1
|
Abirami M, Karan Kumar B, Dey S, Johri S, Reguera RM, Balaña-Fouce R, Gowri Chandra Sekhar KV, Sankaranarayanan M. Molecular-level strategic goals and repressors in Leishmaniasis - Integrated data to accelerate target-based heterocyclic scaffolds. Eur J Med Chem 2023; 257:115471. [PMID: 37257213 DOI: 10.1016/j.ejmech.2023.115471] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 06/02/2023]
Abstract
Leishmaniasis is a complex of neglected tropical diseases caused by various species of leishmanial parasites that primarily affect the world's poorest people. A limited number of standard medications are available for this disease that has been used for several decades, these drugs have many drawbacks such as resistance, higher cost, and patient compliance, making it difficult to reach the poor. The search for novel chemical entities to treat leishmaniasis has led to target-based scaffold research. Among several identified potential molecular targets, enzymes involved in the purine salvage pathway include polyamine biosynthetic process, such as arginase, ornithine decarboxylase, S-adenosylmethionine decarboxylase, spermidine synthase, trypanothione reductase as well as enzymes in the DNA cell cycle, such as DNA topoisomerases I and II plays vital role in the life cycle survival of leishmanial parasite. This review mainly focuses on various heterocyclic scaffolds, and their specific inhibitory targets against leishmaniasis, particularly those from the polyamine biosynthesis pathway and DNA topoisomerases with estimated activity studies of various heterocyclic analogs in terms of their IC50 or EC50 value, reported molecular docking analysis from available published literatures.
Collapse
Affiliation(s)
- M Abirami
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, India
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, India; Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Sanchita Dey
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, India
| | - Samridhi Johri
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, India
| | - Rosa M Reguera
- Department of Biomedical Sciences, University of León, 24071, León, Spain
| | | | - Kondapalli Venkata Gowri Chandra Sekhar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, 500078, Telangana, India
| | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, India.
| |
Collapse
|
2
|
Schirmann JG, Bortoleti BTS, Gonçalves MD, Tomiotto-Pellissier F, Camargo PG, Miranda-Sapla MM, Lima CHS, Bispo MLF, Costa IN, Conchon-Costa I, Pavanelli WR, Dekker RFH, Barbosa-Dekker AM. In-vitro biological evaluation of 3,3',5,5'-tetramethoxy-biphenyl-4,4'-diol and molecular docking studies on trypanothione reductase and Gp63 from Leishmania amazonensis demonstrated anti-leishmania potential. Sci Rep 2023; 13:6928. [PMID: 37117253 PMCID: PMC10147928 DOI: 10.1038/s41598-023-34124-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023] Open
Abstract
Available treatments for leishmaniasis have been widely used since the 1940s but come at a high cost, variable efficacy, high toxicity, and adverse side-effects. 3,3',5,5'-Tetramethoxy-biphenyl-4,4'-diol (TMBP) was synthesized through laccase-catalysis of 2,6-dimethoxyphenol and displayed antioxidant and anticancer activity, and is considered a potential drug candidate. Thus, this study aimed to evaluate the anti-leishmanial effect of TMBP against promastigote and amastigote forms of Leishmania (L.) amazonensis and investigated the mechanisms involved in parasite death. TMBP treatment inhibited the proliferation (IC50 0.62-0.86 µM) and induced the death of promastigote forms by generating reactive oxygen species and mitochondrial dysfunction. In intracellular amastigotes, TMBP reduced the percentage of infected macrophages, being 62.7 times more selective to the parasite (CC50 53.93 µM). TMBP did not hemolyze sheep erythrocytes; indicative of low cytotoxicity. Additionally, molecular docking analysis on two enzyme targets of L. amazonensis: trypanothione reductase (TR) and leishmanolysin (Gp63), suggested that the hydroxyl group could be a pharmacophoric group due to its binding affinity by hydrogen bonds with residues at the active site of both enzymes. TMBP was more selective to the Gp63 target than TR. This is the first report that TMBP is a promising compound to act as an anti-leishmanial agent.
Collapse
Affiliation(s)
- Jéseka G Schirmann
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil.
| | - Bruna T S Bortoleti
- Fiocruz, Programa de Pós-Graduação em Biociências e Biotecnologia, Instituto Carlos Chagas, Curitiba, PR, Brazil
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Manoela D Gonçalves
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Fernanda Tomiotto-Pellissier
- Fiocruz, Programa de Pós-Graduação em Biociências e Biotecnologia, Instituto Carlos Chagas, Curitiba, PR, Brazil
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Priscila G Camargo
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Milena M Miranda-Sapla
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Camilo H S Lima
- Instituto de Química, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcelle L F Bispo
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Idessania N Costa
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Ivete Conchon-Costa
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Wander R Pavanelli
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Robert F H Dekker
- Programa de Pós-Graduação em Engenharia Ambiental, Universidade Tecnológica Federal do Paraná, Câmpus de Londrina, Londrina, PR, Brazil
| | - Aneli M Barbosa-Dekker
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil.
