Yamada S, Makishima M. Structure-activity relationship of nonsecosteroidal vitamin D receptor modulators.
Trends Pharmacol Sci 2014;
35:324-37. [PMID:
24865943 DOI:
10.1016/j.tips.2014.04.008]
[Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/28/2014] [Accepted: 04/30/2014] [Indexed: 12/14/2022]
Abstract
The vitamin D receptor (VDR), a receptor for the secosteroid 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], is a promising drug target in the treatment of bone and mineral disorders, cancer, autoimmune disease, infection, and cardiovascular disease. Indeed, approximately 100 nonsecosteroidal VDR modulators (VDRMs) have been developed. Analysis of X-ray crystal structures reveals: (i) nonsecosteroidal VDRMs bind to VDR in a position similar to 1,25(OH)2D3; (ii) hydrogen bond interactions between ligands and VDR are the most important for VDR binding; (iii) hydrophobic interactions and CH-π interactions in aromatic ligands are also important for VDR binding; and (iv) exchange of C-O-C linkage to C-CH2-C linkage in VDRMs increases transactivation activity, probably as a result of an entropic effect of solvation/desolvation of molecules. Several VDRMs have better therapeutic efficacy when compared to 1,25(OH)2D3 in experimental models of cancer and osteoporosis with less induction of hypercalcemia, a major potential adverse effect in the clinical application of VDR ligands.
Collapse