1
|
Munir R, Zahoor AF, Nazeer U, Saeed MA, Mansha A, Irfan A, Tariq MU. Gilman reagent toward the synthesis of natural products. RSC Adv 2023; 13:35172-35208. [PMID: 38053693 PMCID: PMC10694855 DOI: 10.1039/d3ra07359a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 11/19/2023] [Indexed: 12/07/2023] Open
Abstract
With the ever-increasing scope of organocuprates, a well-established Gilman reagent has been considered as an unprecedented synthetic tool in modern organic chemistry. The broad research profile of the Gilman reagent (R2CuLi in THF or Et2O) is owing to its propensity to carry out three kinds of reactions, i.e., epoxide ring opening reactions, 1,4-conjugate addition reactions, and SN2 reactions in a regioselective manner. This review examines the applications of Gilman reagent in the total synthesis of both abundant and scarce natural products of remarkable synthetic pharmaceutical profile reported since 2011. The presented insights will be of a vital roadmap to general organic synthesis and it will contribute to the development of new natural products and their analogues in future drug discovery.
Collapse
Affiliation(s)
- Ramsha Munir
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Usman Nazeer
- Department of Chemistry, University of Houston 3585 Cullen Boulevard Texas 77204-5003 USA
| | - Muhammad Athar Saeed
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Ahmad Irfan
- Department of Chemistry, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Muhammad Umair Tariq
- Department of Chemistry, Faculty of Natural Sciences, Forman Christian College University Lahore 54600 Pakistan
| |
Collapse
|
2
|
Chan AM, Goodis CC, Pommier EG, Fletcher S. Recent applications of covalent chemistries in protein-protein interaction inhibitors. RSC Med Chem 2022; 13:921-928. [PMID: 36092144 PMCID: PMC9384789 DOI: 10.1039/d2md00112h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 10/17/2023] Open
Abstract
Protein-protein interactions (PPIs) are large, often featureless domains whose modulations by small-molecules are challenging. Whilst there are some notable successes, such as the BCL-2 inhibitor venetoclax, the requirement for larger ligands to achieve the desired level of potency and selectivity may result in poor "drug-like" properties. Covalent chemistry is presently enjoying a renaissance. In particular, targeted covalent inhibition (TCI), in which a weakly electrophilic "warhead" is installed onto a protein ligand scaffold, is a powerful strategy to develop potent inhibitors of PPIs that are smaller/more drug-like yet have enhanced affinities by virtue of the reinforcing effect on the existing non-covalent interactions by the resulting protein-ligand covalent bond. Furthermore, the covalent bond delivers sustained inhibition, which may translate into significantly reduced therapeutic dosing. Herein, we discuss recent applications of a spectrum of TCIs, as well as covalent screening strategies, in the discovery of more effective inhibitors of PPIs using the HDM2 and BCL-2 protein families as case studies.
Collapse
Affiliation(s)
- Alexandria M Chan
- University of Maryland School of Pharmacy, Department of Pharmaceutical Sciences 20 N. Pine St Baltimore MD 21201 USA
| | - Christopher C Goodis
- University of Maryland School of Pharmacy PharmD Program, 20 N. Pine St Baltimore MD 21201 USA
| | - Elie G Pommier
- University of Maryland School of Pharmacy PharmD Program, 20 N. Pine St Baltimore MD 21201 USA
| | - Steven Fletcher
- University of Maryland School of Pharmacy, Department of Pharmaceutical Sciences 20 N. Pine St Baltimore MD 21201 USA
- University of Maryland Greenebaum Cancer Center 20 S. Greene St Baltimore MD 21201 USA
| |
Collapse
|
3
|
Kunig VBK, Potowski M, Klika Škopić M, Brunschweiger A. Scanning Protein Surfaces with DNA-Encoded Libraries. ChemMedChem 2021; 16:1048-1062. [PMID: 33295694 PMCID: PMC8048995 DOI: 10.1002/cmdc.202000869] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Indexed: 12/17/2022]
Abstract
Understanding the ligandability of a target protein, defined as the capability of a protein to bind drug-like compounds on any site, can give important stimuli to drug-development projects. For instance, inhibition of protein-protein interactions usually depends on the identification of protein surface binders. DNA-encoded chemical libraries (DELs) allow scanning of protein surfaces with large chemical space. Encoded library selection screens uncovered several protein-protein interaction inhibitors and compounds binding to the surface of G protein-coupled receptors (GPCRs) and kinases. The protein surface-binding chemotypes from DELs are predominantly chemically modified and cyclized peptides, and functional small-molecule peptidomimetics. Peptoid libraries and structural peptidomimetics have been less studied in the DEL field, hinting at hitherto less populated chemical space and suggesting alternative library designs. Roughly a third of bioactive molecules evolved from smaller, target-focused libraries. They showcase the potential of encoded libraries to identify more potent molecules from weak, for example, fragment-like, starting points.
Collapse
Affiliation(s)
- Verena B. K. Kunig
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| | - Marco Potowski
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| | - Mateja Klika Škopić
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| | - Andreas Brunschweiger
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| |
Collapse
|
4
|
Katsumi D, Nakasone K, Terayama N, Yasui E, Mizukami M, Miyashita M, Nagumo S. Total Synthesis of Sekothrixide Strategically Utilizing Regioselective Coupling of TMS-Protected Epoxy sec-Alcohol with Gilman Reagent. J Org Chem 2019; 84:1553-1562. [PMID: 30608691 DOI: 10.1021/acs.joc.8b03006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new efficient synthesis of sekothrixide was established on the basis of our developed regioselective coupling of epoxy sec-alcohol with Gilman reagent guided by a TMS group. The new synthetic route allowed an overall yield of 6.3% (26 steps) from optically active 3-silyloxy-2-methylaldehyde.