| |
Collapse
|
3
|
Süleymanoğlu N, Ustabaş R, Güler Hİ, Direkel Ş, Çelik F, Ünver Y. Bis-1,2,4-triazol derivatives: Synthesis, characterization, DFT, antileishmanial activity and molecular docking studyo. J Biomol Struct Dyn 2022:1-11. [PMID: 35850638 DOI: 10.1080/07391102.2022.2098825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In this study, triazol derivatives, 4,4'-(((1E, 1E')-1,2-phenylenebis (methanylyidene)) bis (azanylidene)) bis (5-methyl-2,4-dihydro-3H-1,2,4-triazol-3-one (2), 4,4'-(((1E, 1E')-1,3-phenylenebis (methanylyidene)) bis (azanylidene)) bis (5-methyl-2,4-dihydro-3H-1,2,4-triazol-3-one (3) and 4,4'-(((1E, 1E')-1,4-phenylene bis (methanyl yidene)) bis (azanylidene)) bis (5-methyl-2,4-dihydro-3H-1,2,4-triazol-3-one (4) were synthesized from the reaction of 4-amino-5-methyl-2,4-dihydro-3H-1,2,4-triazol-3-one and phthalaldehyde/isophthalaldehyde/terephthalaldehyde, respectively. Compounds 2-4 were characterized by Fourier transform infrared (FTIR), proton and carbon-13 nuclear magnetic resonance (1H- and 13C- NMR) spectroscopic methods. Theoretical study for compounds 2-4 were carried out by DFT/B3LYP/6-311++G(d,p). Structural and spectroscopic parameters were determined theoreticaly and compared with experimental ones. Also, the molecular electrostatic potential (MEP) maps of compounds were obtained. Leishmanicidal activity of compounds 2-4 against to Leishmania infantum was determined by microdilution broth method containing alamar blue. As a result of the study, compounds 2-4 were found to be effective against the specie of Leishmania. Molecular docking analysis against Trypanothione Reductase (TRe) with compound 2 was carried out to see the necessary interactions responsible for antileishmanial activity. The docking calculations of compound 2 supported the antileishmanial activity exhibiting high inhibition constant.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nevin Süleymanoğlu
- Vocational School of Technical Sciences, Gazi University, Ostim/Ankara, Turkey
| | - Reşat Ustabaş
- Department of Mathematics and Science Education, Ondokuz Mayıs University, Samsun, Turkey
| | - Halil İbrahim Güler
- Faculty of Science, Department of Molecular Biology and Genetics, Karadeniz Technical University, Trabzon, Turkey
| | - Şahin Direkel
- Department of Medical Microbiology, Faculty of Medicine, Giresun University, Giresun, Turkey
| | - Fatih Çelik
- Faculty of Sciences, Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Yasemin Ünver
- Faculty of Sciences, Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
4
|
Cytotoxicity of Essential Oil Cordia verbenaceae against Leishmania brasiliensis and Trypanosoma cruzi. Molecules 2021; 26:molecules26154485. [PMID: 34361638 PMCID: PMC8348457 DOI: 10.3390/molecules26154485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
The species Cordia verbenacea DC (Boraginaceae), known as the whaling herb and camaradinha, is a perennial shrub species native to the Atlantic Forest. Its leaves are used in folk medicine as an anti-inflammatory, analgesic, antiulcerogenic and curative agent, in the form of teas or infusions for internal or topical use. The present study aimed to verify the cytotoxicity of the essential oil and the leishmanicidal and trypanocidal potential of C. verbenacea. The essential oil was characterized by GC-MS. The in vitro biological activity was determined by anti-Leishmania and anti-Trypanosoma assays. The cytotoxixity was determined using mammalian fibroblasts. The C. verbenacea species presented α-pinene (45.71%), β-caryophyllene (18.77%), tricyclo[2,2,1-(2.6)]heptane (12.56%) as their main compounds. The essential oil exhibited strong cytotoxicity at concentrations below 250 μg/mL (LC50 138.1 μg/mL) in mammalian fibroblasts. The potent anti-trypanosome and anti-promastigote activities occurred from the concentration of 62.5 μg/mL and was considered clinically relevant. The results also demonstrate that at low concentrations (<62.5 μg/mL), the essential oil of C. verbenacea managed to be lethal for these activities. This can be considered an indication of the power used in daily human consumption. Therefore, it can be concluded that the essential oil of C. verbenacea contains a compound with remarkable antiparasitic activities and requires further research.
Collapse
|
5
|
Identification of 3-Methoxycarpachromene and Masticadienonic Acid as New Target Inhibitors against Trypanothione Reductase from Leishmania Infantum Using Molecular Docking and ADMET Prediction. Molecules 2021; 26:molecules26113335. [PMID: 34206087 PMCID: PMC8199445 DOI: 10.3390/molecules26113335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
Polyphenolic and Terpenoids are potent natural antiparasitic compounds. This study aimed to identify new drug against Leishmania parasites, leishmaniasis’s causal agent. A new in silico analysis was accomplished using molecular docking, with the Autodock vina program, to find the binding affinity of two important phytochemical compounds, Masticadienonic acid and the 3-Methoxycarpachromene, towards the trypanothione reductase as target drugs, responsible for the defense mechanism against oxidative stress and virulence of these parasites. There were exciting and new positive results: the molecular docking results show as elective binding profile for ligands inside the active site of this crucial enzyme. The ADMET study suggests that the 3-Methoxycarpachromene has the highest probability of human intestinal absorption. Through this work, 3-Methoxycarpachromene and Masticadienonic acid are shown to be potentially significant in drug discovery, especially in treating leishmaniasis. Hence, drug development should be completed with promising results.
Collapse
|
6
|
dos Santos Vasconcelos CR, Rezende AM. Systematic in silico Evaluation of Leishmania spp. Proteomes for Drug Discovery. Front Chem 2021; 9:607139. [PMID: 33987166 PMCID: PMC8111926 DOI: 10.3389/fchem.2021.607139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/24/2021] [Indexed: 11/18/2022] Open
Abstract
Leishmaniasis is a group of neglected infectious diseases, with approximately 1. 3 million new cases each year, for which the available therapies have serious limitations. Therefore, it is extremely important to apply efficient and low-cost methods capable of selecting the best therapeutic targets to speed up the development of new therapies against those diseases. Thus, we propose the use of integrated computational methods capable of evaluating the druggability of the predicted proteomes of Leishmania braziliensis and Leishmania infantum, species responsible for the different clinical manifestations of leishmaniasis in Brazil. The protein members of those proteomes were assessed based on their structural, chemical, and functional contexts applying methods that integrate data on molecular function, biological processes, subcellular localization, drug binding sites, druggability, and gene expression. These data were compared to those extracted from already known drug targets (BindingDB targets), which made it possible to evaluate Leishmania proteomes for their biological relevance and treatability. Through this methodology, we identified more than 100 proteins of each Leishmania species with druggability characteristics, and potential interaction with available drugs. Among those, 31 and 37 proteins of L. braziliensis and L. infantum, respectively, have never been tested as drug targets, and they have shown evidence of gene expression in the evolutionary stage of pharmacological interest. Also, some of those Leishmania targets showed an alignment similarity of <50% when compared to the human proteome, making these proteins pharmacologically attractive, as they present a reduced risk of side effects. The methodology used in this study also allowed the evaluation of opportunities for the repurposing of compounds as anti-leishmaniasis drugs, inferring potential interaction between Leishmania proteins and ~1,000 compounds, of which only 15 have already been tested as a treatment for leishmaniasis. Besides, a list of potential Leishmania targets to be tested using drugs described at BindingDB, such as the potential interaction of the DEAD box RNA helicase, TRYR, and PEPCK proteins with the Staurosporine compound, was made available to the public.
