1
|
Wang C, Lu X. Targeting MET: Discovery of Small Molecule Inhibitors as Non-Small Cell Lung Cancer Therapy. J Med Chem 2023. [PMID: 37262349 DOI: 10.1021/acs.jmedchem.3c00028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
MET has been considered as a promising drug target for the treatment of MET-dependent diseases, particularly non-small cell lung cancer (NSCLC). Small molecule MET inhibitors with mainly three types of binding modes (Ia/Ib, II, and III) have been developed. In this Review, we provide an overview of the structural features, activation mechanism, and dysregulation pathway of MET and summarize progress on the development and discovery strategies utilized for MET inhibitors as well as mechanisms of acquired resistance to current approved inhibitors. The insights will accelerate discovery of new generation MET inhibitors to overcome clinical acquired resistance.
Collapse
Affiliation(s)
- Chaofan Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 510632, China
| | - Xiaoyun Lu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 510632, China
| |
Collapse
|
2
|
Lipshultz JM, Radosevich AT. Uniting Amide Synthesis and Activation by P III/P V-Catalyzed Serial Condensation: Three-Component Assembly of 2-Amidopyridines. J Am Chem Soc 2021; 143:14487-14494. [PMID: 34478308 DOI: 10.1021/jacs.1c07608] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An organophosphorus (PIII/PV redox) catalyzed method for the three-component condensation of amines, carboxylic acids, and pyridine N-oxides to generate 2-amidopyridines via serial dehydration is reported. Whereas amide synthesis and functionalization usually occur under divergent reaction conditions, here a phosphetane catalyst (together with a mild bromenium oxidant and terminal hydrosilane reductant) is shown to drive both steps chemoselectively in an auto-tandem catalytic cascade. The ability to both prepare and functionalize amides under the action of a single organocatalytic reactive intermediate enables new possibilities for the efficient and modular preparation of medicinal targets.
Collapse
Affiliation(s)
- Jeffrey M Lipshultz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Antiproliferative effect, alteration of cancer cell cycle progression and potential MET kinase inhibition induced by 3,4-dihydropyrimidin-2(1H)-one C5 amide derivatives. Eur J Pharmacol 2021; 894:173850. [PMID: 33428899 DOI: 10.1016/j.ejphar.2021.173850] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/12/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022]
Abstract
Cancer continues to be the second leading cause of death worldwide. Discovery of novel therapeutic agents has crucial importance for improvement of our medical management capabilities. Dysregulation of the MET receptor tyrosine kinase pathway plays an important role in cancer progression, making this receptor an attractive molecular target for anticancer drug discovery. In this study, twenty-seven 3,4-dihydropyrimidin-2(1H)-one C5 amide derivatives were synthesized and their cancer cell growth inhibitory activity was examined against MCF-7, HT-29 and MOLT-4 cells and also NIH/3T3 non-cancer cells by MTT assay. The antiproliferative effect of the most potent derivatives were tested against MET-dependent EBC-1 and MKN-45, lung and gastric cancer cell lines, respectively. MET kinase inhibition was measured by a Homogenous Time Resolved Fluorescence (HTRF) Assay. The influence of the test compounds on cell cycle was examined by RNase/PI flow cytometric assay. A number of compounds exhibited considerable antiproliferative effects against breast and colon cancer and leukemia cell lines, relatively sparing non-cancer cells. Some derivatives bearing benzothiazolyl carboxamide moiety at C5 position (15, 21, 23, 31, and 37) showed the highest activities with IC50 values as low as 10.9 μM. These compounds showed antiproliferative effects also against MET-amplified cells and dose-dependently inhibited MET kinase activity. They also induced G0/G1 cell cycle arrest at lower doses and apoptosis at higher doses. Molecular docking and dynamics simulation studies confirmed the interaction of compound 23 with the active site of the MET receptor. These findings demonstrate that 3,4-dihydropyrimidin-2(1H)-one analogues may represent promising targeted anticancer agents.
