1
|
Matsuzaki Y, Kurahashi M, Watanabe S, Kiguchi S, Harada T, Iwahashi F. Discovery and biological profile of pyridachlometyl. PEST MANAGEMENT SCIENCE 2024. [PMID: 38853401 DOI: 10.1002/ps.8239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
Pyridachlometyl is a novel tubulin dynamics modulator fungicide developed by Sumitomo as a new agent designed to tackle fungicide resistance. Pyridachlometyl is being developed as a first-in-class molecule with an anti-tubulin mode of action, the chemical structure of which is characterized by a unique tetrasubstituted pyridazine ring. The first commercial product 'Fuseki flowable' received initial registration in 2023 in Japan. The concepts of the discovery project, optimization of chemical structures, and biological profiles are reviewed herein. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuichi Matsuzaki
- Health & Crop Sciences Research Laboratory, Sumitomo Chemical Co., Takarazuka, Japan
| | - Makoto Kurahashi
- Health & Crop Sciences Research Laboratory, Sumitomo Chemical Co., Takarazuka, Japan
| | - Satoshi Watanabe
- Health & Crop Sciences Research Laboratory, Sumitomo Chemical Co., Takarazuka, Japan
| | - So Kiguchi
- Health & Crop Sciences Research Laboratory, Sumitomo Chemical Co., Takarazuka, Japan
| | - Toshiyuki Harada
- Health & Crop Sciences Research Laboratory, Sumitomo Chemical Co., Takarazuka, Japan
| | - Fukumatsu Iwahashi
- Health & Crop Sciences Research Laboratory, Sumitomo Chemical Co., Takarazuka, Japan
| |
Collapse
|
2
|
Manabe A, Ikegami H, Morishita H, Matsuzaki Y. Discovery of pyridachlometyl: A new class of pyridazine fungicides. Bioorg Med Chem 2023; 88-89:117332. [PMID: 37210791 DOI: 10.1016/j.bmc.2023.117332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/23/2023]
Abstract
Pyridachlometyl is a unique pyridazine fungicide with a novel mode of action. Herein, we describe the pathway for the invention of pyridachlometyl. First, we identified a diphenyl-imidazo[1,2-a]pyrimidine as our proprietary lead with potent fungicidal activity. Then, aiming to simplify the chemical structure, we applied judicious estimations to explore monocyclic heterocycles as pharmacophores. This enabled the identification of a novel class of tetrasubstituted pyridazine compounds with potent fungicidal activity, likely retaining the same mode of action as the aforementioned compounds. The findings indicated bioisosteric similarity between diphenyl-imidazo[1,2-a]pyrimidine and pyridazine. Further structure-activity and mammalian safety investigations of pyridazine compounds resulted in the discovery of pyridachlometyl as a candidate for commercial development.
Collapse
Affiliation(s)
- Akio Manabe
- Health and Crop Sciences Research Laboratory, Sumitomo Chemical Co., Ltd., Takarazuka, Japan
| | - Hiroshi Ikegami
- Health and Crop Sciences Research Laboratory, Sumitomo Chemical Co., Ltd., Takarazuka, Japan
| | - Hiroshi Morishita
- Health and Crop Sciences Research Laboratory, Sumitomo Chemical Co., Ltd., Takarazuka, Japan
| | - Yuichi Matsuzaki
- Health and Crop Sciences Research Laboratory, Sumitomo Chemical Co., Ltd., Takarazuka, Japan.
| |
Collapse
|
3
|
Grinevich OI, Volkov VV, Buryak AK. Diazines on graphene: adsorption, structural variances and electronic states. Phys Chem Chem Phys 2022; 24:29712-29720. [PMID: 36453703 DOI: 10.1039/d2cp05096j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We conduct quantum studies of adsorption of diazine heterocycles on graphene to discuss experimental thermodynamics of gas-phase adsorption of pyridazine, pyrimidine and pyrazine on graphitized thermal carbon black, as reported previously. Using Born-Oppenheimer molecular dynamics and density functional studies, we characterize structural and electronic tendencies of the heterocycles on graphene. The theoretical studies predict the adsorption of pyridazine, pyrazine and pyrimidine to cause electronic perturbations of dipole, quadrupole and mixed spatial characters, respectively, resulting in a red shift of the electronic components of the heterocycles to modulate graphene electronics upon admixing of diazine orbital components with the πz states of the substrate. Investigating the thermodynamics of adsorption further involves calculating Henry's constant with the expression of the uniform surface limit: using experimental data, we estimate binding energies and force derivatives with respect to the surface normal. The extracted association energies agree with the results of Lennard-Jones potential calculations. Together, the reported pyridazine anomalous retention required the association force constant to be lower compared with values for the other diazines. Exploring energies of intermolecular relations, we ascribe the pyridazine anomalous retention to possibility of the formation of pyridazine dimers: when on the surface, only for pyridazine, the computed benefit of pairing is larger than the energy of molecular association with graphene.
