1
|
Huai Z, Yang H, Sun Z. Binding thermodynamics and interaction patterns of human purine nucleoside phosphorylase-inhibitor complexes from extensive free energy calculations. J Comput Aided Mol Des 2021; 35:643-656. [PMID: 33759016 DOI: 10.1007/s10822-021-00382-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/13/2021] [Indexed: 11/29/2022]
Abstract
Human purine nucleoside phosphorylase (hPNP) plays a significant role in the catabolism of deoxyguanosine. The trimeric protein is an important target in the treatment of T-cell cancers and autoimmune disorders. Experimental studies on the inhibition of the hPNP observe that the first ligand bound to one of three subunits effectively inhibits the protein, while the binding of more ligands to the subsequent sites shows negative cooperativities. In this work, we performed extensive end-point and alchemical free energy calculations to determine the binding thermodynamics of the trimeric protein-ligand system. 13 Immucillin inhibitors with experimental results are under calculation. Two widely accepted charge schemes for small molecules including AM1-BCC and RESP are adopted for ligands. The results of RESP are in better agreement with the experimental reference. Further investigations of the interaction networks in the protein-ligand complexes reveal that several residues play significant roles in stabilizing the complex structure. The most commonly observed ones include PHE200, GLU201, MET219, and ASN243. The conformations of the protein in different protein-ligand complexes are observed to be similar. We expect these insights to aid the development of potent drugs targeting hPNP.
Collapse
Affiliation(s)
- Zhe Huai
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China
| | - Huaiyu Yang
- College of Engineering, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zhaoxi Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
2
|
Cornell KA, Knippel RJ, Cortright GR, Fonken M, Guerrero C, Hall AR, Mitchell KA, Thurston JH, Erstad P, Tao A, Xu D, Parveen N. Characterization of 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidases from Borrelia burgdorferi: Antibiotic targets for Lyme disease. Biochim Biophys Acta Gen Subj 2019; 1864:129455. [PMID: 31669585 DOI: 10.1016/j.bbagen.2019.129455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Borrelia burgdorferi causes Lyme disease, the most common tick-borne illness in the United States. The Center for Disease Control and Prevention estimates that the occurrence of Lyme disease in the U.S. has now reached approximately 300,000 cases annually. Early stage Borrelia burgdorferi infections are generally treatable with oral antibiotics, but late stage disease is more difficult to treat and more likely to lead to post-treatment Lyme disease syndrome. METHODS Here we examine three unique 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidases (MTNs or MTANs, EC 3.2.2.9) responsible for salvage of adenine and methionine in B. burgdorferi and explore their potential as antibiotic targets to treat Lyme disease. Recombinant Borrelia MTNs were expressed and purified from E. coli. The enzymes were extensively characterized for activity, specificity, and inhibition using a UV spectrophotometric assay. In vitro antibiotic activities of MTN inhibitors were assessed using a bioluminescent BacTiter-Glo™ assay. RESULTS The three Borrelia MTNs showed unique activities against the native substrates MTA, SAH, and 5'-deoxyadenosine. Analysis of substrate analogs revealed that specific activity rapidly dropped as the length of the 5'-alkylthio substitution increased. Non-hydrolysable nucleoside transition state analogs demonstrated sub-nanomolar enzyme inhibition constants. Lastly, two late stage transition state analogs exerted in vitro IC50 values of 0.3-0.4 μg/mL against cultured B. burgdorferi cells. CONCLUSION B. burgdorferi is unusual in that it expresses three distinct MTNs (cytoplasmic, membrane bound, and secreted) that are effectively inactivated by nucleoside analogs. GENERAL SIGNIFICANCE The Borrelia MTNs appear to be promising targets for developing new antibiotics to treat Lyme disease.
Collapse
Affiliation(s)
- Kenneth A Cornell
- Department of Chemistry & Biochemistry, Boise State University, Boise, ID, USA; Biomolecular Research Center, Boise State University, Boise, ID, USA.