Collapse
|
4
|
Studying the Binding Modes of Novel 2-Aminopyridine Derivatives as Effective and Selective c-Met Kinase Type 1 Inhibitors Using Molecular Modeling Approaches. Molecules 2020; 26:molecules26010052. [PMID: 33374386 PMCID: PMC7795969 DOI: 10.3390/molecules26010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022] Open
Abstract
The mesenchymal epithelial cell transforming factor c-Met, encoded by c-Met proto-oncogene and known as a high-affinity receptor for Hepatocyte Growth Factor (HGF), is one of the receptor tyrosine kinases (RTKs) members. The HGF/c-Met signaling pathway has close correlation with tumor growth, invasion and metastasis. Thus, c-Met kinase has emerged as a prominent therapeutic target for cancer drug discovery. Recently a series of novel 2-aminopyridine derivatives targeting c-Met kinase with high biological activity were reported. In this study, 3D quantitative structure-activity relationship (QSAR), molecular docking and molecular dynamics simulations (MD) were employed to research the binding modes of these inhibitors.The results show that both the atom-based and docking-based CoMFA (Q2 = 0.596, R2 = 0.950 in atom-based model and Q2 = 0.563, R2 = 0.985 in docking-based model) and CoMSIA (Q2 = 0.646, R2 = 0.931 in atom-based model and Q2 = 0.568, R2 = 0.983 in docking-based model) models own satisfactory performance with good reliabilities and powerful external predictabilities. Molecular docking study suggests that Tyr1230 and Arg1208 might be the key residues, and electrostatic and hydrogen bond interactions were shown to be vital to the activity, concordance with QSAR analysis. Then MD simulation was performed to further explore the binding mode of the most potent inhibitor. The obtained results provide important references for further rational design of c-Met Kinase type I inhibitors.
Collapse
|
5
|
Xiong H, Zhang J, Zhang Q, Duan Y, Zhang H, Zheng P, Tang Q. Design, synthesis and biological evaluation of 4-(pyridin-4-yloxy)benzamide derivatives bearing a 5-methylpyridazin-3(2H)-one fragment. Bioorg Med Chem Lett 2020; 30:127076. [PMID: 32173195 DOI: 10.1016/j.bmcl.2020.127076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 02/02/2023]
Abstract
A series of 4-(pyridin-4-yloxy)benzamide derivatives bearing a 5-methylpyridazin-3(2H)-one fragment were designed, synthesized, and evaluated for their biological activity. Most compounds showed effective inhibitory activity against cancer cell lines of A549, HeLa and MCF-7. Among them, the most promising compound 40 showed excellent activity against A549, HeLa and MCF-7 cell lines with IC50 values of 1.03, 1.15 and 2.59 μM, respectively, which was 2.606.95 times more active than that of Golvatinib. The structure-activity relationships (SARs) showed that the introduction of 5-methylpyridazin-3(2H)-one to "5-atom linker" and the modification of the amide with morpholine group were beneficial for enhancing the inhibitory activity of compounds. In addition, the further research on compound 40 mainly include c-Met kinase activity, concentration dependence, apoptosis (acridine orange staining), and molecular docking.
Collapse
Affiliation(s)
- Hehua Xiong
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Jianqing Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Qian Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Yongli Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China; School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Han Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China.
| | - Qidong Tang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China.