Collapse
Affiliation(s)
- Crhisllane Rafaele dos Santos Vasconcelos
- Bioinformatics Plataform, Microbiology Department, Instituto Aggeu Magalhães, Recife, Brazil
- Posgraduate Program in Genetics, Genetics Department, Universidade Federal de Pernambuco, Recife, Brazil
| | - Antonio Mauro Rezende
- Bioinformatics Plataform, Microbiology Department, Instituto Aggeu Magalhães, Recife, Brazil
- Posgraduate Program in Genetics, Genetics Department, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
7
|
Dos Santos Rosa A, Frauches-Santos C, Santana RC, Gomes JSC, Lima K, Echevarria A, Saraiva E, Decote-Ricardo D, Atella G, Pinto-da-Silva LH. Leishmanicidal effect of 1,3,4-thiadiazolium mesoionic salts on Leishmania amazonensis in vitro. Parasitol Int 2021; 83:102342. [PMID: 33831578 DOI: 10.1016/j.parint.2021.102342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/15/2021] [Accepted: 03/27/2021] [Indexed: 10/25/2022]
Abstract
Leishmaniasis is a neglected broad clinical spectrum disease caused by protozoa of the genus Leishmania, which affect millions of people annually in the world and the treatment has severe side effects and resistant strains have been reported. Mesoionic salts are a subclass of the betaine group with extensive biological activity such as microbicide and anti-inflammatory In this work, we analyze the cytotoxic effects of mesoionic salts, 4-phenyl-5-(X-phenyl)-1,3,4-thiadiazolium-2-phenylamine chloride (X = 4 Cl; 3,4 diCl and 3,4 diF), on Leishmania amazonensis in vitro. Initially, Mesoionic salts toxicity were evaluated by XTT assay on L. amazonensis promastigotes. Our results show that the mesoionic salts MI-3,4 diCl, MI-4 Cl and MI-3,4 diF were toxic to the promastigote parasite with IC50 values of 14.3, 40.1 and 61.8 μM, respectively. The amastigote survival was evaluated in treated infected-macrophages, and the results demonstrate that MI-4 Cl (IC50 = 33 μM) and MI-3,4 diCl (IC50 = 43 μM) have a toxic effect against these forms. None of the mesoionic compounds tested present host cell toxicity up to the tested concentration of 100 μM. The selectivity index for MI-3,4 diCl and MI-4 Cl were 3.94 and 6.97, respectively. Nitric oxide (NO) production assayed by Griess reagent, in LPS-activated macrophages or not, in the presence of the salts showed that only the MI-3,4 diCl compound reduced NO levels. Lipid profile analysis of treated-promastigotes showed no alteration of neutral lipids. Evaluation of mitochondrial membrane potential (∆Ψm) showed that the MI-4Cl compound was able to reduce (∆Ψm) by 50%. Therefore, our results suggest that the chlorinated compounds are promising biomolecules, which cause inhibition of L.amazonensis promastigotes, amastigotes, leading to mitochondrial damage.
Collapse
Affiliation(s)
- Alice Dos Santos Rosa
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | | | - Raissa Couto Santana
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Janice S C Gomes
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Karoline Lima
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Aurea Echevarria
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Elvira Saraiva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Debora Decote-Ricardo
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Georgia Atella
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lucia H Pinto-da-Silva
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil.
| |
Collapse
|
8
|
Pramanik PK, Chakraborti S, Bagchi A, Chakraborti T. Bioassay-based Corchorus capsularis L. leaf-derived β-sitosterol exerts antileishmanial effects against Leishmania donovani by targeting trypanothione reductase. Sci Rep 2020; 10:20440. [PMID: 33235245 PMCID: PMC7686382 DOI: 10.1038/s41598-020-77066-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 10/26/2020] [Indexed: 11/23/2022] Open
Abstract
Leishmaniasis, a major neglected tropical disease, affects millions of individuals worldwide. Among the various clinical forms, visceral leishmaniasis (VL) is the deadliest. Current antileishmanial drugs exhibit toxicity- and resistance-related issues. Therefore, advanced chemotherapeutic alternatives are in demand, and currently, plant sources are considered preferable choices. Our previous report has shown that the chloroform extract of Corchorus capsularis L. leaves exhibits a significant effect against Leishmania donovani promastigotes. In the current study, bioassay-guided fractionation results for Corchorus capsularis L. leaf-derived β-sitosterol (β-sitosterolCCL) were observed by spectroscopic analysis (FTIR, 1H NMR, 13C NMR and GC–MS). The inhibitory efficacy of this β-sitosterolCCL against L. donovani promastigotes was measured (IC50 = 17.7 ± 0.43 µg/ml). β-SitosterolCCL significantly disrupts the redox balance via intracellular ROS production, which triggers various apoptotic events, such as structural alteration, increased storage of lipid bodies, mitochondrial membrane depolarization, externalization of phosphatidylserine and non-protein thiol depletion, in promastigotes. Additionally, the antileishmanial activity of β-sitosterolCCL was validated by enzyme inhibition and an in silico study in which β-sitosterolCCL was found to inhibit Leishmania donovani trypanothione reductase (LdTryR). Overall, β-sitosterolCCL appears to be a novel inhibitor of LdTryR and might represent a successful approach for treatment of VL in the future.