| | - Reece J Knippel
- Department of Chemistry & Biochemistry, Boise State University, Boise, ID, USA
| | - Gerald R Cortright
- Department of Chemistry & Biochemistry, Boise State University, Boise, ID, USA
| | - Meghan Fonken
- Department of Chemistry & Biochemistry, Boise State University, Boise, ID, USA
| | - Christian Guerrero
- Department of Chemistry & Biochemistry, Boise State University, Boise, ID, USA
| | - Amy R Hall
- Department of Chemistry & Biochemistry, Boise State University, Boise, ID, USA
| | - Kristen A Mitchell
- Biomolecular Research Center, Boise State University, Boise, ID, USA; Department of Biological Sciences, Boise State University, Boise, ID, USA
| | - John H Thurston
- Department of Chemistry, The College of Idaho, Caldwell, ID, USA
| | - Patrick Erstad
- Department of Chemistry, The College of Idaho, Caldwell, ID, USA; Department of Biomedical & Pharmaceutical Sciences, Idaho State University, Meridian, ID, USA
| | - Aoxiang Tao
- Department of Biomedical & Pharmaceutical Sciences, Idaho State University, Meridian, ID, USA
| | - Dong Xu
- Department of Biomedical & Pharmaceutical Sciences, Idaho State University, Meridian, ID, USA
| | - Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
3
|
Mutreja I, Warring SL, Lim KS, Swadi T, Clinch K, Mason JM, Sheen CR, Thompson DR, Ducati RG, Chambers ST, Evans GB, Gerth ML, Miller AG, Woodfield TBF. Biofilm Inhibition via Delivery of Novel Methylthioadenosine Nucleosidase Inhibitors from PVA-Tyramine Hydrogels while Supporting Mesenchymal Stromal Cell Viability. ACS Biomater Sci Eng 2019; 5:748-758. [PMID: 33405836 DOI: 10.1021/acsbiomaterials.8b01141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The rise of antibiotic resistance, coupled with increased expectations for mobility in later life, is creating a need for biofilm inhibitors and delivery systems that will reduce surgical implant infection. A limitation of some of these existing delivery approaches is toxicity exhibited toward host cells. Here, we report the application of a novel inhibitor of the enzyme, methylthioadenosine nucleosidase (MTAN), a key enzyme in bacterial metabolic pathways, which include S-adenosylmethionine catabolism and purine nucleotide recycling, in combination with a poly(vinyl alcohol)-tyramine-based (PVA-Tyr) hydrogel delivery system. We demonstrate that a lead MTAN inhibitor, selected from a screened library of 34 candidates, (2S)-2-(4-amino-5H-pyrrolo3,2-dpyrimidin-7-ylmethyl)aminoundecan-1-ol (31), showed a minimum biofilm inhibitory concentration of 2.2 ± 0.4 μM against a clinical staphylococcal species isolated from an infected implant. We observed that extracellular DNA, a key constituent of biofilms, is significantly reduced when treated with 10 μM compound 31, along with a decrease in biofilm thickness. Compound 31 was incorporated into a hydrolytically degradable photo-cross-linked PVA-Tyr hydrogel and the release profile was evaluated by HPLC studies. Compound 31 released from the PVA-hydrogel system significantly reduced biofilm formation (77.2 ± 8.4% biofilm inhibition). Finally, compound 31 released from PVA-Tyr showed no negative impact on human bone marrow stromal cell (MSC) viability, proliferation, or morphology. The results demonstrate the potential utility of MTAN inhibitors in treating infections caused by Gram-positive bacteria, and the development of a nontoxic release system that has potential for tunability for time scale of delivery.
Collapse
Affiliation(s)
- Isha Mutreja
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago Christchurch, Christchurch 8140, New Zealand.,Medical Technologies Centre of Research Excellence, Auckland 1010, New Zealand
| | - Suzanne L Warring
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Khoon S Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago Christchurch, Christchurch 8140, New Zealand.,Medical Technologies Centre of Research Excellence, Auckland 1010, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
| | - Tara Swadi
- Department of Pathology, University of Otago Christchurch Christchurch 8140, New Zealand
| | - Keith Clinch
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5046, New Zealand
| | - Jennifer M Mason
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5046, New Zealand
| | - Campbell R Sheen
- Protein Science and Engineering, Callaghan Innovation, c/- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Dion R Thompson
- Protein Science and Engineering, Callaghan Innovation, c/- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Rodrigo G Ducati
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Stephen T Chambers
- Department of Pathology, University of Otago Christchurch Christchurch 8140, New Zealand
| | - Gary B Evans
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand.,Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5046, New Zealand