| |
Collapse
|
6
|
Discovery of 2-aminopyridines bearing a pyridone moiety as potent ALK inhibitors to overcome the crizotinib-resistant mutants. Eur J Med Chem 2019; 183:111734. [DOI: 10.1016/j.ejmech.2019.111734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 02/03/2023]
|
7
|
Design, synthesis and evaluation of sulfonylurea-containing 4-phenoxyquinolines as highly selective c-Met kinase inhibitors. Bioorg Med Chem 2019; 27:2801-2812. [DOI: 10.1016/j.bmc.2019.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/26/2019] [Accepted: 05/04/2019] [Indexed: 12/20/2022]
|
8
|
Riadi Y, Lazar S, Guillaumet G. Regioselective palladium-catalyzed Suzuki–Miyaura coupling reaction of 2,4,6-trihalogenopyrido[2,3-d]pyrimidines. CR CHIM 2019. [DOI: 10.1016/j.crci.2019.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Caille S, Cui S, Faul MM, Mennen SM, Tedrow JS, Walker SD. Molecular Complexity as a Driver for Chemical Process Innovation in the Pharmaceutical Industry. J Org Chem 2019; 84:4583-4603. [DOI: 10.1021/acs.joc.9b00735] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Seb Caille
- Process Development, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Sheng Cui
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Margaret M. Faul
- Process Development, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Steven M. Mennen
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jason S. Tedrow
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Shawn D. Walker
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
10
|
Design, Synthesis, and Anticancer Activities of Novel 2-Amino-4-phenylthiazole Scaffold Containing Amide Moieties. J CHEM-NY 2018. [DOI: 10.1155/2018/4301910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Appropriately substituted 2-amino-4-phenylthiazole derivatives were designed and synthesized according to the structural characteristics of crizotinib. The obtained compounds were characterized using 1H NMR, 13C NMR, and HRMS. The target compounds 5a–o were evaluated for their in vitro antiproliferative activity against A549, HeLa, HT29, and Karpas299 human cancer cell lines. Based on results of biological studies, some of these compounds exhibited significant antiproliferative activity. Compound 5b possessed outstanding growth inhibitory effects on the four cell lines, especially for HT29 cell with IC50 value of 2.01 µM. Along with the biological assay data, a molecular docking study suggests that the target compounds were a potential inhibitor.
Collapse
|
11
|
Lacbay CM, Menni M, Bernatchez JA, Götte M, Tsantrizos YS. Pharmacophore requirements for HIV-1 reverse transcriptase inhibitors that selectively "Freeze" the pre-translocated complex during the polymerization catalytic cycle. Bioorg Med Chem 2018; 26:1713-1726. [PMID: 29478802 DOI: 10.1016/j.bmc.2018.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/06/2018] [Accepted: 02/13/2018] [Indexed: 12/20/2022]
Abstract
Reverse transcriptase (RT) is responsible for replicating the HIV-1 genome and is a validated therapeutic target for the treatment of HIV infections. During each cycle of the RT-catalyzed DNA polymerization process, inorganic pyrophosphate is released as the by-product of nucleotide incorporation. Small molecules were identified that act as bioisosteres of pyrophosphate and can selectively freeze the catalytic cycle of HIV-1 RT at the pre-translocated stage of the DNA- or RNA-template-primer-enzyme complex.
Collapse
Affiliation(s)
- Cyrus M Lacbay
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Michael Menni
- Department of Biochemistry, McGill University, 3655 Sir William Osler Promenade, Montreal, Quebec H3G1Y6, Canada
| | - Jean A Bernatchez
- Department of Biochemistry, McGill University, 3655 Sir William Osler Promenade, Montreal, Quebec H3G1Y6, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, 6-020 Katz Group Centre, Edmonton, Alberta T6G 2E1, Canada; Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Youla S Tsantrizos
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada; Department of Biochemistry, McGill University, 3655 Sir William Osler Promenade, Montreal, Quebec H3G1Y6, Canada.