Collapse
Affiliation(s)
- Oksana I Grinevich
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, Moscow, GSP-1, 119071, Russian Federation.
| | - Victor V Volkov
- Bereozovaya 2a, Konstantinivo, Moscow Region, 140207, Russian Federation
| | - Aleksey K Buryak
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, Moscow, GSP-1, 119071, Russian Federation.
| |
Collapse
|
4
|
Mladentsev DY, Kuznetsova EN, Skvortsova MN, Dashkin RR. Review on Synthetic Approaches toward Rivaroxaban (Xarelto), an Anticoagulant Drug. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dmitry Y. Mladentsev
- Mendeleev Engineering Center, Mendeleev University of Chemical Technology, Moscow 125047, Russia
| | - Ekaterina N. Kuznetsova
- Division of Chemistry and Technology of Organic Synthesis, Department of Chemistry and Technology of Biomedical Preparations, Mendeleev University of Chemical Technology, Moscow 125047, Russia
| | - Maria N. Skvortsova
- Division of Chemistry and Technology of Organic Synthesis, Department of Chemistry and Technology of Biomedical Preparations, Mendeleev University of Chemical Technology, Moscow 125047, Russia
| | - Ratmir R. Dashkin
- Division of Chemistry and Technology of Organic Synthesis, Department of Chemistry and Technology of Biomedical Preparations, Mendeleev University of Chemical Technology, Moscow 125047, Russia
| |
Collapse
|
5
|
Synthetic approaches to the 2015-2018 new agrochemicals. Bioorg Med Chem 2021; 39:116162. [PMID: 33895705 DOI: 10.1016/j.bmc.2021.116162] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 12/23/2022]
Abstract
In this review, the synthesis of 33 agrochemicals that received an international standardization organization (ISO) name between January 2015 and December 2018 is described. The aim is to showcase the broad range and scope of reactions, reagents and intermediates used to discover and produce the latest active ingredients addressing the crop protection industry's needs.
Collapse
|
6
|
Monti L, Cornec AS, Oukoloff K, Kovalevich J, Prijs K, Alle T, Brunden KR, Smith AB, El-Sakkary N, Liu LJ, Syed A, Skinner DE, Ballatore C, Caffrey CR. Congeners Derived from Microtubule-Active Phenylpyrimidines Produce a Potent and Long-Lasting Paralysis of Schistosoma mansoni In Vitro. ACS Infect Dis 2021; 7:1089-1103. [PMID: 33135408 DOI: 10.1021/acsinfecdis.0c00508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Schistosomiasis is a parasitic disease that affects approximately 200 million people in developing countries. Current treatment relies on just one partially effective drug, and new drugs are needed. Tubulin and microtubules (MTs) are essential constituents of the cytoskeleton in all eukaryotic cells and considered potential drug targets to treat parasitic infections. The α- and β-tubulin of Schistosoma mansoni have ∼96% and ∼91% sequence identity to their respective human tubulins, suggesting that compounds which bind mammalian tubulin may interfere with MT-mediated functions in the parasite. To explore the potential of different classes of tubulin-binding molecules as antischistosomal leads, we completed a series of in vitro whole-organism screens of a target-based compound library against S. mansoni adults and somules (postinfective larvae), and identified multiple biologically active compounds, among which phenylpyrimidines were the most promising. Further structure-activity relationship studies of these hits identified a series of thiophen-2-yl-pyrimidine congeners, which induce a potent and long-lasting paralysis of the parasite. Moreover, compared to the originating compounds, which showed cytotoxicity values in the low nanomolar range, these new derivatives were 1-4 orders of magnitude less cytotoxic and exhibited weak or undetectable activity against mammalian MTs in a cell-based assay of MT stabilization. Given their selective antischistosomal activity and relatively simple drug-like structures, these molecules hold promise as candidates for the development of new treatments for schistosomiasis.