Collapse
Affiliation(s)
- Pijush Kanti Pramanik
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India.
| |
Collapse
|
9
|
Camargo PG, Bortoleti BTDS, Fabris M, Gonçalves MD, Tomiotto-Pellissier F, Costa IN, Conchon-Costa I, Lima CHDS, Pavanelli WR, Bispo MDLF, Macedo F. Thiohydantoins as anti-leishmanial agents: n vitro biological evaluation and multi-target investigation by molecular docking studies. J Biomol Struct Dyn 2020; 40:3213-3222. [PMID: 33183184 DOI: 10.1080/07391102.2020.1845979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Leishmaniasis is a neglected tropical disease caused by protozoa of the genus Leishmania. The first-line treatment of this disease is still based on pentavalent antimonial drugs that have a high toxicity profile, which could induce parasitic resistance. Therefore, there is a critical need to discover more effective and selective novel anti-leishmanial agents. In this context, thiohydantoins are a versatile class of substances due to their simple synthesis and several biological activities. In this work, thiohydantoins 1a-l were evaluated in vitro for antileishmania activity. Among them, four derivatives (1c, 1e, 1h and 1l) showed promising IC50 values around 10 µM against promastigotes forms of Leishmania amazonensis and low cytotoxicity profile for peritoneal macrophages cells. Besides, these compounds induce oxidative stress through an increase in ROS production and the labeling of annexin-V and propidium iodide, indicating that promastigotes were undergoing a late apoptosis-like process. Additionally, molecular consensual docking analysis was carried out against two important targets to L. amazonensis: arginase and trypanothione reductase enzymes. Docking results suggest that thiohydantoin ring could be a pharmacophoric group due to its binding affinity by hydrogens bond interactions with important amino acid residues at the active site of both enzymes. These results demonstrate that compounds 1c, 1e, 1h and 1l may are promising in future advance studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Priscila Goes Camargo
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Marcieli Fabris
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Manoela Daiele Gonçalves
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Idessania Nazareth Costa
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Ivete Conchon-Costa
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Wander Rogério Pavanelli
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Fernando Macedo
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
10
|
2-Amino-1,3,4-thiadiazoles as prospective agents in trypanosomiasis and other parasitoses. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2020; 70:259-290. [PMID: 32074064 DOI: 10.2478/acph-2020-0031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 01/19/2023]
Abstract
Parasitic diseases are a serious public health problem affecting hundreds of millions of people worldwide. African trypanosomiasis, American trypanosomiasis, leishmaniasis, malaria and toxoplasmosis are the main parasitic infections caused by protozoan parasites with over one million deaths each year. Due to old medications and drug resistance worldwide, there is an urgent need for new antiparasitic drugs. 1,3,4-Thiadiazoles have been widely studied for medical applications. The chemical, physical and pharmacokinetic properties recommend 1,3,4-thiadiazole ring as a target in drug development. Many scientific papers report the antiparasitic potential of 2-amino-1,3,4-thiadiazoles. This review presents synthetic 2-amino-1,3,4-thiadiazoles exhibiting antitrypanosomal, antimalarial and antitoxoplasmal activities. Although there are insufficient results to state the quality of 2-amino-1,3,4-thiadiazoles as a new class of antiparasitic agents, many reported derivatives can be considered as lead compounds for drug synthesis and a promise for the future treatment of parasitosis and provide a valid strategy for the development of potent antiparasitic drugs.
Collapse
|
11
|
Shaykoon MS, Marzouk AA, Soltan OM, Wanas AS, Radwan MM, Gouda AM, Youssif BGM, Abdel-Aziz M. Design, synthesis and antitrypanosomal activity of heteroaryl-based 1,2,4-triazole and 1,3,4-oxadiazole derivatives. Bioorg Chem 2020; 100:103933. [PMID: 32446119 DOI: 10.1016/j.bioorg.2020.103933] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/10/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
Two series of novel 1,2,4-triazol-3-yl-thioacetamide 3a-b and 4a-b and 5-pyrazin-2-yl-3H-[1,3,4]oxadiazole-2-thiones 9a-h were designed and synthesized. The compounds prepared have been identified using 1H NMR, 13C NMR and elemental analyses. The synthesized compounds 3a, 3b, 4a, 4b, 9a, 9b, 9d-e and 9f have been evaluated with α-difluoromethylornithine (DFMO) as a control drug for their in vitro antitrypanosomal activity against Trypanosoma brucei. Results showed that 3b was the most active compound in general and also more potent than control DFMO. 3b was 8 folds more potent than the reference with IC50 of 0.79 μM and IC90 of 1.35 μM, respectively compared to DFMO (IC50 = 6.10 μM and IC90 of 8.66 μM). The tested compounds showed moderate cytotoxicity with selectivity indices ranging from 12 (9d) to 102 (3b) against L6 cells. Docking study was performed into ten of T. brucei enzymes which have been identified as potential/valid targets for most of the antitrypanosomal agents. The results of the docking study revealed high binding scores toward many of the selected enzymes. A good correlation was observed only between log (IC50) of antitrypanosomal activity of the new compounds and their calculated Ki values against TryR enzyme (R2 = 0.726). Compound 3b, the most active as antitrypanosomal agents exhibited similar binding orientation and interaction to those of WP6 against TryR enzyme. However, in a next round of work, a complementary studies will be carried out to clarify the mechanism of action of these compounds.
Collapse
Affiliation(s)
- Montaser Sh Shaykoon
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Adel A Marzouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Amira S Wanas
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA; Pharmacognosy Department, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Mohamed M Radwan
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA
| | - Ahmed M Gouda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| |
Collapse
|
12
|
Kwofie SK, Broni E, Dankwa B, Enninful KS, Kwarko GB, Darko L, Durvasula R, Kempaiah P, Rathi B, Miller Iii WA, Yaya A, Wilson MD. Outwitting an Old Neglected Nemesis: A Review on Leveraging Integrated Data-Driven Approaches to Aid in Unraveling of Leishmanicides of Therapeutic Potential. Curr Top Med Chem 2020; 20:349-366. [PMID: 31994465 DOI: 10.2174/1568026620666200128160454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/20/2019] [Accepted: 09/12/2019] [Indexed: 11/22/2022]
Abstract
The global prevalence of leishmaniasis has increased with skyrocketed mortality in the past decade. The causative agent of leishmaniasis is Leishmania species, which infects populations in almost all the continents. Prevailing treatment regimens are consistently inefficient with reported side effects, toxicity and drug resistance. This review complements existing ones by discussing the current state of treatment options, therapeutic bottlenecks including chemoresistance and toxicity, as well as drug targets. It further highlights innovative applications of nanotherapeutics-based formulations, inhibitory potential of leishmanicides, anti-microbial peptides and organometallic compounds on leishmanial species. Moreover, it provides essential insights into recent machine learning-based models that have been used to predict novel leishmanicides and also discusses other new models that could be adopted to develop fast, efficient, robust and novel algorithms to aid in unraveling the next generation of anti-leishmanial drugs. A plethora of enriched functional genomic, proteomic, structural biology, high throughput bioassay and drug-related datasets are currently warehoused in both general and leishmania-specific databases. The warehoused datasets are essential inputs for training and testing algorithms to augment the prediction of biotherapeutic entities. In addition, we demonstrate how pharmacoinformatics techniques including ligand-, structure- and pharmacophore-based virtual screening approaches have been utilized to screen ligand libraries against both modeled and experimentally solved 3D structures of essential drug targets. In the era of data-driven decision-making, we believe that highlighting intricately linked topical issues relevant to leishmanial drug discovery offers a one-stop-shop opportunity to decipher critical literature with the potential to unlock implicit breakthroughs.
