diarrheal incidence, were examined to evaluate the effects of puerarin on intestinal mucositis in mice. The intestinal barrier's functions were also evaluated by measuring the serum recovery of fluorescein isothiocyanate-4kD dextran in this study. The expression levels of inflammatory cytokines, inflammatory mediators, oxidative reactions, as well as apoptotic marker proteins were determined to elucidate the underlying mechanisms of puerarin on intestinal mucositis. The model mice presented symptoms and histopathological changes typical of 5-FU-induced intestinal mucositis. In addition to vigorous inflammatory reactions, oxidative reactions, and cell apoptosis, Janus kinase (JAK) was markedly activated. Puerarin decreased the expression levels of those of inflammatory mediators, oxidative reactions, and apoptosis-related proteins in 5-FU-induced mucositis by blocking the activation of JAK. Puerarin decreased inflammation, oxidative reactions, and apoptosis and protected intestinal barrier functions to ameliorate 5-FU-induced intestinal mucositis by inhibiting the activation of JAK. This study provides novel insights into the pathologic mechanisms of (and treatment alternatives for) 5-FU-induced intestinal mucositis. SIGNIFICANCE STATEMENT: This study reveals the mechanism responsible for the protective effects of puerarin in 5-fluorouracil-induced intestinal mucositis. Puerarin inhibits the activation of JAK, thereby suppressing inflammation, oxidative reactions, cell apoptosis, and protected intestinal barrier functions to ameliorate 5-FU-induced intestinal mucositis. Overall, our results suggest that puerarin can serve as a potential natural JAK inhibitor in the treatment of 5-FU-induced intestinal mucositis.
Collapse
Affiliation(s)
- Liang Wang
- Research and Teaching Department of Comparative Medicine (L.W., B.S., Y.H., J.C., D.P.) and College of Basic Medical Science (S.Z.), Dalian Medical University, Dalian 116044, China
| | - Baohui Song
- Research and Teaching Department of Comparative Medicine (L.W., B.S., Y.H., J.C., D.P.) and College of Basic Medical Science (S.Z.), Dalian Medical University, Dalian 116044, China
| | - Yan Hu
- Research and Teaching Department of Comparative Medicine (L.W., B.S., Y.H., J.C., D.P.) and College of Basic Medical Science (S.Z.), Dalian Medical University, Dalian 116044, China
| | - Jun Chen
- Research and Teaching Department of Comparative Medicine (L.W., B.S., Y.H., J.C., D.P.) and College of Basic Medical Science (S.Z.), Dalian Medical University, Dalian 116044, China
| | - Shuaishuai Zhang
- Research and Teaching Department of Comparative Medicine (L.W., B.S., Y.H., J.C., D.P.) and College of Basic Medical Science (S.Z.), Dalian Medical University, Dalian 116044, China
| | - Dapeng Chen
- Research and Teaching Department of Comparative Medicine (L.W., B.S., Y.H., J.C., D.P.) and College of Basic Medical Science (S.Z.), Dalian Medical University, Dalian 116044, China
| | - Jingyu Wang
- Research and Teaching Department of Comparative Medicine (L.W., B.S., Y.H., J.C., D.P.) and College of Basic Medical Science (S.Z.), Dalian Medical University, Dalian 116044, China
| |
Collapse
|
4
|
Song JL, Zhang J, Liu CL, Liu C, Zhu KK, Yang FF, Liu XG, Figueiró Longo JP, Alexandre Muehlmann L, Azevedo RB, Zhang YY, Guo YW, Jiang CS, Zhang H. Design and synthesis of pregnenolone/2-cyanoacryloyl conjugates with dual NF-κB inhibitory and anti-proliferative activities. Bioorg Med Chem Lett 2017; 27:4682-4686. [DOI: 10.1016/j.bmcl.2017.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/02/2017] [Accepted: 09/05/2017] [Indexed: 12/13/2022]
|
5
|
Seneci P. Targeting Proteasomal Degradation of Soluble, Misfolded Proteins. CHEMICAL MODULATORS OF PROTEIN MISFOLDING AND NEURODEGENERATIVE DISEASE 2015. [PMCID: PMC7150093 DOI: 10.1016/b978-0-12-801944-3.00003-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This chapter deals with small molecule modulators of the ubiquitin–proteasome system (UPS). They are designed to restore its impaired capacity to dispose of soluble, dysfunctional protein copies, and to fight its pathological impairment in proteinopathies in general and in tauopathies in particular. Two specific molecular targets belonging to the U-box E3 ligase family (C-terminus of Hsc70 interacting protein, CHIP) and to the proteasome-associated cysteine protease DUB family (USP14) are selected for their putative role against NDDs and tauopathies. The limited available structural information for the two targets, and for their interactions with members of UPS-driven protein complexes, is described. A small number of known modulators for each target (or even for structurally related targets, possibly to provide translatable examples) are portrayed in terms of their biological profile, and of their development potential as disease-modifying drugs against NDDs.
Collapse
|
6
|
Peng Z, Maxwell DS, Sun D, Bhanu Prasad BA, Schuber PT, Pal A, Ying Y, Han D, Gao L, Wang S, Levitzki A, Kapuria V, Talpaz M, Young M, Showalter HD, Donato NJ, Bornmann WG. Degrasyn-like symmetrical compounds: possible therapeutic agents for multiple myeloma (MM-I). Bioorg Med Chem 2014; 22:1450-8. [PMID: 24457091 DOI: 10.1016/j.bmc.2013.12.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/11/2013] [Accepted: 12/21/2013] [Indexed: 12/13/2022]
Abstract
A series of degrasyn-like symmetrical compounds have been designed, synthesized, and screened against B cell malignancy (multiple myeloma, mantle cell lymphoma) cell lines. The lead compounds T5165804 and CP2005 showed higher nanomolar potency against these tumor cells in comparison to degrasyn and inhibited Usp9x activity in vitro and in intact cells. These observations suggest that this new class of compounds holds promise as cancer therapeutic agents.
Collapse
Affiliation(s)
- Zhenghong Peng
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, United States
| | - David S Maxwell
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, United States
| | - Duoli Sun
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, United States
| | - Basvoju A Bhanu Prasad
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, United States
| | - Paul T Schuber
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, United States
| | - Ashutosh Pal
- Department of Experimental Diagnostic Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, United States
| | - Yunming Ying
- Department of Experimental Diagnostic Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, United States
| | - Dongmei Han
- Department of Experimental Diagnostic Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, United States
| | - Liwei Gao
- Department of Experimental Diagnostic Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, United States
| | - Shimei Wang
- Department of Experimental Diagnostic Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, United States
| | - Alexander Levitzki
- Unit of Cellular Signaling, Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vaibhav Kapuria
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan School of Medicine, Comprehensive Cancer Center, United States
| | - Moshe Talpaz
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan School of Medicine, Comprehensive Cancer Center, United States
| | - Matthew Young
- Department of Pharmacology, University of Michigan School of Medicine, Comprehensive Cancer Center, United States
| | - Hollis D Showalter
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, United States
| | - Nicholas J Donato
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan School of Medicine, Comprehensive Cancer Center, United States
| | - William G Bornmann
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, United States.
| |
Collapse
|
7
|
Theoretical investigation of the selectivity in intramolecular cyclizations of some 2’–aminochalcones to dihydroquinolin–8–ones and indolin–3–ones. J Mol Model 2013; 19:3611-8. [DOI: 10.1007/s00894-013-1893-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/15/2013] [Indexed: 11/26/2022]
|