Collapse
Affiliation(s)
- Ludovica Monti
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Anne-Sophie Cornec
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th St., Philadelphia, Pennsylvania 19104-6323, United States
| | - Killian Oukoloff
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jane Kovalevich
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, 3600 Spruce Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Kristen Prijs
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, 3600 Spruce Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Thibault Alle
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Kurt R. Brunden
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, 3600 Spruce Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Amos B. Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th St., Philadelphia, Pennsylvania 19104-6323, United States
| | - Nelly El-Sakkary
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Lawrence J. Liu
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Ali Syed
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Danielle E. Skinner
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Carlo Ballatore
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
7
|
Adly OM, Shebl M, Abdelrhman EM, El-Shetary B. Synthesis, spectroscopic, X-ray diffraction, antimicrobial and antitumor studies of Ni(II) and Co(II) complexes derived from 4-acetyl-5,6-diphenyl-3(2H)-pyridazinone and ethylenediamine. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128607] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Matsuzaki Y, Watanabe S, Harada T, Iwahashi F. Pyridachlometyl has a novel anti-tubulin mode of action which could be useful in anti-resistance management. PEST MANAGEMENT SCIENCE 2020; 76:1393-1401. [PMID: 31622533 PMCID: PMC7065193 DOI: 10.1002/ps.5652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/24/2019] [Accepted: 10/14/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Fungicide resistance is a growing problem affecting many crop pathogens owing to the low success rate in finding novel chemical classes of fungicides. Pyridachlometyl is a new fungicide that seems to belong to a new chemical class of tubulin polymerization promoters. RESULTS Pyridachlometyl exhibited potent antifungal activity against a broad range of fungal species belonging to the phyla Ascomycota and Basidiomycota. No cross-resistance was observed with other fungicide classes, such as ergosterol biosynthesis inhibitors, respiratory inhibitors, or tubulin polymerization inhibitors in Zymoseptoria tritici. Pyridachlometyl-resistant strains were obtainable by UV mutagenesis in Z. tritici and Penicillium digitatum. Mutations in tubulin-coding genes were found in all laboratory mutants but the patterns of mutation were distinct from that of tubulin polymerization inhibitors, such as benzimidazole fungicides. CONCLUSION Pyridachlometyl is a promising new tool for disease control. However, strict resistance management strategies should be recommended for the practical use of pyridachlometyl. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuichi Matsuzaki
- Health and Crop Sciences Research LaboratorySumitomo Chemical Co., LtdTakarazukaJapan
| | - Satoshi Watanabe
- Health and Crop Sciences Research LaboratorySumitomo Chemical Co., LtdTakarazukaJapan
| | - Toshiyuki Harada
- Health and Crop Sciences Research LaboratorySumitomo Chemical Co., LtdTakarazukaJapan
| | - Fukumatsu Iwahashi
- Health and Crop Sciences Research LaboratorySumitomo Chemical Co., LtdTakarazukaJapan
| |
Collapse
|
9
|
Vajekar SN, Shankarling GS. Choline hydroxide promoted sustainable one-pot three-component synthesis of 1H-pyrazolo[1,2-a]pyridazine-2-carbonitriles under solvent-free conditions. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1720736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Shailesh N. Vajekar
- Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai, India
| | | |
Collapse
|
10
|
Rossi R, Ciofalo M. Current Advances in the Synthesis and Biological Evaluation of Pharmacologically Relevant 1,2,4,5-Tetrasubstituted-1H-Imidazole Derivatives. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666191014154129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
:
In recent years, the synthesis and evaluation of the
biological properties of 1,2,4,5-tetrasubstituted-1H-imidazole
derivatives have been the subject of a large number of studies
by academia and industry. In these studies it has been shown
that this large and highly differentiated class of heteroarene
derivatives includes high valuable compounds having important
biological and pharmacological properties such as
antibacterial, antifungal, anthelmintic, anti-inflammatory, anticancer,
antiviral, antihypertensive, cholesterol-lowering, antifibrotic,
antiuricemic, antidiabetic, antileishmanial and antiulcer
activities.
:
The present review with 411 references, in which we focused on the literature data published mainly from 2011
to 2017, aims to update the readers on the recent developments on the synthesis and biological evaluation of
pharmacologically relevant 1,2,4,5-tetrasubstituted-1H-imidazole derivatives with an emphasis on their different
molecular targets and their potential use as drugs to treat various types of diseases. Reference was also
made to substantial literature data acquired before 2011 in this burgeoning research area.
Collapse
Affiliation(s)
- Renzo Rossi
- Dipartimento di Chimica e Chimica Industriale, University of Pisa - via Moruzzi, 3, I-56124 Pisa, Italy
| | - Maurizio Ciofalo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo - Viale delle Scienze, Edificio 4, I-90128 Palermo, Italy
| |
Collapse
|
11
|
Komendantova AS, Fakhrutdinov AN, Menchikov LG, Sukhorukov AY, Zavarzin IV, Volkova YA. Cyclization of β-Chlorovinyl Thiohydrazones into Pyridazines: A Mechanistic Study. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Anna S. Komendantova
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky prosp. 119991 Moscow Russia
| | - Artem N. Fakhrutdinov
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky prosp. 119991 Moscow Russia
| | - Leonid G. Menchikov
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky prosp. 119991 Moscow Russia
| | - Alexey Yu. Sukhorukov
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky prosp. 119991 Moscow Russia
| | - Igor V. Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky prosp. 119991 Moscow Russia
| | - Yulia A. Volkova
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky prosp. 119991 Moscow Russia
| |
Collapse
|
12
|
Design, synthesis and characterization of potent microtubule inhibitors with dual anti-proliferative and anti-angiogenic activities. Eur J Med Chem 2018; 157:380-396. [DOI: 10.1016/j.ejmech.2018.07.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/30/2018] [Accepted: 07/16/2018] [Indexed: 11/30/2022]
|
13
|
Monti L, Wang SC, Oukoloff K, Smith AB, Brunden KR, Caffrey CR, Ballatore C. Brain-Penetrant Triazolopyrimidine and Phenylpyrimidine Microtubule Stabilizers as Potential Leads to Treat Human African Trypanosomiasis. ChemMedChem 2018; 13:1751-1754. [PMID: 29969537 DOI: 10.1002/cmdc.201800404] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Indexed: 11/07/2022]
Abstract
In vitro whole-organism screens of Trypanosoma brucei with representative examples of brain-penetrant microtubule (MT)-stabilizing agents identified lethal triazolopyrimidines and phenylpyrimidines with sub-micromolar potency. In mammalian cells, these antiproliferative compounds disrupt MT integrity and decrease total tubulin levels. Their parasiticidal potency, combined with their generally favorable pharmacokinetic properties, which include oral bioavailability and brain penetration, suggest that these compounds are potential leads against human African trypanosomiasis.