Collapse
Affiliation(s)
- Samuel K Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana.,West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.,Department of Medicine, Loyola University Chicago, Loyola University Medical Center, Maywood, IL 60153, United States
| | - Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
| | - Bismark Dankwa
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra, Ghana
| | - Kweku S Enninful
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra, Ghana
| | - Gabriel B Kwarko
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Louis Darko
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
| | - Ravi Durvasula
- Department of Medicine, Loyola University Chicago, Loyola University Medical Center, Maywood, IL 60153, United States
| | - Prakasha Kempaiah
- Department of Medicine, Loyola University Chicago, Loyola University Medical Center, Maywood, IL 60153, United States
| | - Brijesh Rathi
- Department of Medicine, Loyola University Chicago, Loyola University Medical Center, Maywood, IL 60153, United States.,Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi, 110007, India
| | - Whelton A Miller Iii
- Department of Medicine, Loyola University Chicago, Loyola University Medical Center, Maywood, IL 60153, United States.,Department of Chemistry, Physics, & Engineering, Lincoln University, Lincoln University, PA 19352, United States.,Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Abu Yaya
- Department of Materials Science and Engineering, College of Basic & Applied Sciences, University of Ghana, Legon, Ghana
| | - Michael D Wilson
- Department of Medicine, Loyola University Chicago, Loyola University Medical Center, Maywood, IL 60153, United States.,Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
13
|
Lee SM, Kim MS, Hayat F, Shin D. Recent Advances in the Discovery of Novel Antiprotozoal Agents. Molecules 2019; 24:E3886. [PMID: 31661934 PMCID: PMC6864685 DOI: 10.3390/molecules24213886] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 11/16/2022] Open
Abstract
Parasitic diseases have serious health, social, and economic impacts, especially in the tropical regions of the world. Diseases caused by protozoan parasites are responsible for considerable mortality and morbidity, affecting more than 500 million people worldwide. Globally, the burden of protozoan diseases is increasing and is been exacerbated because of a lack of effective medication due to the drug resistance and toxicity of current antiprotozoal agents. These limitations have prompted many researchers to search for new drugs against protozoan parasites. In this review, we have compiled the latest information (2012-2017) on the structures and pharmacological activities of newly developed organic compounds against five major protozoan diseases, giardiasis, leishmaniasis, malaria, trichomoniasis, and trypanosomiasis, with the aim of showing recent advances in the discovery of new antiprotozoal drugs.
Collapse
Affiliation(s)
- Seong-Min Lee
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| | - Min-Sun Kim
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| | - Faisal Hayat
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| | - Dongyun Shin
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| |
Collapse
|
14
|
Mendes EP, Goulart CM, Chaves OA, Faiões VDS, Canto-Carvalho MM, Machado GC, Torres-Santos EC, Echevarria A. Evaluation of Novel Chalcone-Thiosemicarbazones Derivatives as Potential Anti- Leishmania amazonensis Agents and Its HSA Binding Studies. Biomolecules 2019; 9:biom9110643. [PMID: 31652866 PMCID: PMC6920794 DOI: 10.3390/biom9110643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 11/16/2022] Open
Abstract
A series of seven chalcone-thiosemicarbazones (5a-5g) were synthesized and evaluated as potential new drugs (anti-leishmanial effect). Although four of the chalcone-thiosemicarbazones are already known, none of them or any compound in this class has been previously investigated for their effects on parasites of the Leishmania genus. The compounds were prepared in satisfactory yields (40-75%) and these compounds were evaluated against promastigotes, axenic amastigotes and intracellular amastigotes of L. amazonensis after 48 h of culture. The half maximal inhibitory concentration (IC50) values of the intracellular amastigotes were determined to be in the range of 3.40 to 5.95 µM for all compounds assayed. The selectivity index showed value of 15.05 for 5a, whereas pentamidine (reference drug) was more toxic in our model (SI = 2.32). Furthermore, to understand the preliminary relationship between the anti-leishmanial activity of the chalcone-thiosemicarbazones, their electronic (σ), steric (MR) and lipophilicity (π) properties were correlated, and the results indicated that moieties with electronic withdrawing effects increase the anti-leishmanial activity. The preliminary pharmacokinetic evaluation of one of the most active compound (5e) was studied via interaction to human serum albumin (HSA) using multiple spectroscopic techniques combined with molecular docking. The results of antiparasitic effects against L. amazonensis revealed the chalcone-thiosemicarbazone class to be novel prototypes for drug development against leishmaniasis.
Collapse
Affiliation(s)
- Edinéia Pastro Mendes
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal Rural do Rio de Janeiro, Seropédica-Rio de Janeiro 23.890-000, Brazil.
- Programa de Pós-graduação em Ciência, Tecnologia e Inovação em Agropecuária, Universidade Federal Rural do Rio de Janeiro, Seropédica, Seropédica-Rio de Janeiro 23890-000, Brazil.
| | - Carla Marins Goulart
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal Rural do Rio de Janeiro, Seropédica-Rio de Janeiro 23.890-000, Brazil.
| | - Otávio Augusto Chaves
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal Rural do Rio de Janeiro, Seropédica-Rio de Janeiro 23.890-000, Brazil.