Collapse
Affiliation(s)
- Daisuke Katsumi
- Department of Applied Chemistry , Kogakuin University , Nakano 2665-1 , Hachioji , Tokyo 192-0015 , Japan
| | - Kazuki Nakasone
- Department of Applied Chemistry , Kogakuin University , Nakano 2665-1 , Hachioji , Tokyo 192-0015 , Japan
| | - Naoki Terayama
- Department of Applied Chemistry , Kogakuin University , Nakano 2665-1 , Hachioji , Tokyo 192-0015 , Japan
| | - Eiko Yasui
- Department of Applied Chemistry , Kogakuin University , Nakano 2665-1 , Hachioji , Tokyo 192-0015 , Japan.,Department of Chemistry and Life Science , Kogakuin University , Nakano 2665-1 , Hachioji , Tokyo 192-0015 , Japan
| | - Megumi Mizukami
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences , Hokkaido University of Science , Maeda 7-15-4-1 , Teine, Sapporo , Hokkaido 006-8585 , Japan
| | - Masaaki Miyashita
- Department of Applied Chemistry , Kogakuin University , Nakano 2665-1 , Hachioji , Tokyo 192-0015 , Japan
| | - Shinji Nagumo
- Department of Applied Chemistry , Kogakuin University , Nakano 2665-1 , Hachioji , Tokyo 192-0015 , Japan.,Department of Chemistry and Life Science , Kogakuin University , Nakano 2665-1 , Hachioji , Tokyo 192-0015 , Japan
| |
Collapse
|
5
|
Nakano H, Sugawara A, Hirose T, Gouda H, Hirono S, Ōmura S, Sunazuka T. An architectonic macrolide library based on a C2-symmetric macrodiolide toward pharmaceutical compositions. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.01.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
6
|
Ahmed MH, Habtemariam M, Safo MK, Scarsdale JN, Spyrakis F, Cozzini P, Mozzarelli A, Kellogg GE. Unintended consequences? Water molecules at biological and crystallographic protein–protein interfaces. Comput Biol Chem 2013; 47:126-41. [DOI: 10.1016/j.compbiolchem.2013.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 01/31/2023]
|
7
|
Persico M, Ramunno A, Maglio V, Franceschelli S, Esposito C, Carotenuto A, Brancaccio D, De Pasquale V, Pavone LM, Varra M, Orteca N, Novellino E, Fattorusso C. New anticancer agents mimicking protein recognition motifs. J Med Chem 2013; 56:6666-80. [PMID: 23879262 DOI: 10.1021/jm400947b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The novel tetrasubstituted pyrrole derivatives 8g, 8h, and 8i showed selective cytotoxicity against M14 melanoma cells at low micromolar concentration. Structure-activity relationships (SARs) indicated the presence of three aromatic substituents on the pyrrole core as necessary for biological activity. Computational studies strongly suggest that the peculiar 3D orientation of these substituents is able to reproduce the hydrophobic side chains in LxxLL-like protein recognition motifs. Biological results showed altered p53 expression and nuclear translocation in cells sensitive to the compounds, suggesting p53 involvement in their anticancer mechanism of action. Unfortunately, because of poor solubility of the active analogues, it was not possible to perform further investigation by NMR techniques. Pharmacophore models were generated and used to perform 3D searches in molecular databases. Results indicated that two compounds share the same pharmacological profile and the same pharmacophoric features with our new derivatives, and one of them inhibited MDM2-MDM4 heterodimer formation.
Collapse
Affiliation(s)
- Marco Persico
- Dipartimento di Farmacia, Università di Napoli "Federico II" , Via D. Montesano 49, 80131 Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Fuwa H, Kawakami M, Noto K, Muto T, Suga Y, Konoki K, Yotsu-Yamashita M, Sasaki M. Concise synthesis and biological assessment of (+)-neopeltolide and a 16-member stereoisomer library of 8,9-dehydroneopeltolide: identification of pharmacophoric elements. Chemistry 2013; 19:8100-10. [PMID: 23606326 DOI: 10.1002/chem.201300664] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Indexed: 02/01/2023]
Abstract
We describe herein a concise synthesis of (+)-neopeltolide, a marine macrolide natural product that elicits a highly potent antiproliferative activity against several human cancer cell lines. Our synthesis exploited the powerful bond-forming ability and high functional group compatibility of olefin metathesis and esterification reactions to minimize manipulations of oxygen functionalities and to maximize synthetic convergency. Our findings include a chemoselective olefin cross-metathesis reaction directed by H-bonding, and a ring-closing metathesis conducted under non-high dilution conditions. Moreover, we developed a 16-member stereoisomer library of 8,9-dehydroneopeltolide to systematically explore the stereostructure-activity relationships. Assessment of the antiproliferative activity of the stereoisomers against A549 human lung adenocarcinoma, MCF-7 human breast adenocarcinoma, HT-1080 human fibrosarcoma, and P388 murine leukemia cell lines has revealed marked differences in potency between the stereoisomers. This study provides comprehensive insights into the structure-activity relationship of this important antiproliferative agent, leading to the identification of the pharmacophoric structural elements and the development of truncated analogues with nanomolar potency.
Collapse
Affiliation(s)
- Haruhiko Fuwa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Hori H, Nazumi Y, Uto Y. Boron Tracedrug Design for Neutron Dynamic Therapeutics for LDL. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 789:385-389. [DOI: 10.1007/978-1-4614-7411-1_51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Bocanegra R, Rodríguez-Huete A, Fuertes MÁ, del Álamo M, Mateu MG. Molecular recognition in the human immunodeficiency virus capsid and antiviral design. Virus Res 2012; 169:388-410. [DOI: 10.1016/j.virusres.2012.06.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 01/07/2023]
|