| | - Monica L Gerth
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
| | - Antonia G Miller
- Protein Science and Engineering, Callaghan Innovation, c/- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago Christchurch, Christchurch 8140, New Zealand.,Medical Technologies Centre of Research Excellence, Auckland 1010, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
| |
Collapse
|
4
|
Ducati RG, Harijan RK, Cameron SA, Tyler PC, Evans GB, Schramm VL. Transition-State Analogues of Campylobacter jejuni 5'-Methylthioadenosine Nucleosidase. ACS Chem Biol 2018; 13:3173-3183. [PMID: 30339406 DOI: 10.1021/acschembio.8b00781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Campylobacter jejuni is a Gram-negative bacterium responsible for food-borne gastroenteritis and associated with Guillain-Barré, Reiter, and irritable bowel syndromes. Antibiotic resistance in C. jejuni is common, creating a need for antibiotics with novel mechanisms of action. Menaquinone biosynthesis in C. jejuni uses the rare futalosine pathway, where 5'-methylthioadenosine nucleosidase ( CjMTAN) is proposed to catalyze the essential hydrolysis of adenine from 6-amino-6-deoxyfutalosine to form dehypoxanthinylfutalosine, a menaquinone precursor. The substrate specificity of CjMTAN is demonstrated to include 6-amino-6-deoxyfutalosine, 5'-methylthioadenosine, S-adenosylhomocysteine, adenosine, and 5'-deoxyadenosine. These activities span the catalytic specificities for the role of bacterial MTANs in menaquinone synthesis, quorum sensing, and S-adenosylmethionine recycling. We determined inhibition constants for potential transition-state analogues of CjMTAN. The best of these compounds have picomolar dissociation constants and were slow-onset tight-binding inhibitors. The most potent CjMTAN transition-state analogue inhibitors inhibited C. jejuni growth in culture at low micromolar concentrations, similar to gentamicin. The crystal structure of apoenzyme C. jejuni MTAN was solved at 1.25 Å, and five CjMTAN complexes with transition-state analogues were solved at 1.42 to 1.95 Å resolution. Inhibitor binding induces a loop movement to create a closed catalytic site with Asp196 and Ile152 providing purine leaving group activation and Arg192 and Glu12 activating the water nucleophile. With inhibitors bound, the interactions of the 4'-alkylthio or 4'-alkyl groups of this inhibitor family differ from the Escherichia coli MTAN structure by altered protein interactions near the hydrophobic pocket that stabilizes 4'-substituents of transition-state analogues. These CjMTAN inhibitors have potential as specific antibiotic candidates against C. jejuni.
Collapse
Affiliation(s)
- Rodrigo G. Ducati
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Rajesh K. Harijan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Scott A. Cameron
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Peter C. Tyler
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5010, New Zealand
| | - Gary B. Evans
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5010, New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
5
|
Wei Y, Liu R, Liu C, Jin J, Li D, Lin J. Identification of novel PAD4 inhibitors based on a pharmacophore model derived from transition state coordinates. J Mol Graph Model 2017; 72:88-95. [PMID: 28064083 DOI: 10.1016/j.jmgm.2016.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/03/2016] [Accepted: 11/29/2016] [Indexed: 11/19/2022]
Abstract
1.4 Protein arginine deiminases 4 (PAD4) is an attractive target for the development of novel and selective inhibitors of Rheumatoid Arthritis (RA). F-amidine is known as mechanism-based inhibitor targeting PAD4 and used as inactivators by covalently modifying the active site Cys645. To identify novel structural inhibitors of PAD4, we investigated the flexibility of protein on basis of the transition state geometry of PAD4 inhibited by F-amidine from our previous QM/MM calculation. And a pharmacophore model was generated containing four features (ADHH) using five representative structures from molecular dynamic (MD) simulation on basis of the transition state geometry of PAD4 inhibited by F-amidine. We performed virtual screening using the pharmacophore model and molecular docking methods, resulting in the discovery of two molecules with KD (dissociation equilibrium constant) values of 112μM and 218μΜ against PAD4 through Surface Plasmon Resonance (SPR) experiments. These two molecules could potentially serve as PAD4 inhibitors.
Collapse
Affiliation(s)
- Yu Wei
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Ruihua Liu
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Cui Liu
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jin Jin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China.
| | - Dongmei Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China.