- Instituto SENAI de Inovação em Química Verde, Maracanã-Rio de Janeiro 20271-030, Brazil.
| | - Viviane Dos S Faiões
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro-Rio de Janeiro 21040-900, Brazil.
| | - Marilene M Canto-Carvalho
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro-Rio de Janeiro 21040-900, Brazil.
| | - Gerzia C Machado
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro-Rio de Janeiro 21040-900, Brazil.
| | - Eduardo Caio Torres-Santos
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro-Rio de Janeiro 21040-900, Brazil.
| | - Aurea Echevarria
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal Rural do Rio de Janeiro, Seropédica-Rio de Janeiro 23.890-000, Brazil.
| |
Collapse
|
15
|
Serban G. Future Prospects in the Treatment of Parasitic Diseases: 2-Amino-1,3,4-Thiadiazoles in Leishmaniasis. Molecules 2019; 24:E1557. [PMID: 31010226 PMCID: PMC6514673 DOI: 10.3390/molecules24081557] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/14/2019] [Accepted: 04/17/2019] [Indexed: 02/08/2023] Open
Abstract
Neglected tropical diseases affect the lives of a billion people worldwide. Among them, the parasitic infections caused by protozoan parasites of the Trypanosomatidae family have a huge impact on human health. Leishmaniasis, caused by Leishmania spp., is an endemic parasitic disease in over 88 countries and is closely associated with poverty. Although significant advances have been made in the treatment of leishmaniasis over the last decade, currently available chemotherapy is far from satisfactory. The lack of an approved vaccine, effective medication and significant drug resistance worldwide had led to considerable interest in discovering new, inexpensive, efficient and safe antileishmanial agents. 1,3,4-Thiadiazole rings are found in biologically active natural products and medicinally important synthetic compounds. The thiadiazole ring exhibits several specific properties: it is a bioisostere of pyrimidine or benzene rings with prevalence in biologically active compounds; the sulfur atom increases lipophilicity and combined with the mesoionic character of thiadiazoles imparts good oral absorption and good cell permeability, resulting in good bioavailability. This review presents synthetic 2-amino-1,3,4-thiadiazole derivatives with antileishmanial activity. Many reported derivatives can be considered as lead compounds for the synthesis of future agents as an alternative to the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Georgeta Serban
- Pharmaceutical Chemistry Department, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga, 410028 Oradea, Romania.
| |
Collapse
|
16
|
da Silva AD, Dos Santos JA, Machado PA, Alves LA, Laque LC, de Souza VC, Coimbra ES, Capriles PVSZ. Insights about resveratrol analogs against trypanothione reductase of Leishmania braziliensis: Molecular modeling, computational docking and in vitro antileishmanial studies. J Biomol Struct Dyn 2018; 37:2960-2969. [PMID: 30058445 DOI: 10.1080/07391102.2018.1502096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In this work, we combined molecular modeling, computational docking and in vitro analysis to explore the antileishmanial effect of some resveratrol analogs (ResAn), focusing on their pro-oxidant effect. The molecular target was the trypanothione reductase of Leishmania braziliensis (LbTryR), an essential component of the antioxidant defenses in trypanosomatid parasites. Three-dimensional structures of LbTryR were modeled and molecular docking studies of ResAn1-5 compounds showed the following affinity: ResAn1 > ResAn2 > ResAn4 > ResAn5 > ResAn3. Positive correlation was observed between these compounds' affinity to the LbTryR and the IC50 values against Leishmania sp (ResAn1 < ResAn2 < ResAn4), which allows for TryR being considered an important target for them. As the compound ResAn1 showed the best antileishmanial activity, and docking studies showed its high affinity for NADP binding site (NS) of TryR, plus having been able to induce ROS production in L. braziliensis promastigotes treated, ResAn1 probably occupies NS interfering in the electron transfer processes responsible for the catalytic reaction. The in silico prediction of ADMET properties suggests that ResAn1 may be a promising drug candidate with properties to cross biological membranes and high gastrointestinal absorption, not violating Lipinski's rules. Ultimately, the antileishmanial effect of ResAn can be associated with a pro-oxidant effect which, in turn, can be exploited as an antimicrobial agent. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Adilson D da Silva
- a Departamento de Química , I.C.E. Universidade Federal de Juiz de Fora , Juiz de Fora , Brazil
| | - Juliana A Dos Santos
- a Departamento de Química , I.C.E. Universidade Federal de Juiz de Fora , Juiz de Fora , Brazil
| | - Patrícia A Machado
- b Departamento de Parasitologia, Microbiologia e Imunologia , I.C.B. Universidade Federal de Juiz de Fora , Juiz de Fora , Brazil
| | - Lara A Alves
- c Programa de Pós-graduação em Modelagem Computacional, Departamento de Ciência da Computação , I.C.E. Universidade Federal de Juiz de Fora , Juiz de Fora , Brazil
| | - Larissa C Laque
- c Programa de Pós-graduação em Modelagem Computacional, Departamento de Ciência da Computação , I.C.E. Universidade Federal de Juiz de Fora , Juiz de Fora , Brazil
| | - Vinícius C de Souza
- c Programa de Pós-graduação em Modelagem Computacional, Departamento de Ciência da Computação , I.C.E. Universidade Federal de Juiz de Fora , Juiz de Fora , Brazil
| | - Elaine S Coimbra
- b Departamento de Parasitologia, Microbiologia e Imunologia , I.C.B. Universidade Federal de Juiz de Fora , Juiz de Fora , Brazil
| | - Priscila V S Z Capriles
- c Programa de Pós-graduação em Modelagem Computacional, Departamento de Ciência da Computação , I.C.E. Universidade Federal de Juiz de Fora , Juiz de Fora , Brazil
| |
Collapse
|
17
|
Romero AH, López SE. In silico molecular docking studies of new potential 4-phthalazinyl-hydrazones on selected Trypanosoma cruzi and Leishmania enzyme targets. J Mol Graph Model 2017; 76:313-329. [DOI: 10.1016/j.jmgm.2017.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 01/19/2023]
|
18
|
Pandey RK, Kumbhar BV, Sundar S, Kunwar A, Prajapati VK. Structure-based virtual screening, molecular docking, ADMET and molecular simulations to develop benzoxaborole analogs as potential inhibitor against Leishmania donovani trypanothione reductase. J Recept Signal Transduct Res 2016; 37:60-70. [DOI: 10.3109/10799893.2016.1171344] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Kishangarh, Rajasthan, India
