1
|
Liu G, Zhou C, Zhang Z, Wang C, Luo X, Ju X, Zhao C, Ozoe Y. Novel insecticidal 1,6-dihydro-6-iminopyridazine derivatives as competitive antagonists of insect RDL GABA receptors. PEST MANAGEMENT SCIENCE 2022; 78:2872-2882. [PMID: 35396824 DOI: 10.1002/ps.6911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/27/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The ionotropic γ-aminobutyric acid (GABA) receptor (iGABAR) is an important target for insecticides and parasiticides. Our previous studies showed that competitive antagonists (CAs) of insect iGABARs have the potential to be used for developing novel insecticides and that the structural modification of gabazine (a representative CA of mammalian iGABARs) could lead to the identification of novel CAs of insect iGABARs. RESULTS In the present study, a novel series of 1,3-di- and 1,3,5-trisubstituted 1,6-dihydro-6-iminopyridazines (DIPs) was designed using a versatile strategy and synthesized using facile methods. Electrophysiological studies showed that several target DIPs (30 μM) exhibited excellent antagonistic activities against common cutworm and housefly iGABARs consisting of RDL subunits. The IC50 values of 3-(4-methoxyphenyl), 3-(4-trifluoromethoxyphenyl), 3-(4-biphenylylphenyl), 3-(2-naphthyl), 3-(3,4-methylenedioxyphenyl), and 3,5-(4-methoxyphenyl) analogs ranged from 2.2 to 24.8 μM. Additionally, several 1,3-disubstituted DIPs, especially 3-(4-trifluoromethoxyphenyl) and 3-(3,4-methylenedioxyphenyl) analogs, exhibited moderate insecticidal activity against common cutworm larvae, with >60% mortality at a concentration of 100 mg kg-1 . Molecular docking studies showed that the oxygen atom on the three-substituted aromatic ring could form a hydrogen bond with Arg254, which may enhance the activity of these DIPs against housefly iGABARs. CONCLUSION This systematic study indicated that the presence of a carboxyl side chain shorter by one methylene than that of gabazine at the 1-position of the pyridazine ring is effective for maintaining the stable binding of these DIPs in insect iGABARs. Our study provides important information for the design of novel insect iGABAR CAs. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, PR China
| | - Congwei Zhou
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, PR China
| | - Zhisong Zhang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, PR China
| | - Chenchen Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, PR China
| | - Xiaogang Luo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, PR China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, PR China
| | - Xiulian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, PR China
| | - Chunqing Zhao
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, PR China
| | - Yoshihisa Ozoe
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan
| |
Collapse
|
2
|
Huang C, Wu Y, Zhai N, Ju X, Zhao C, Luo X, Ozoe Y, Liu G. 5-(4-Pyridinyl)-3-isothiazolols as Competitive Antagonists of Insect GABA Receptors: Design, Synthesis, and a New Mechanism Leading to Insecticidal Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5765-5772. [PMID: 35535594 DOI: 10.1021/acs.jafc.1c08030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ionotropic γ-aminobutyric acid (GABA) receptors (iGABARs) are validated targets of drugs and insecticides. Our previous studies showed that the competitive antagonists of insect iGABARs exhibit insecticidal activities and that the 3-isothiazolol scaffold is used as a lead for developing novel iGABAR antagonists. Here, we designed a novel series of 4-aryl-5-(4-pyridinyl)-3-isothiazolol (4-API) analogs that have various aromatic substituents at the 4-position. Two-electrode voltage clamp experiments showed that all synthesized 4-APIs exhibited antagonistic activity against Musca domestica and Spodoptera litura iGABARs (RDL) expressed in oocytes of Xenopus laevis at 100 μM. Of the 4-APIs, the 4-(1,1'-biphenylyl) analog was the most potent antagonist with IC50s of 7.1 and 9.9 μM against M. domestica and S. litura RDL receptors, respectively. This analog also showed a certain insecticidal activity against S. litura larvae, with >75% mortality at 100 μg/g diet. Molecular docking studies with a M. domestica iGABAR model indicated that the π-π stacking interactions formed between the pyridinyl ring and Y252 and between the 4-substituted aromatic group and Y107 might be important for antagonism by the 4-(1,1'-biphenylyl) analog. Our studies provide important information for designing novel iGABAR antagonists and suggest that the 4-APIs acting on iGABARs are promising insecticide leads for further studies.