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
6
|
Wang S, Cameron SA, Clinch K, Evans GB, Wu Z, Schramm VL, Tyler PC. New Antibiotic Candidates against Helicobacter pylori. J Am Chem Soc 2015; 137:14275-80. [PMID: 26494017 PMCID: PMC6709534 DOI: 10.1021/jacs.5b06110] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Helicobacter pylori is a Gram-negative bacterium that colonizes the gut of over 50% of the world's population. It is responsible for most peptic ulcers and is an important risk factor for gastric cancer. Antibiotic treatment for H. pylori infections is challenging as drug resistance has developed to antibiotics with traditional mechanisms of action. H. pylori uses an unusual pathway for menaquinone biosynthesis with 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) catalyzing an essential step. We validated MTAN as a target with a transition-state analogue of the enzyme [Wang, S.; Haapalainen, A. M.; Yan, F.; et al. Biochemistry 2012, 51, 6892-6894]. MTAN inhibitors will only be useful drug candidates if they can both include tight binding to the MTAN target and have the ability to penetrate the complex cell membrane found in Gram-negative H. pylori. Here we explore structural scaffolds for MTAN inhibition and for growth inhibition of cultured H. pylori. Sixteen analogues reported here are transition-state analogues of H. pylori MTAN with dissociation constants of 50 pM or below. Ten of these prevent growth of the H. pylori with IC90 values below 0.01 μg/mL. These remarkable compounds meet the criteria for potent inhibition and cell penetration. As a consequence, 10 new H. pylori antibiotic candidates are identified, all of which prevent H. pylori growth at concentrations 16-2000-fold lower than the five antibiotics, amoxicillin, metronidazole, levofloxacin, tetracyclin, and clarithromycin, commonly used to treat H. pylori infections. X-ray crystal structures of MTAN cocrystallized with several inhibitors show them to bind in the active site making interactions consistent with transition-state analogues.
Collapse
Affiliation(s)
- Shanzhi Wang
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, 10461, United States
| | - Scott A. Cameron
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, 10461, United States
| | - Keith Clinch
- The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, Wellington 5040, New Zealand
| | - Gary B. Evans
- The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, Wellington 5040, New Zealand
| | - Zhimeng Wu
- The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, Wellington 5040, New Zealand
| | - Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, 10461, United States
| | - Peter C. Tyler
- The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, Wellington 5040, New Zealand
| |
Collapse
|
7
|
Hernández D, Boto A. Nucleoside Analogues: Synthesis and Biological Properties of Azanucleoside Derivatives. European J Org Chem 2014. [DOI: 10.1002/ejoc.201301731] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Design, synthesis and structure-activity relationship of novel Relacin analogs as inhibitors of Rel proteins. Eur J Med Chem 2013; 70:497-504. [PMID: 24189495 DOI: 10.1016/j.ejmech.2013.10.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/10/2013] [Accepted: 10/12/2013] [Indexed: 11/21/2022]
Abstract
Rel proteins in bacteria synthesize the signal molecules (p)ppGpp that trigger the Stringent Response, responsible for bacterial survival. Inhibiting the activity of such enzymes prevents the Stringent Response, resulting in the inactivation of long-term bacterial survival strategies, leading to bacterial cell death. Herein, we describe a series of deoxyguanosine-based analogs of the Relacin molecule that inhibit in vitro the synthetic activity of Rel proteins from Gram positive and Gram negative bacteria, providing a deeper insight on the SAR for a better understanding of their potential interactions and inhibitory activity. Among the inhibitors evaluated, compound 2d was found to be more effective and potent than our previously reported Relacin.
Collapse
|
9
|
Clinch K, Crump DR, Evans GB, Hazleton KZ, Mason JM, Schramm VL, Tyler PC. Acyclic phosph(on)ate inhibitors of Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase. Bioorg Med Chem 2013; 21:5629-46. [PMID: 23810424 DOI: 10.1016/j.bmc.2013.02.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/29/2013] [Accepted: 02/06/2013] [Indexed: 01/09/2023]
Abstract
The pathogenic protozoa responsible for malaria lack enzymes for the de novo synthesis of purines and rely on purine salvage from the host. In Plasmodium falciparum (Pf), hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) converts hypoxanthine to inosine monophosphate and is essential for purine salvage making the enzyme an anti-malarial drug target. We have synthesized a number of simple acyclic aza-C-nucleosides and shown that some are potent inhibitors of Pf HGXPRT while showing excellent selectivity for the Pf versus the human enzyme.
Collapse
Affiliation(s)
- Keith Clinch
- Carbohydrate Chemistry, Industrial Research Ltd, Lower Hutt 5040, New Zealand
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Enzymes achieve their transition states by dynamic conformational searches on the femtosecond to picosecond time scale. Mimics of reactants at enzymatic transition states bind tightly to enzymes by stabilizing the conformation optimized through evolution for transition state formation. Instead of forming the transient transition state geometry, transition state analogues convert the short-lived transition state to a stable thermodynamic state. Enzymatic transition states are understood by combining kinetic isotope effects and computational chemistry. Analogues of the transition state can bind millions of times more tightly than substrates and show promise for drug development for several targets.
Collapse
Affiliation(s)
- Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx New York 10461, United States.
| |
Collapse
|