Collapse
Affiliation(s)
- Ludovica Monti
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Steven C Wang
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Killian Oukoloff
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Amos B Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104-6323, USA
| | - Kurt R Brunden
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104-6323, USA
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Carlo Ballatore
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
14
|
Oukoloff K, Kovalevich J, Cornec AS, Yao Y, Owyang ZA, James M, Trojanowski JQ, Lee VMY, Smith AB, Brunden KR, Ballatore C. Design, synthesis and evaluation of photoactivatable derivatives of microtubule (MT)-active [1,2,4]triazolo[1,5-a]pyrimidines. Bioorg Med Chem Lett 2018; 28:2180-2183. [PMID: 29764743 DOI: 10.1016/j.bmcl.2018.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/18/2018] [Accepted: 05/05/2018] [Indexed: 10/17/2022]
Abstract
The [1,2,4]triazolo[1,5-a]pyrimidines comprise a promising class of non-naturally occurring microtubule (MT)-active compounds. Prior studies revealed that different triazolopyrimidine substitutions can yield molecules that either promote MT stabilization or disrupt MT integrity. These differences can have important ramifications in the therapeutic applications of triazolopyrimidines and suggest that different analogues may exhibit different binding modes within the same site or possibly interact with tubulin/MTs at alternative binding sites. To help discern these possibilities, a series of photoactivatable triazolopyrimidine congeners was designed, synthesized and evaluated in cellular assays with the goal of identifying candidate probes for photoaffinity labeling experiments. These studies led to the identification of different derivatives that incorporate a diazirine ring in the amine substituent at position 7 of the triazolopyrimidine heterocycle, resulting in molecules that either promote stabilization of MTs or disrupt MT integrity. These photoactivatable candidate probes hold promise to investigate the mode of action of MT-active triazolopyrimidines.
Collapse
Affiliation(s)
- Killian Oukoloff
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Jane Kovalevich
- Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104-6323, United States
| | - Anne-Sophie Cornec
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th St., Philadelphia, PA 19104-6323, United States
| | - Yuemang Yao
- Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104-6323, United States
| | - Zachary A Owyang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Michael James
- Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104-6323, United States
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104-6323, United States
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104-6323, United States
| | - Amos B Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th St., Philadelphia, PA 19104-6323, United States
| | - Kurt R Brunden
- Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104-6323, United States.
| | - Carlo Ballatore
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States.
| |
Collapse
|
15
|
Polat İ, Baysal Ö, Mercati F, Gümrükcü E, Sülü G, Kitapcı A, Araniti F, Carimi F. Characterization of Botrytis cinerea isolates collected on pepper in Southern Turkey by using molecular markers, fungicide resistance genes and virulence assay. INFECTION GENETICS AND EVOLUTION 2018; 60:151-159. [PMID: 29505818 DOI: 10.1016/j.meegid.2018.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/30/2018] [Accepted: 02/13/2018] [Indexed: 11/18/2022]
Abstract
Botrytis cinerea is a polyphagous fungal pathogen causing gray mold disease. Moreover, it is one of the most destructive infections of small fruit crops such as pepper (Capsicum annnum L.). C. sativum is a species belonging to the Solanaceae family and Turkey is one of the main producers in the World. In the present work, aiming to obtain information useful for pest management, fifty B. cinerea isolates collected from Turkey and a reference isolate (B05.10) were characterized using molecular markers and fungicide resistance genes. Morphological and molecular (ITS1-ITS4) identification of B. cinerea isolates, the degree of virulence and mating types were determined. Since one or several allelic mutations in the histidine kinase (Bos1) and β-tubulin genes generally confer the resistance to fungicides, the sequences of these target genes were investigated in the selected isolates, which allowed the identification of two different haplotypes. Mating types were also determined by PCR assays using primer specific for MAT1-1 alpha gene (MAT1-1-1) and MAT1-2 HMG (MAT1-2-1) of B. cinerea. Twenty-two out of 50 isolates (44%) were MAT1-2, while 38% were MAT1-1. Interestingly, out of whole studied samples, 9 isolates (18%) were heterokaryotic or mixed colonies. In addition, cluster and population structure analyses identified five main groups and two genetic pools, respectively, underlining a good level of variability in the analysed panel. The results highlighted the presence of remarkable genetic diversity in B. cinerea isolates collected in a crucial economical area for pepper cultivation in Turkey and the data will be beneficial in view of future gray mold disease management.