| | - Bajarang Vasant Kumbhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Kishangarh, Rajasthan, India
| |
Collapse
|
19
|
Anjos IC, Rocha GB. A topological assessment of the electronic structure of mesoionic compounds. J Comput Chem 2015; 36:1907-18. [PMID: 26227084 DOI: 10.1002/jcc.24027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/30/2015] [Accepted: 07/04/2015] [Indexed: 11/08/2022]
Abstract
Mesoionic compounds belonging to the 1,3-oxazol-5-one, 1,3-diazole-4-thione and 1,3-thiazole-5-thione rings have been evaluated by a combination of Density Functional Theory, Quantum Theory of Atoms in Molecules, Electron Localization Function, Natural Bond Orbitals and Geodesic Electrostatic Potential Charge calculations. Atomic, bond, and ring properties have been considered to describe the electronic structure of mesoionic compounds. The results show that not only the ring type, but also the substituent groups have great influence on these properties. In addition, there is a significant and heterogeneous π-bonding contribution throughout the mesoionic rings. Finally, we conclude that some classical conceptions of charge localization and π-bonding contribution in these compounds are misleading or incomplete. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Italo Curvelo Anjos
- Departamento de Química, CCEN, Universidade Federal da Paraíba, 58.059-970, João Pessoa, Paraíba, Brazil
| | - Gerd Bruno Rocha
- Departamento de Química, CCEN, Universidade Federal da Paraíba, 58.059-970, João Pessoa, Paraíba, Brazil
| |
Collapse
|
20
|
de Melos JLR, Torres-Santos EC, Faiões VDS, Del Cistia CDN, Sant'Anna CMR, Rodrigues-Santos CE, Echevarria A. Novel 3,4-methylenedioxyde-6-X-benzaldehyde-thiosemicarbazones: Synthesis and antileishmanial effects against Leishmania amazonensis. Eur J Med Chem 2015; 103:409-17. [PMID: 26375353 DOI: 10.1016/j.ejmech.2015.09.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/02/2015] [Accepted: 09/05/2015] [Indexed: 11/30/2022]
Abstract
A series of eleven 3,4-methylenedioxyde-6-X-benzaldehyde-thiosemicarbazones (16-27) was synthesised as part of a study to search for potential new drugs with a leishmanicidal effect. The thiosemicarbazones, ten of which are new compounds, were prepared in good yields (85-98%) by the reaction of 3,4-methylenedioxyde-6-benzaldehydes (6-X-piperonal), previously synthesised for this work by several methodologies, and thiosemicarbazide in ethanol with a few drops of H2SO4. These compounds were evaluated against Leishmania amazonensis promastigotes, and derivatives where X = I (22) and X = CN (23) moieties showed impressive results, having IC₅₀ = 20.74 μM and 16.40 μM, respectively. The intracellular amastigotes assays showed IC₅₀ = 22.00 μM (22) and 17.00 μM (23), and selectivity index >5.7 and >7.4, respectively, with a lower toxicity compared to pentamidine (positive control, SI = 4.5). The results obtained from the preliminary QSAR study indicated the hydrophobicity (log P) as a fundamental parameter for the 2D-QSAR linear model. A molecular docking study demonstrated that both compounds interact with flavin mononucleotide (FMN), important binding site of NO synthase.
Collapse
Affiliation(s)
- Jorge Luiz R de Melos
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, 23.890-000 Seropédica, RJ, Brazil
| | | | - Viviane dos S Faiões
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | | - Aurea Echevarria
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, 23.890-000 Seropédica, RJ, Brazil.
| |
Collapse
|
21
|
Angiulli G, Lantella A, Forte E, Angelucci F, Colotti G, Ilari A, Malatesta F. Leishmania infantum trypanothione reductase is a promiscuous enzyme carrying an NADPH:O2 oxidoreductase activity shared by glutathione reductase. Biochim Biophys Acta Gen Subj 2015; 1850:1891-7. [PMID: 26033467 DOI: 10.1016/j.bbagen.2015.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/05/2015] [Accepted: 05/27/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Leishmania infantum is a protozoan of the trypanosomatid family causing visceral leishmaniasis. Leishmania parasites are transmitted by the bite of phlebotomine sand flies to the human host and are phagocyted by macrophages. The parasites synthesize N1-N8-bis(glutationyl)-spermidine (trypanothione, TS2), which furnishes electrons to the tryparedoxin-tryparedoxin peroxidase couple to reduce the reactive oxygen species produced by macrophages. Trypanothione is kept reduced by trypanothione reductase (TR), a FAD-containing enzyme essential for parasite survival. METHODS The enzymatic activity has been studied by stopped-flow, absorption spectroscopy, and amperometric measurements. RESULTS The study reported here demonstrates that the steady-state parameters change as a function of the order of substrates addition to the TR-containing solution. In particular, when the reaction is carried out by adding NADPH to a solution containing the enzyme and trypanothione, the KM for NADPH decreases six times compared to the value obtained by adding TS2 as last reagent to start the reaction (1.9 vs. 12μM). More importantly, we demonstrate that TR is able to catalyze the oxidation of NADPH also in the absence of trypanothione. Thus, TR catalyzes the reduction of O2 to water through the sequential formation of C(4a)-(hydro)peroxyflavin and sulfenic acid intermediates. This NADPH:O2 oxidoreductase activity is shared by Saccharomyces cerevisiae glutathione reductase (GR). CONCLUSIONS TR and GR, in the absence of their physiological substrates, may catalyze the electron transfer reaction from NADPH to molecular oxygen to yield water. GENERAL SIGNIFICANCE TR and GR are promiscuous enzymes.
Collapse
Affiliation(s)
- Gabriella Angiulli
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome Italy
| | - Antonella Lantella
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome Italy
| | - Elena Forte
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome Italy
| | - Francesco Angelucci
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'Ambiente, University of L'Aquila, L'Aquila, Italy
| | - Gianni Colotti
- CNR-Institute of Molecular Biology and Pathology, c/o Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- CNR-Institute of Molecular Biology and Pathology, c/o Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | - Francesco Malatesta
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome Italy.