| |
Collapse
|
12
|
Parikh PK, Ghate MD. Recent advances in the discovery of small molecule c-Met Kinase inhibitors. Eur J Med Chem 2018; 143:1103-1138. [DOI: 10.1016/j.ejmech.2017.08.044] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/03/2017] [Accepted: 08/21/2017] [Indexed: 12/17/2022]
|
13
|
Narayanan D, Gani OABSM, Gruber FXE, Engh RA. Data driven polypharmacological drug design for lung cancer: analyses for targeting ALK, MET, and EGFR. J Cheminform 2017; 9:43. [PMID: 29086093 PMCID: PMC5496928 DOI: 10.1186/s13321-017-0229-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 06/18/2017] [Indexed: 12/14/2022] Open
Abstract
Drug design of protein kinase inhibitors is now greatly enabled by thousands of publicly available X-ray structures, extensive ligand binding data, and optimized scaffolds coming off patent. The extensive data begin to enable design against a spectrum of targets (polypharmacology); however, the data also reveal heterogeneities of structure, subtleties of chemical interactions, and apparent inconsistencies between diverse data types. As a result, incorporation of all relevant data requires expert choices to combine computational and informatics methods, along with human insight. Here we consider polypharmacological targeting of protein kinases ALK, MET, and EGFR (and its drug resistant mutant T790M) in non small cell lung cancer as an example. Both EGFR and ALK represent sources of primary oncogenic lesions, while drug resistance arises from MET amplification and EGFR mutation. A drug which inhibits these targets will expand relevant patient populations and forestall drug resistance. Crizotinib co-targets ALK and MET. Analysis of the crystal structures reveals few shared interaction types, highlighting proton-arene and key CH–O hydrogen bonding interactions. These are not typically encoded into molecular mechanics force fields. Cheminformatics analyses of binding data show EGFR to be dissimilar to ALK and MET, but its structure shows how it may be co-targeted with the addition of a covalent trap. This suggests a strategy for the design of a focussed chemical library based on a pan-kinome scaffold. Tests of model compounds show these to be compatible with the goal of ALK, MET, and EGFR polypharmacology.
Collapse
Affiliation(s)
- Dilip Narayanan
- The Norwegian Structural Biology Center, Department of Chemistry, Faculty of Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Osman A B S M Gani
- The Norwegian Structural Biology Center, Department of Chemistry, Faculty of Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Franz X E Gruber
- The Norwegian Structural Biology Center, Department of Chemistry, Faculty of Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Richard A Engh
- The Norwegian Structural Biology Center, Department of Chemistry, Faculty of Science, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
14
|
Discovery and optimization of a series of imidazo[4,5-b]pyrazine derivatives as highly potent and exquisitely selective inhibitors of the mesenchymal–epithelial transition factor (c-Met) protein kinase. Bioorg Med Chem 2016; 24:4281-4290. [DOI: 10.1016/j.bmc.2016.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/09/2016] [Accepted: 07/11/2016] [Indexed: 12/17/2022]
|
15
|
Design, synthesis, anti-tumor activity, and molecular modeling of quinazoline and pyrido[2,3-d]pyrimidine derivatives targeting epidermal growth factor receptor. Eur J Med Chem 2016; 118:276-89. [DOI: 10.1016/j.ejmech.2016.04.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 03/22/2016] [Accepted: 04/08/2016] [Indexed: 11/22/2022]
|
16
|
Dias Pires MJ, Poeira DL, Marques MMB. Metal-Catalyzed Cross-Coupling Reactions of Aminopyridines. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500952] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Chen Y, Huang J, Hwang TL, Chen MJ, Tedrow JS, Farrell RP, Bio MM, Cui S. Highly Regioselective Halogenation of Pyridine N-Oxide: Practical Access to 2-Halo-Substituted Pyridines. Org Lett 2015; 17:2948-51. [DOI: 10.1021/acs.orglett.5b01057] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ying Chen
- Drug Substance Technologies, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Jinkun Huang
- Drug Substance Technologies, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Tsang-Lin Hwang
- Drug Substance Technologies, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Maosheng J. Chen
- Drug Substance Technologies, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Jason S. Tedrow
- Drug Substance Technologies, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Robert P. Farrell
- Drug Substance Technologies, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Matthew M. Bio
- Drug Substance Technologies, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Sheng Cui
- Drug Substance Technologies, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
18
|
Messoussi A, Peyronnet L, Feneyrolles C, Chevé G, Bougrin K, Yasri A. Structural elucidation of the DFG-Asp in and DFG-Asp out states of TAM kinases and insight into the selectivity of their inhibitors. Molecules 2014; 19:16223-39. [PMID: 25310149 PMCID: PMC6271404 DOI: 10.3390/molecules191016223] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/24/2014] [Accepted: 09/26/2014] [Indexed: 01/24/2023] Open
Abstract
Structural elucidation of the active (DFG-Asp in) and inactive (DFG-Asp out) states of the TAM family of receptor tyrosine kinases is required for future development of TAM inhibitors as drugs. Herein we report a computational study on each of the three TAM members Tyro-3, Axl and Mer. DFG-Asp in and DFG-Asp out homology models of each one were built based on the X-ray structure of c-Met kinase, an enzyme with a closely related sequence. Structural validation and in silico screening enabled identification of critical amino acids for ligand binding within the active site of each DFG-Asp in and DFG-Asp out model. The position and nature of amino acids that differ among Tyro-3, Axl and Mer, and the potential role of these residues in the design of selective TAM ligands, are discussed.