Collapse
Affiliation(s)
- İlknur Polat
- Batı Akdeniz Agricultural Research Institute, Antalya, Turkey
| | - Ömür Baysal
- Muğla Sıtkı Koçman University, Faculty of Science, Department of Molecular Biology and Genetics, 48000 Muğla, Turkey.
| | - Francesco Mercati
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), Palermo, Italy
| | - Emine Gümrükcü
- Batı Akdeniz Agricultural Research Institute, Antalya, Turkey
| | - Görkem Sülü
- Batı Akdeniz Agricultural Research Institute, Antalya, Turkey
| | - Aytül Kitapcı
- Batı Akdeniz Agricultural Research Institute, Antalya, Turkey
| | - Fabrizio Araniti
- Mediterranean University of Reggio Calabria, Reggio Calabria, Italy
| | - Francesco Carimi
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), Palermo, Italy
| |
Collapse
|
16
|
Lamberth C. Agrochemical lead optimization by scaffold hopping. PEST MANAGEMENT SCIENCE 2018; 74:282-292. [PMID: 28991418 DOI: 10.1002/ps.4755] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
Scaffold hopping, the exchange of a specific portion of a potential active ingredient with another substructure with the aim of finding isofunctional molecular structures with significantly different molecular backbones, often offers the chance in lead discovery or optimization to mitigate problems related to toxicity, intellectual property, and insufficient potency or stability. Scaffold hopping tools such as isosteric ring replacement including 1,3 nitrogen shift and cyclic imine-amide isosterism, but also ring opening and ring closure approaches, functional group isosterism, reversion of functional groups, chain shortening, chain lengthening, and scaffolds delivered by natural products, have become a permanent fixture of the innovation and optimization process in crop protection research. Their appropriate use will be explained through examples of success stories in the field of agrochemistry. Analogies to, but also differences from, the main categories of scaffold hopping in medicinal drug discovery are discussed. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Clemens Lamberth
- Syngenta Crop Protection AG, Chemical Research, Stein, Switzerland
| |
Collapse
|
17
|
Affiliation(s)
- Clemens Lamberth
- Syngenta Crop Protection AG, Chemical Research; Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| |
Collapse
|
18
|
Harlow PH, Perry SJ, Widdison S, Daniels S, Bondo E, Lamberth C, Currie RA, Flemming AJ. The nematode Caenorhabditis elegans as a tool to predict chemical activity on mammalian development and identify mechanisms influencing toxicological outcome. Sci Rep 2016; 6:22965. [PMID: 26987796 PMCID: PMC4796825 DOI: 10.1038/srep22965] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/19/2016] [Indexed: 01/08/2023] Open
Abstract
To determine whether a C. elegans bioassay could predict mammalian developmental activity, we selected diverse compounds known and known not to elicit such activity and measured their effect on C. elegans egg viability. 89% of compounds that reduced C. elegans egg viability also had mammalian developmental activity. Conversely only 25% of compounds found not to reduce egg viability in C. elegans were also inactive in mammals. We conclude that the C. elegans egg viability assay is an accurate positive predictor, but an inaccurate negative predictor, of mammalian developmental activity. We then evaluated C. elegans as a tool to identify mechanisms affecting toxicological outcomes among related compounds. The difference in developmental activity of structurally related fungicides in C. elegans correlated with their rate of metabolism. Knockdown of the cytochrome P450s cyp-35A3 and cyp-35A4 increased the toxicity to C. elegans of the least developmentally active compounds to the level of the most developmentally active. This indicated that these P450s were involved in the greater rate of metabolism of the less toxic of these compounds. We conclude that C. elegans based approaches can predict mammalian developmental activity and can yield plausible hypotheses for factors affecting the biological potency of compounds in mammals.
Collapse
Affiliation(s)
- Philippa H Harlow
- Syngenta Ltd., Jealott's Hill Research Station, Bracknell, Berkshire, RG42 6EY, UK
| | - Simon J Perry
- Syngenta Ltd., Jealott's Hill Research Station, Bracknell, Berkshire, RG42 6EY, UK
| | - Stephanie Widdison
- General Bioinformatics, Jealott's Hill Research Station, Bracknell, Berkshire, RG42 6EY, UK
| | - Shannon Daniels
- Syngenta, 3054 East Cornwallis Road, Research Triangle Park, NC 27709-2257, USA
| | - Eddie Bondo
- Syngenta, 3054 East Cornwallis Road, Research Triangle Park, NC 27709-2257, USA
| | - Clemens Lamberth
- Syngenta Crop Protection AG, Chemical Research, Schaffhauserstrasse 101, 4332 Stein, Switzerland
| | - Richard A Currie
- Syngenta Ltd., Jealott's Hill Research Station, Bracknell, Berkshire, RG42 6EY, UK
| | - Anthony J Flemming
- Syngenta Ltd., Jealott's Hill Research Station, Bracknell, Berkshire, RG42 6EY, UK
| |
Collapse
|
19
|
Mao W, Zhu C. Synthesis of highly substituted γ-hydroxybutenolides through the annulation of keto acids with alkynes and subsequent hydroxyl transposition. Chem Commun (Camb) 2016; 52:5269-72. [DOI: 10.1039/c6cc01554a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A BF3-catalyzed, practical synthesis of highly functionalized γ-hydroxybutenolides with a 100% atom efficiency is described.