| |
Collapse
|
22
|
Paiva RDO, Kneipp LF, dos Reis CM, Echevarria A. Mesoionic compounds with antifungal activity against Fusarium verticillioides. BMC Microbiol 2015; 15:11. [PMID: 25649493 PMCID: PMC4327949 DOI: 10.1186/s12866-015-0340-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 01/08/2015] [Indexed: 11/10/2022] Open
Abstract
Background Fungi contaminate the food of humans and animals, are a risk to health, and can cause financial losses. In this work, the antifungal activities of 16 mesoionic compounds (MI 1–16) were evaluated against mycotoxigenic fungi, including Aspergillus spp., Fusarium verticillioides and Penicillium citrinum. Furthermore, the decreased ergosterol in the total lipid content of Fusarium verticillioides was investigated. Results F. verticillioides was the most sensitive fungus to the mesoionic compounds. Among the evaluated compounds, MI-11 and MI-16 presented higher antifungal effects against F. verticillioides, with MIC values of 7.8 μg/ml, and MI-2 and MI-3 followed, with MICs of 15.6 μg/ml. The most active compounds were those with heterocyclic ring phenyl groups substituted by electron donor moieties (MI-11 and MI-16). Among some compounds with higher activity (MI-2, MI-11 and MI-16), decreased ergosterol content in the total lipid fraction of F. verticillioides was demonstrated. MI-2 reduced the ergosterol content approximately 40% and 80% at concentrations of 7.8 μg/ml and 15.6 μg/ml, respectively, and MI-11 and MI-16 decreased the content by 30% and 50%, respectively, when at a concentration of 7.8 μg/ml. Conclusion These findings indicate that mesoionic compounds have significant antifungal activity against F. verticillioides.
Collapse
Affiliation(s)
- Rojane de Oliveira Paiva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, 23890-000, Seropédica, RJ, Brazil. .,Laboratório de Taxonomia Bioquímica e Bioprospecção de Fungos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, 21040-900, RJ, Brazil.
| | - Lucimar Ferreira Kneipp
- Laboratório de Taxonomia Bioquímica e Bioprospecção de Fungos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, 21040-900, RJ, Brazil.
| | - Camilla Moretto dos Reis
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, 23890-000, Seropédica, RJ, Brazil.
| | - Aurea Echevarria
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, 23890-000, Seropédica, RJ, Brazil.
| |
Collapse
|
23
|
Nagle A, Khare S, Kumar AB, Supek F, Buchynskyy A, Mathison CJN, Chennamaneni N, Pendem N, Buckner FS, Gelb M, Molteni V. Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Chem Rev 2014; 114:11305-47. [PMID: 25365529 PMCID: PMC4633805 DOI: 10.1021/cr500365f] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Indexed: 02/08/2023]
Affiliation(s)
- Advait
S. Nagle
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Shilpi Khare
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Arun Babu Kumar
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Frantisek Supek
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Andriy Buchynskyy
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Casey J. N. Mathison
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Naveen
Kumar Chennamaneni
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Nagendar Pendem
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Frederick S. Buckner
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Michael
H. Gelb
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Valentina Molteni
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| |
Collapse
|
24
|
Hu Y, Li CY, Wang XM, Yang YH, Zhu HL. 1,3,4-Thiadiazole: synthesis, reactions, and applications in medicinal, agricultural, and materials chemistry. Chem Rev 2014; 114:5572-610. [PMID: 24716666 DOI: 10.1021/cr400131u] [Citation(s) in RCA: 331] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yang Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University , Nanjing 210093, People's Republic of China
| | | | | | | | | |
Collapse
|
25
|
Synthesis, antileishmanial activity and structure–activity relationship of 1-N-X-phenyl-3-N′-Y-phenyl-benzamidines. Eur J Med Chem 2013; 67:166-74. [DOI: 10.1016/j.ejmech.2013.06.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/21/2013] [Accepted: 06/18/2013] [Indexed: 11/23/2022]
|
26
|
Chiodi CG, Verli H. Structural characterization of NETNES glycopeptide from Trypanosoma cruzi. Carbohydr Res 2013; 373:28-34. [PMID: 23578542 DOI: 10.1016/j.carres.2013.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 11/26/2022]
Abstract
Trypanosoma cruzi is a protozoan, responsible for Chagas disease, that parasites triatomines and some vertebrates, mainly Homo sapiens. In 2010, nearly 10 million people in whole world, most from Latin America, had Chagas disease, which is an illness of high morbidity, low mortality, and serious problems of quality of life. The available treatment has high toxicity and low efficacy at chronic phase. Some of the protozoan antigenic or virulence factors include complex carbohydrate structures that, due to their uniqueness, may constitute potential selective targets for the development of new treatments. One example of such structures is NETNES, a low abundance T. cruzi glycopeptide, comprising 13 amino acid residues, one or two N-glycosylation chains, a GPI anchor and two P-glycosylations. In this context, the current work aims to obtain an atomic model for NETNES, including its glycan chains and membrane attachment, in order to contribute in the characterization of its structure and dynamics. Based on POPC and GPI models built in agreement with experimental data, our results indicate that, in the first third of the simulation, NETNES peptide is very flexible in solution, bending itself between asparagine residues and lying down on some carbohydrates and membrane, exposing amino acid residues and some other glycans, mainly terminal mannoses, to the extracellular medium, remaining in this position until the end of simulations.
Collapse
Affiliation(s)
- Carla G Chiodi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91500-970, RS, Brazil.
| | | |
Collapse
|
27
|
Developments in diagnosis and antileishmanial drugs. Interdiscip Perspect Infect Dis 2012; 2012:626838. [PMID: 23118748 PMCID: PMC3483814 DOI: 10.1155/2012/626838] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/07/2012] [Accepted: 09/11/2012] [Indexed: 01/19/2023] Open
Abstract
Leishmaniasis ranks the third in disease burden in disability-adjusted life years caused by neglected tropical diseases and is the second cause of parasite-related deaths after malaria; but for a variety of reasons, it is not receiving the attention that would be justified seeing its importance. Leishmaniasis is a diverse group of clinical syndromes caused by protozoan parasites of the genus Leishmania. It is estimated that 350 million people are at risk in 88 countries, with a global incidence of 1–1.5 million cases of cutaneous and 500,000 cases of visceral leishmaniasis. Improvements in diagnostic methods for early case detection and latest combitorial chemotherapeutic methods have given a new hope for combating this deadly disease. The cell biology of Leishmania and mammalian cells differs considerably and this distinctness extends to the biochemical level. This provides the promise that many of the parasite's proteins should be sufficiently different from hosts and can be successfully exploited as drug targets. This paper gives a brief overview of recent developments in the diagnosis and approaches in antileishmanial drug discovery and development.
Collapse
|