Collapse
Affiliation(s)
- Abdellah Messoussi
- OriBase Pharma, Parc Euromedecine, Cap Gamma, 1682, rue de la Valsière, 34189 Montpellier, France.
| | - Lucile Peyronnet
- OriBase Pharma, Parc Euromedecine, Cap Gamma, 1682, rue de la Valsière, 34189 Montpellier, France.
| | - Clémence Feneyrolles
- OriBase Pharma, Parc Euromedecine, Cap Gamma, 1682, rue de la Valsière, 34189 Montpellier, France.
| | - Gwénaël Chevé
- OriBase Pharma, Parc Euromedecine, Cap Gamma, 1682, rue de la Valsière, 34189 Montpellier, France.
| | - Khalid Bougrin
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Université Mohammed V, Faculté des Sciences B.P., 1014 Rabat, Morocco.
| | - Aziz Yasri
- OriBase Pharma, Parc Euromedecine, Cap Gamma, 1682, rue de la Valsière, 34189 Montpellier, France.
| |
Collapse
|
19
|
Li S, Jiang R, Qin M, Liu H, Zhang G, Gong P. Synthesis and Antitumor Activity of Novel 4-(2-Fluorophenoxy)quinoline Derivatives Bearing the 4-Oxo-1,4-dihydroquinoline-3-carboxamide Moiety. Arch Pharm (Weinheim) 2013; 346:521-33. [DOI: 10.1002/ardp.201300029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/20/2013] [Accepted: 04/26/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Sai Li
- Key Laboratary of Original New Drugs Design and Discovery of Ministry of Education; Shenyang Pharmaceutical University; Shenyang, P. R. China
| | - Rui Jiang
- Key Laboratary of Original New Drugs Design and Discovery of Ministry of Education; Shenyang Pharmaceutical University; Shenyang, P. R. China
| | - Mingze Qin
- Key Laboratary of Original New Drugs Design and Discovery of Ministry of Education; Shenyang Pharmaceutical University; Shenyang, P. R. China
| | - Haicheng Liu
- Key Laboratary of Original New Drugs Design and Discovery of Ministry of Education; Shenyang Pharmaceutical University; Shenyang, P. R. China
| | - Guangyan Zhang
- Key Laboratary of Original New Drugs Design and Discovery of Ministry of Education; Shenyang Pharmaceutical University; Shenyang, P. R. China
| | - Ping Gong
- Key Laboratary of Original New Drugs Design and Discovery of Ministry of Education; Shenyang Pharmaceutical University; Shenyang, P. R. China
| |
Collapse
|
20
|
Design, synthesis and antitumour activity of bisquinoline derivatives connected by 4-oxy-3-fluoroaniline moiety. Eur J Med Chem 2013; 64:62-73. [DOI: 10.1016/j.ejmech.2013.04.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/31/2013] [Accepted: 04/01/2013] [Indexed: 11/18/2022]
|
21
|
Discovery of novel 4-(2-fluorophenoxy)quinoline derivatives bearing 4-oxo-1,4-dihydrocinnoline-3-carboxamide moiety as c-Met kinase inhibitors. Bioorg Med Chem 2013; 21:2843-55. [PMID: 23628470 DOI: 10.1016/j.bmc.2013.04.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/01/2013] [Accepted: 04/04/2013] [Indexed: 12/24/2022]
Abstract
A series of novel 4-(2-fluorophenoxy)quinoline derivatives containing 4-oxo-1,4-dihydrocinnoline-3-carboxamide moiety were designed, synthesized and evaluated for their in vitro biological activities against c-Met kinase and six typical cancer cell lines (A549, H460, HT-29, MKN-45, U87MG and SMMC-7721). All the prepared compounds showed moderate to excellent antiproliferative activity, and the analysis of their structure-activity relationships indicated that 2-chloro or 2-trifluoromethyl substituted phenyl group on the 1-position of cinnoline ring was more favorable for antitumor activity. In this study, a promising compound 33, with a c-Met IC50 value of 0.59 nM, was identified as a multitargeted receptor tyrosine kinase inhibitor.