Collapse
Affiliation(s)
- Wenbin Mao
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| |
Collapse
|
20
|
Ballatore C, Smith AB, Lee VMY, Trojanowski JQ, Brunden KR. Microtubule-Stabilizing Agents for Alzheimer’s and Other Tauopathies. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2016_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Taggi AE, Stevenson TM, Bereznak JF, Sharpe PL, Gutteridge S, Forman R, Bisaha JJ, Cordova D, Crompton M, Geist L, Kovacs P, Marshall E, Sheth R, Stavis C, Tseng CP. Tubulin modulating antifungal and antiproliferative pyrazinone derivatives. Bioorg Med Chem 2015; 24:435-43. [PMID: 26386818 DOI: 10.1016/j.bmc.2015.08.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 10/23/2022]
Abstract
A novel class of synthetic tubulin polymerization disruptors, based on a substituted pyrazin-2-one core, has been discovered. These molecules have proven to be potent broad spectrum fungicides, with activity on agriculturally important ascomycete and basidiomycete pathogens. They have also been found to be particularly potent against human rhabdomyosarcoma cells. Using an efficient synthetic route, the agricultural and medicinal activity was explored.
Collapse
Affiliation(s)
- Andrew E Taggi
- DuPont Crop Protection, Discovery Chemistry, 1090 Elkton Road, Newark, DE 19714, USA.
| | - Thomas M Stevenson
- DuPont Crop Protection, Discovery Chemistry, 1090 Elkton Road, Newark, DE 19714, USA
| | - James F Bereznak
- DuPont Crop Protection, Discovery Chemistry, 1090 Elkton Road, Newark, DE 19714, USA
| | - Paula L Sharpe
- DuPont Crop Protection, Discovery Chemistry, 1090 Elkton Road, Newark, DE 19714, USA
| | - Steven Gutteridge
- DuPont Crop Protection, Chemical Genomics, 1090 Elkton Road, Newark, DE 19714, USA
| | - Robert Forman
- DuPont Crop Protection, Discovery Biology, 1090 Elkton Road, Newark, DE 19714, USA
| | - John J Bisaha
- DuPont Crop Protection, Discovery Chemistry, 1090 Elkton Road, Newark, DE 19714, USA
| | - Daniel Cordova
- DuPont Crop Protection, Chemical Genomics, 1090 Elkton Road, Newark, DE 19714, USA
| | - Martina Crompton
- DuPont Crop Protection, Discovery Biology, 1090 Elkton Road, Newark, DE 19714, USA
| | - Lora Geist
- DuPont Crop Protection, Discovery Chemistry, 1090 Elkton Road, Newark, DE 19714, USA
| | - Patrick Kovacs
- DuPont Crop Protection, Discovery Chemistry, 1090 Elkton Road, Newark, DE 19714, USA
| | - Eric Marshall
- DuPont Crop Protection, Discovery Chemistry, 1090 Elkton Road, Newark, DE 19714, USA
| | - Ritesh Sheth
- DuPont Crop Protection, Discovery Chemistry, 1090 Elkton Road, Newark, DE 19714, USA
| | - Courtney Stavis
- DuPont Crop Protection, Discovery Chemistry, 1090 Elkton Road, Newark, DE 19714, USA
| | - Chi-Ping Tseng
- DuPont Crop Protection, Discovery Chemistry, 1090 Elkton Road, Newark, DE 19714, USA
| |
Collapse
|
22
|
Appleby KM, Mewis RE, Olaru AM, Green GGR, Fairlamb IJS, Duckett SB. Investigating pyridazine and phthalazine exchange in a series of iridium complexes in order to define their role in the catalytic transfer of magnetisation from para-hydrogen. Chem Sci 2015; 6:3981-3993. [PMID: 29218168 PMCID: PMC5707471 DOI: 10.1039/c5sc00756a] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/27/2015] [Indexed: 11/22/2022] Open
Abstract
Reaction of [Ir(IMes)(COD)Cl] with pyridazine (pdz) or phthalazine (phth) and H2 results in the formation of the para-hydrogen magnetisation transfer catalysts [Ir(H)2(IMes)(pdz)3]Cl and [Ir(H)2(IMes)(phth)3]Cl.
The reaction of [Ir(IMes)(COD)Cl], [IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene, COD = 1,5-cyclooctadiene] with pyridazine (pdz) and phthalazine (phth) results in the formation of [Ir(COD)(IMes)(pdz)]Cl and [Ir(COD)(IMes)(phth)]Cl. These two complexes are shown by nuclear magnetic resonance (NMR) studies to undergo a haptotropic shift which interchanges pairs of protons within the bound ligands. When these complexes are exposed to hydrogen, they react to form [Ir(H)2(COD)(IMes)(pdz)]Cl and [Ir(H)2(COD)(IMes)(phth)]Cl, respectively, which ultimately convert to [Ir(H)2(IMes)(pdz)3]Cl and [Ir(H)2(IMes)(phth)3]Cl, as the COD is hydrogenated to form cyclooctane. These two dihydride complexes are shown, by NMR, to undergo both full N-heterocycle dissociation and a haptotropic shift, the rates of which are affected by both steric interactions and free ligand pKa values. The use of these complexes as catalysts in the transfer of polarisation from para-hydrogen to pyridazine and phthalazine via signal amplification by reversible exchange (SABRE) is explored. The possible future use of drugs which contain pyridazine and phthalazine motifs as in vivo or clinical magnetic resonance imaging probes is demonstrated; a range of NMR and phantom-based MRI measurements are reported.