Collapse
Affiliation(s)
- Cheng Huang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Yun Wu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Na Zhai
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Xiulian Ju
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Chunqing Zhao
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xiaogang Luo
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City 450001, Henan Province, P. R. China
| | - Yoshihisa Ozoe
- Faculty of Life and Environmental Sciences, Shimane University, Matsue 690-8504, Shimane, Japan
| | - Genyan Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| |
Collapse
|
3
|
Bhagat K, Singh JV, Pagare PP, Kumar N, Sharma A, Kaur G, Kinarivala N, Gandu S, Singh H, Sharma S, Bedi PMS. Rational approaches for the design of various GABA modulators and their clinical progression. Mol Divers 2021; 25:551-601. [PMID: 32170466 PMCID: PMC8422677 DOI: 10.1007/s11030-020-10068-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/28/2020] [Indexed: 12/20/2022]
Abstract
GABA (γ-amino butyric acid) is an important inhibitory neurotransmitter in the central nervous system. Attenuation of GABAergic neurotransmission plays an important role in the etiology of several neurological disorders including epilepsy, Alzheimer's disease, Huntington's chorea, migraine, Parkinson's disease, neuropathic pain, and depression. Increase in the GABAergic activity may be achieved through direct agonism at the GABAA receptors, inhibition of enzymatic breakdown of GABA, or by inhibition of the GABA transport proteins (GATs). These functionalities make GABA receptor modulators and GATs attractive drug targets in brain disorders associated with decreased GABA activity. There have been several reports of development of GABA modulators (GABA receptors, GABA transporters, and GABAergic enzyme inhibitors) in the past decade. Therefore, the focus of the present review is to provide an overview on various design strategies and synthetic approaches toward developing GABA modulators. Furthermore, mechanistic insights, structure-activity relationships, and molecular modeling inputs for the biologically active derivatives have also been discussed. Summary of the advances made over the past few years in the clinical translation and development of GABA receptor modulators is also provided. This compilation will be of great interest to the researchers working in the field of neuroscience. From the light of detailed literature, it can be concluded that numerous molecules have displayed significant results and their promising potential, clearly placing them ahead as potential future drug candidates.
Collapse
Affiliation(s)
- Kavita Bhagat
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India
| | - Jatinder V Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India
| | - Piyusha P Pagare
- Department of Medicinal Chemistry, School of Pharmacy and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India
| | - Anchal Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India
| | - Gurinder Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India
| | - Nihar Kinarivala
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Srinivasa Gandu
- Department of Cell Biology and Neuroscience, Cell and Development Biology Graduate Program, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India.
| | - Sahil Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India.
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY, 10065, USA.
| | - Preet Mohinder S Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India.
| |
Collapse
|
4
|
Liu G, Wu Y, Gao Y, Ju X, Ozoe Y. Potential of Competitive Antagonists of Insect Ionotropic γ-Aminobutyric Acid Receptors as Insecticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4760-4768. [PMID: 32243147 DOI: 10.1021/acs.jafc.9b08189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ionotropic γ-aminobutyric acid (GABA) receptors (GABARs) represent an important insecticide target. Currently used GABAR-targeting insecticides are non-competitive antagonists (NCAs) of these receptors. Recent studies have demonstrated that competitive antagonists (CAs) of GABARs have functions of inhibiting insect GABARs similar to NCAs and that they also exhibit insecticidal activity. CAs have different binding sites and different mechanisms of action compared to those of NCAs. Therefore, GABAR CAs should have the potential to be developed into novel insecticides, which could be used to overcome the developed resistance of insect pests to conventional NCA insecticides. Although research on insect GABAR CAs has lagged behind that on mammalian GABAR CAs, research on the CAs of insect ionotropic GABARs has made great progress in recent years, and several series of heterocyclic compounds, such as 3-isoxazolols and 6-iminopyridazines, have been identified as insect GABAR CAs. In this review, we briefly summarize the design strategies, structures, and biological activities of the novel GABAR CAs that have been found in the past decade. Updated information about GABAR CAs may benefit the design and development of novel GABAR-targeting insecticides.