Collapse
|
22
|
Liang Z, Ai J, Ding X, Peng X, Zhang D, Zhang R, Wang Y, Liu F, Zheng M, Jiang H, Liu H, Geng M, Luo C. Anthraquinone Derivatives as Potent Inhibitors of c-Met Kinase and the Extracellular Signaling Pathway. ACS Med Chem Lett 2013; 4:408-13. [PMID: 24900685 DOI: 10.1021/ml4000047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/25/2013] [Indexed: 11/28/2022] Open
Abstract
The aberrant function of c-Met kinase signaling pathway is ubiquitously involved in a broad spectrum of human cancers; thus, a strong rationale exists for targeting the kinase pathway in cancer therapy. Via integration of computational and experimental studies, anthraquinone derivatives were identified for the first time as potent c-Met kinase inhibitors in this research. The aberrant activation of the c-Met kinase pathway results from (TPR)-Met, MET gene mutation, or amplification and a hepatocyte growth factor (HGF)/scatter factor-dependent autocrine or paracrine mechanism. However, anthraquinone derivatives exclusively suppressed c-Met phosphorylation stimulated by HGF in A549 cells, indicating that the compounds possess the ability to block the extracellular HGF-dependent pathway. A surface plasmon resonance assay revealed that the most potent compound, 2a, shows a high binding affinity for HGF with an equilibrium dissociation constant of 1.95 μM. The dual roles of compound 2a demonstrate the potency of anthraquinone derivatives and provide a new design solution for the c-Met kinase signaling pathway.
Collapse
Affiliation(s)
- Zhongjie Liang
- Center for Systems
Biology, Soochow University, Suzhou 215006,
China
- State Key Laboratory
of Drug
Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Ai
- State Key Laboratory
of Drug
Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiao Ding
- State Key Laboratory
of Drug
Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xia Peng
- State Key Laboratory
of Drug
Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dengyou Zhang
- State Key Laboratory
of Drug
Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ruihan Zhang
- State Key Laboratory
of Drug
Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ying Wang
- State Key Laboratory
of Drug
Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fang Liu
- State Key Laboratory
of Drug
Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingyue Zheng
- State Key Laboratory
of Drug
Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hualiang Jiang
- State Key Laboratory
of Drug
Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hong Liu
- State Key Laboratory
of Drug
Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Meiyu Geng
- State Key Laboratory
of Drug
Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheng Luo
- Center for Systems
Biology, Soochow University, Suzhou 215006,
China
- State Key Laboratory
of Drug
Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
23
|
Farrell RP, Silva Elipe MV, Bartberger MD, Tedrow JS, Vounatsos F. An Efficient, Regioselective Amination of 3,5-Disubstituted Pyridine N-Oxides Using Saccharin as an Ammonium Surrogate. Org Lett 2012; 15:168-71. [DOI: 10.1021/ol303218p] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert P. Farrell
- Chemical Process Research and Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Maria Victoria Silva Elipe
- Chemical Process Research and Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Michael D. Bartberger
- Chemical Process Research and Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Jason S. Tedrow
- Chemical Process Research and Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Filisaty Vounatsos
- Chemical Process Research and Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|