Collapse
Affiliation(s)
- Kate M Appleby
- Centre for Hyperpolarization in Magnetic Resonance , University of York , York Science Park , York , YO10 5NY , UK . .,Department of Chemistry , University of York , Heslington , York , YO10 5DD , UK
| | - Ryan E Mewis
- Centre for Hyperpolarization in Magnetic Resonance , University of York , York Science Park , York , YO10 5NY , UK . .,Department of Chemistry , University of York , Heslington , York , YO10 5DD , UK
| | - Alexandra M Olaru
- Centre for Hyperpolarization in Magnetic Resonance , University of York , York Science Park , York , YO10 5NY , UK . .,Department of Chemistry , University of York , Heslington , York , YO10 5DD , UK
| | - Gary G R Green
- Centre for Hyperpolarization in Magnetic Resonance , University of York , York Science Park , York , YO10 5NY , UK . .,Department of Chemistry , University of York , Heslington , York , YO10 5DD , UK
| | - Ian J S Fairlamb
- Department of Chemistry , University of York , Heslington , York , YO10 5DD , UK
| | - Simon B Duckett
- Centre for Hyperpolarization in Magnetic Resonance , University of York , York Science Park , York , YO10 5NY , UK . .,Department of Chemistry , University of York , Heslington , York , YO10 5DD , UK
| |
Collapse
|
23
|
Cornec AS, James MJ, Kovalevich J, Trojanowski JQ, Lee VMY, Smith AB, Ballatore C, Brunden KR. Pharmacokinetic, pharmacodynamic and metabolic characterization of a brain retentive microtubule (MT)-stabilizing triazolopyrimidine. Bioorg Med Chem Lett 2015; 25:4980-4982. [PMID: 25819095 DOI: 10.1016/j.bmcl.2015.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 10/23/2022]
Abstract
Previous studies revealed that examples of the non-naturally occurring microtubule (MT)-stabilizing triazolopyrimidines are both brain penetrant and orally bioavailable, indicating that this class of compounds may be potentially attractive in the development of MT-stabilizing therapies for the central nervous system (CNS). We now report on the pharmacokinetics (PK), pharmacodynamics (PD), and metabolism of a selected triazolopyrimidine congener, (S)-3-(4-(5-chloro-7-((1,1,1-trifluoropropan-2-yl)amino)-[1,2,4]triazolo[1,5-a]pyrimidin-6-yl)-3,5-difluorophenoxy)-propan-1-ol (4). These studies revealed that 4 exhibits longer brain than plasma half-life that may be exploited to achieve a selective accumulation of the compound within the CNS. Furthermore, compound metabolism studies suggest that in plasma 4 is rapidly oxidized at the terminal hydroxyl group to form a comparatively inactive carboxylic acid metabolite. Peripheral administration of relatively low doses of 4 to normal mice was found to produce a significant elevation in acetylated α-tubulin, a marker of stable MTs, in the brain. Collectively, these results indicate that 4 may effectively target brain MTs at doses that produce minimal peripheral exposure.
Collapse
Affiliation(s)
- Anne-Sophie Cornec
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th St., Philadelphia, PA 19104-6323, United States
| | - Michael J James
- Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104-6323, United States
| | - Jane Kovalevich
- Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104-6323, United States
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104-6323, United States
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104-6323, United States
| | - Amos B Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th St., Philadelphia, PA 19104-6323, United States.
| | - Carlo Ballatore
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th St., Philadelphia, PA 19104-6323, United States; Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104-6323, United States.
| | - Kurt R Brunden
- Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104-6323, United States.
| |
Collapse
|
24
|
Soliman SM, Albering J, Abu-Youssef MAM. Molecular structure, spectroscopic properties, NLO, HOMO-LUMO and NBO analyses of 6-hydroxy-3(2H)-pyridazinone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 136 Pt B:1086-1098. [PMID: 25459506 DOI: 10.1016/j.saa.2014.09.133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/25/2014] [Accepted: 09/30/2014] [Indexed: 06/04/2023]
Abstract
The molecular structure and relative stabilities of the six possible isomers of 6-hydroxy-3(2H)-pyridazinone (DHP) in the gas phase and in solutions of different polarities are predicted using the B3LYP/6-311++G(d,p) method. The oxo-hydroxo isomer is the most stable form in the gas phase and in solution. These results agree with our reported X-ray structure. The effect of solvents on the spectroscopic properties of the most stable isomer has been studied using the polarized continuum method (PCM) at the same level of theory. The vibrational spectra of the compound studied are calculated and compared with the experimentally measured FTIR spectra. The electronic spectra in gas phase and in solution were calculated using the TD-DFT method. The most intense absorption band is predicted at 312.4 nm and belongs mainly to a π→π(*) transition. In polar solvents, this spectral band undergoes a hypsochromic shift. Two stable dimer forms were calculated at same level of theory. Dimer A is more stable than dimer B, by 6.66 kcal mol(-1). The former is stabilized by stronger O-H⋯O H-bonds compared to the weaker N-H⋯O interactions in the latter. The effect of these H-bonding interactions on the molecular structure and vibrational spectra of these compounds are predicted. NBO analyses were carried out to investigate the stabilization energy of various inter- and intramolecular charge transfer interactions within the systems studied.