Collapse
Affiliation(s)
- Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Yun Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Ya Gao
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Xiulian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Yoshihisa Ozoe
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| |
Collapse
|
5
|
Krall J, Bavo F, Falk-Petersen CB, Jensen CH, Nielsen JO, Tian Y, Anglani V, Kongstad KT, Piilgaard L, Nielsen B, Gloriam DE, Kehler J, Jensen AA, Harpsøe K, Wellendorph P, Frølund B. Discovery of 2-(Imidazo[1,2-b]pyridazin-2-yl)acetic Acid as a New Class of Ligands Selective for the γ-Hydroxybutyric Acid (GHB) High-Affinity Binding Sites. J Med Chem 2019; 62:2798-2813. [DOI: 10.1021/acs.jmedchem.9b00131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jacob Krall
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Francesco Bavo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milano, Italy
| | - Christina B. Falk-Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Claus H. Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Julie O. Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Yongsong Tian
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Valeria Anglani
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kenneth T. Kongstad
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Louise Piilgaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Birgitte Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - David E. Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Jan Kehler
- Discovery Chemistry and DMPK, H. Lundbeck A/S, Ottiliavej, DK-2500 Valby, Denmark
| | - Anders A. Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
6
|
Liu G, Li H, Shi J, Wang W, Furuta K, Liu D, Zhao C, Ozoe F, Ju X, Ozoe Y. 4-Aryl-5-carbamoyl-3-isoxazolols as competitive antagonists of insect GABA receptors: Synthesis, biological activity, and molecular docking studies. Bioorg Med Chem 2018; 27:416-424. [PMID: 30579800 DOI: 10.1016/j.bmc.2018.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 12/01/2022]
Abstract
Competitive antagonists (CAs) of ionotropic GABA receptors (GABARs) reportedly exhibit insecticidal activity and have potential for development as novel insecticides for overcoming emerging resistance to traditional GABAR-targeting insecticides. Our previous studies demonstrated that 4,5-disubstituted 3-isoxazolols or 3-isothiazolols are an important class of insect GABAR CAs. In the present study, we synthesized a series of 4-aryl-5-carbamoyl-3-isoxazolols and examined their antagonism of insect GABARs expressed in Xenopus oocytes. Several of these 3-isoxazolols exhibited potent antagonistic activities against housefly and common cutworm GABARs, with IC50 values in the low-micromolar range in both receptors. 4-(3-Amino-4-methylphenyl)-5-carbamoyl-3-isoxazolol (3u) displayed the highest antagonism, with IC50 values of 2.0 and 0.9 μM in housefly and common cutworm GABARs, respectively. Most of the synthesized 3-isoxazolols showed moderate larvicidal activities against common cutworms, with more than 50% mortality at 100 μg/g. These results indicate that 4-monocyclic aryl-5-carbamoyl-3-isoxazolol is a promising scaffold for insect GABAR CA discovery and provide important information for the design and development of GABAR-targeting insecticides with a novel mode of action.
Collapse
Affiliation(s)
- Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Huaguang Li
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Jiaying Shi
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Wenjie Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Kenjiro Furuta
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Di Liu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chunqing Zhao
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Fumiyo Ozoe
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Xiulian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yoshihisa Ozoe
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan.
| |
Collapse
|
7
|
Liu G, Frølund B, Ozoe F, Ozoe Y. Differential interactions of 5-(4-piperidyl)-3-isoxazolol analogues with insect γ-aminobutyric acid receptors leading to functional selectivity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 66:64-71. [PMID: 26453818 DOI: 10.1016/j.ibmb.2015.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/15/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
γ-Aminobutyric acid (GABA) receptors (GABARs) mediate fast inhibitory synaptic transmission and are also targets for drugs and insecticides. To better understand the molecular interactions of ligands with the orthosteric sites of GABARs, we examined 4-aryl/arylalkyl-5-(4-piperidyl)-3-isoxazolol, 4-aryl-5-(4-piperidyl)-3-isothiazolol, and 5-aryl-4-(4-piperidyl)-1-hydroxypyrazole for their antagonism with regard to three insect GABARs. The 3-isoxazolol was preferable to the 3-isothiazolol and 1-hydroxypyrazole in antagonism to common cutworm and housefly GABARs. Of the tested analogues, 4-(3-biphenylyl)-5-(4-piperidyl)-3-isoxazolol (2a) displayed the greatest antagonism for common cutworm and housefly GABARs, with IC50 values of 3.4 and 10.2 μM, respectively. In contrast to the antagonism of the two GABARs, 2a showed partial agonism for the case of small brown planthopper GABARs, with an EC50 value of 31.3 μM. Homology models and docking simulations revealed that a cation-π interaction between an analogue and an Arg residue in loop C or E of the orthosteric site is a key component of antagonism. This specific phenomenon was lacking in the interactions between 2a and the orthosteric site of small brown planthopper GABARs. These findings provide important insights into designing and developing novel drugs and insecticides.
Collapse
Affiliation(s)
- Genyan Liu
- Division of Bioscience and Biotechnology, Course of Bioresources Science, The United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100 Copenhagen Φ, Denmark
| | - Fumiyo Ozoe
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Yoshihisa Ozoe
- Division of Bioscience and Biotechnology, Course of Bioresources Science, The United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan; Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan.
| |
Collapse
|
8
|
Liu G, Ozoe F, Furuta K, Ozoe Y. 4,5-Substituted 3-Isoxazolols with Insecticidal Activity Act as Competitive Antagonists of Housefly GABA Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6304-6312. [PMID: 26120732 DOI: 10.1021/acs.jafc.5b01843] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The insect GABA receptor (GABAR), which is composed of five RDL subunits, represents an important target for insecticides. A series of 4,5-disubstituted 3-isoxazolols, including muscimol analogues, were synthesized and examined for their activities against four splice variants (ac, ad, bc, and bd) of housefly GABARs expressed in Xenopus oocytes. Muscimol was a more potent agonist than GABA in all four splice variants, whereas synthesized analogues did not exhibit agonism but rather antagonism in housefly GABARs. The introduction of bicyclic aromatic groups at the 4-position of muscimol and the simultaneous replacement of the aminomethyl group with a carbamoyl group at the 5-position to afford six 4-aryl-5-carbamoyl-3-isoxazolols resulted in compounds that exhibited significantly enhanced antagonism with IC50 values in the low micromolar range in the ac variant. The inhibition of GABA-induced currents by 100 μM analogues was approximately 1.5-4-fold greater in the ac and bc variants than in the ad and bd variants. 4-(3-Biphenylyl)-5-carbamoyl-3-isoxazolol displayed competitive antagonism, with IC50 values of 30, 34, 107, and 96 μM in the ac, bc, ad, and bd variants, respectively, and exhibited moderate insecticidal activity against houseflies, with an LD50 value of 5.6 nmol/fly. These findings suggest that these 3-isoxazolol analogues are novel lead compounds for the design and development of insecticides that target the orthosteric site of housefly GABARs.
Collapse
Affiliation(s)
- Genyan Liu
- †Division of Bioscience and Biotechnology, The United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan
| | - Fumiyo Ozoe
- §Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Kenjiro Furuta
- †Division of Bioscience and Biotechnology, The United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan
- §Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Yoshihisa Ozoe
- †Division of Bioscience and Biotechnology, The United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan
- §Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| |
Collapse
|
9
|
Wei Q, Wu SF, Niu CD, Yu HY, Dong YX, Gao CF. Knockdown of the ionotropic γ-aminobutyric acid receptor (GABAR) RDL gene decreases fipronil susceptibility of the small brown planthopper, Laodelphax striatellus (Hemiptera: Delphacidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 88:249-261. [PMID: 25808850 DOI: 10.1002/arch.21232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Insect γ-aminobutyric acid receptors (GABARs) are important molecular targets of cyclodiene and phenylpyrazole insecticides. Previously GABARs encoding rdl (resistant to dieldrin) genes responsible for dieldrin and fipronil resistance were identified in various economically important insect pests. In this study, we cloned the open reading frame cDNA sequence of rdl gene from fipronil-susceptible and fipronil-resistant strains of Laodelphax striatellus (Lsrdl). Sequence analysis confirmed the presence of a previously identified resistance-conferring mutation. Different alternative splicing variants of Lsrdl were noted. Injection of dsLsrdl reduced the mRNA abundance of Lsrdl by 27-82%, and greatly decreased fipronil-induced mortality of individuals from both susceptible and resistant strains. These data indicate that Lsrdl encodes a functional RDL subunit that mediates susceptibility to fipronil. Additionally, temporal and spatial expression analysis showed that Lsrdl was expressed at higher levels in eggs, fifth-instar nymphs, and female adults than in third-instar and fourth-instar nymphs. Lsrdl was predominantly expressed in the heads of 2-day-old female adults. All these results provide useful background knowledge for better understanding of fipronil resistance related ionotropic GABA receptor rdl gene expressed variants and potential functional differences in insects.
Collapse
Affiliation(s)
- Qi Wei
- State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Pesticide Sciences, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
10
|
Competitive antagonism of insect GABA receptors by 4-substituted 5-(4-piperidyl)-3-isothiazolols. Bioorg Med Chem 2014; 22:4637-45. [PMID: 25112550 DOI: 10.1016/j.bmc.2014.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 01/10/2023]
Abstract
γ-Aminobutyric acid (GABA) receptors are important targets of parasiticides/insecticides. Several 4-substituted analogs of the partial GABAA receptor agonist 5-(4-piperidyl)-3-isothiazolol (Thio-4-PIOL) were synthesized and examined for their antagonism of insect GABA receptors expressed in Drosophila S2 cells or Xenopus oocytes. Thio-4-PIOL showed weak antagonism of three insect GABA receptors. The antagonistic activity of Thio-4-PIOL was enhanced by introducing bicyclic aromatic substituents into the 4-position of the isothiazole ring. The 2-naphthyl and the 3-biphenylyl analogs displayed antagonist potencies with half maximal inhibitory concentrations in the low micromolar range. The 2-naphthyl analog induced a parallel rightward shift of the GABA concentration-response curve, suggesting competitive antagonism by these analogs. Both compounds exhibited weak insecticidal activities against houseflies. Thus, the orthosteric site of insect GABA receptors might be a potential target site of insecticides.
Collapse
|
11
|
Akiyoshi Y, Ju XL, Furutani S, Matsuda K, Ozoe Y. Electrophysiological evidence for 4-isobutyl-3-isopropylbicyclophosphorothionate as a selective blocker of insect GABA-gated chloride channels. Bioorg Med Chem Lett 2013; 23:3373-6. [DOI: 10.1016/j.bmcl.2013.03.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 02/07/2023]
|