Collapse
Affiliation(s)
- Saied M Soliman
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, 21321 Alexandria, Egypt.
| | - Jörg Albering
- Institute of Chemical Technology of Materials, Graz University of Technology, A-8010 Graz, Austria
| | - Morsy A M Abu-Youssef
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, 21321 Alexandria, Egypt
| |
Collapse
|
25
|
Lou K, Yao Y, Hoye AT, James MJ, Cornec AS, Hyde E, Gay B, Lee VMY, Trojanowski JQ, Smith AB, Brunden KR, Ballatore C. Brain-penetrant, orally bioavailable microtubule-stabilizing small molecules are potential candidate therapeutics for Alzheimer's disease and related tauopathies. J Med Chem 2014; 57:6116-27. [PMID: 24992153 PMCID: PMC4111403 DOI: 10.1021/jm5005623] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
![]()
Microtubule
(MT) stabilizing drugs hold promise as potential treatments
for Alzheimer’s disease (AD) and related tauopathies. However,
thus far epothilone D has been the only brain-penetrant MT-stabilizer
to be evaluated in tau transgenic mice and in AD patients. Furthermore,
this natural product exhibits potential deficiencies as a drug candidate,
including an intravenous route of administration and the inhibition
of the P-glycoprotein (Pgp) transporter. Thus, the identification
of alternative CNS-active MT-stabilizing agents that lack these potential
limitations is of interest. Toward this objective, we have evaluated
representative compounds from known classes of non-naturally occurring
MT-stabilizing small molecules. This led to the identification of
selected triazolopyrimidines and phenylpyrimidines that are orally
bioavailable and brain-penetrant without disruption of Pgp function.
Pharmacodynamic studies confirmed that representative compounds from
these series enhance MT-stabilization in the brains of wild-type mice.
Thus, these classes of MT-stabilizers hold promise for the development
of orally active, CNS-directed MT-stabilizing therapies.
Collapse
Affiliation(s)
- Kevin Lou
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Boukouvalas J, Jean MA. Streamlined biomimetic synthesis of paracaseolide A via aerobic oxidation of a 2-silyloxyfuran. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.05.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
|
28
|
|
29
|
Lamberth C, Dumeunier R, Trah S, Wendeborn S, Godwin J, Schneiter P, Corran A. Synthesis and fungicidal activity of tubulin polymerisation promoters. Part 3: Imidazoles. Bioorg Med Chem 2013; 21:127-34. [DOI: 10.1016/j.bmc.2012.10.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/29/2012] [Accepted: 10/31/2012] [Indexed: 11/28/2022]
|
30
|
Ballatore C, Brunden KR, Huryn DM, Trojanowski JQ, Lee VMY, Smith AB. Microtubule stabilizing agents as potential treatment for Alzheimer's disease and related neurodegenerative tauopathies. J Med Chem 2012; 55:8979-96. [PMID: 23020671 PMCID: PMC3493881 DOI: 10.1021/jm301079z] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The microtubule (MT) associated protein tau, which is highly expressed in the axons of neurons, is an endogenous MT-stabilizing agent that plays an important role in axonal transport. Loss of MT-stabilizing tau function, caused by misfolding, hyperphosphorylation, and sequestration of tau into insoluble aggregates, leads to axonal transport deficits with neuropathological consequences. Several in vitro and preclinical in vivo studies have shown that MT-stabilizing drugs can be utilized to compensate for the loss of tau function and to maintain/restore effective axonal transport. These findings indicate that MT-stabilizing compounds hold considerable promise for the treatment of Alzheimer disease and related tauopathies. The present article provides a synopsis of the key findings demonstrating the therapeutic potential of MT-stabilizing drugs in the context of neurodegenerative tauopathies, as well as an overview of the different classes of MT-stabilizing compounds.
Collapse
Affiliation(s)
- Carlo Ballatore
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104-6323
- Center for Neurodegenerative Diseases Research and Institute on Aging, Perelman School of Medicine, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104-6323
| | - Kurt R. Brunden
- Center for Neurodegenerative Diseases Research and Institute on Aging, Perelman School of Medicine, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104-6323
| | - Donna M. Huryn
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104-6323
| | - John Q. Trojanowski
- Center for Neurodegenerative Diseases Research and Institute on Aging, Perelman School of Medicine, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104-6323
| | - Virginia M.-Y. Lee
- Center for Neurodegenerative Diseases Research and Institute on Aging, Perelman School of Medicine, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104-6323
| | - Amos B. Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104-6323
| |
Collapse
|
31
|
|