1
|
Cheng HY, Wang W, Wang W, Yang MY, Zhou YY. Interkingdom Hormonal Regulations between Plants and Animals Provide New Insight into Food Safety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4-26. [PMID: 38156955 DOI: 10.1021/acs.jafc.3c04712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Food safety has become an attractive topic among consumers. Raw material production for food is also a focus of social attention. As hormones are widely used in agriculture and human disease control, consumers' concerns about the safety of hormone agents have never disappeared. The present review focuses on the interkingdom regulations of exogenous animal hormones in plants and phytohormones in animals, including physiology and stress resistance. We summarize these interactions to give the public, researchers, and policymakers some guidance and suggestions. Accumulated evidence demonstrates comprehensive hormonal regulation across plants and animals. Animal hormones, interacting with phytohormones, help regulate plant development and enhance environmental resistance. Correspondingly, phytohormones may also cause damage to the reproductive and urinary systems of animals. Notably, the disease-resistant role of phytohormones is revealed against neurodegenerative diseases, cardiovascular disease, cancer, and diabetes. These resistances derive from the control for abnormal cell cycle, energy balance, and activity of enzymes. Further exploration of these cross-kingdom mechanisms would surely be of greater benefit to human health and agriculture development.
Collapse
Affiliation(s)
- Hang-Yuan Cheng
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Wang
- Human Development Family Studies, Iowa State University, 2330 Palmer Building, Ames, Iowa 50010, United States
| | - Wei Wang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Mu-Yu Yang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Yu-Yi Zhou
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| |
Collapse
|
2
|
Bueno CA, Salinas FM, Vazquez L, Alché LE, Michelini FM. Two synthetic steroid analogs reduce human respiratory syncytial virus replication and the immune response to infection both in vitro and in vivo. Heliyon 2023; 9:e20148. [PMID: 37822633 PMCID: PMC10562772 DOI: 10.1016/j.heliyon.2023.e20148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/09/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023] Open
Abstract
HRSV is responsible for many acute lower airway infections and hospitalizations in infants, the elderly and those with weakened immune systems around the world. The strong inflammatory response that mediates viral clearance contributes to pathogenesis, and is positively correlated with disease severity. There is no specific effective therapy on hand. Antiviral synthetic stigmastanes (22S, 23S)-22,23-dihydroxystigmast-4-en-3-one (Compound 1) and 22,23-dihydroxystigmasta-1,4-dien-3-one (Compound 2) have shown to be active inhibiting unrelated virus like Herpes Simplex type 1 virus (HSV-1) and Adenovirus, without cytotoxicity. We have also shown that Compound 1 modulates the activation of cell signaling pathways and cytokine secretion in infected epithelial cells as well as in inflammatory cells activated by nonviral stimuli. In the present work, we investigated the inhibitory effect of both compounds on HRSV replication and their modulatory effect on infected epithelial and inflammatory cells. We show that compounds 1 and 2 inhibit in vitro HRSV replication and propagation and reduce cytokine secretion triggered by HRSV infection in epithelial and inflammatory cells. The compounds reduce viral loads and inflammatory infiltration in the lungs of mice infected with HRSV.
Collapse
Affiliation(s)
- Carlos A. Bueno
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Franco M. Salinas
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - L. Vazquez
- UOCCB (Unidad Operativa Centro de Contención Biológica), Instituto Dr. Carlos G. Malbrán, ANLIS (Administración Nacional de Laboratorios e Institutos de Salud), Argentina
| | - Laura E. Alché
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Flavia M. Michelini
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| |
Collapse
|
3
|
Tileuberdi N, Turgumbayeva A, Yeskaliyeva B, Sarsenova L, Issayeva R. Extraction, Isolation of Bioactive Compounds and Therapeutic Potential of Rapeseed ( Brassica napus L.). Molecules 2022; 27:8824. [PMID: 36557956 PMCID: PMC9781536 DOI: 10.3390/molecules27248824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Rapeseed (Brassica napus L.) is a herbaceous annual plant of the Cruciferous family, the Cabbage genus. This oilseed crop is widely used in many areas of industry and agriculture. High-quality oil obtained from rapeseed can be found in many industrial food products. To date, extracts with a high content of biologically active substances are obtained from rapeseed using modern extraction methods. Brassica napus L. seeds contain polyunsaturated and monounsaturated fatty acids, carotenoids, phytosterols, flavonoids, vitamins, glucosinolates and microelements. The data in this review show that rapeseed biocompounds have therapeutic effects in the treatment of various types of diseases. Some studies indicate that rapeseed can be used as an anti-inflammatory, antioxidant, antiviral, hypoglycemic and anticancer agent. In the pharmaceutical industry, using rapeseed as an active ingredient may help to develop new forms drugs with wide range of therapeutic effects. This review focuses on aspects of the extraction of biocompounds from rapeseed and the study of its pharmacological properties.
Collapse
Affiliation(s)
- Nazym Tileuberdi
- Faculty of Medicine and Healthcare, Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Aknur Turgumbayeva
- Faculty of Medicine and Healthcare, Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Balakyz Yeskaliyeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Lazzat Sarsenova
- Faculty of Medicine and Healthcare, Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Raushan Issayeva
- Faculty of Medicine and Healthcare, Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| |
Collapse
|
4
|
Synthesis and Biological Activity of Brassinosteroid Analogues with a Nitrogen-Containing Side Chain. Int J Mol Sci 2020; 22:ijms22010155. [PMID: 33375728 PMCID: PMC7795425 DOI: 10.3390/ijms22010155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/23/2022] Open
Abstract
Brassinosteroids are a class of plant hormones that regulate a broad range of physiological processes such as plant growth, development and immunity, including the suppression of biotic and abiotic stresses. In this paper, we report the synthesis of new brassinosteroid analogues with a nitrogen-containing side chain and their biological activity on Arabidopis thaliana. Based on molecular docking experiments, two groups of brassinosteroid analogues were prepared with short and long side chains in order to study the impact of side chain length on plants. The derivatives with a short side chain were prepared with amide, amine and ammonium functional groups. The derivatives with a long side chain were synthesized using amide and ammonium functional groups. A total of 25 new brassinosteroid analogues were prepared. All 25 compounds were tested in an Arabidopsis root sensitivity bioassay and cytotoxicity screening. The synthesized substances showed no significant inhibitory activity compared to natural 24-epibrassinolide. In contrast, in low concentration, several compounds (8a, 8b, 8e, 16e, 22a and 22e) showed interesting growth-promoting activity. The cytotoxicity assay showed no toxicity of the prepared compounds on cancer and normal cell lines.
Collapse
|
5
|
Michelini FM, Bueno CA, Areco YB, Alché LE. A synthetic stigmastane displays antiadenoviral activity and reduces the inflammatory response to viral infection. Antiviral Res 2020; 183:104879. [PMID: 32918925 DOI: 10.1016/j.antiviral.2020.104879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
Abstract
Although human adenovirus (ADV) infections are mild and self-limited in immunocompetent individuals, they can be severe and life-threatening in immunocompromised patients. Despite their significant clinical impact, there are not currently approved antiviral therapies for ADV infections. On the other hand, in some cases, the immune response induced by ADV infection can cause tissue damage. Even more, in the case of adenovirus vectors used in gene therapy, host immunity generally antagonize viral efficacy. Therefore, the need for searching an effective and safe therapy is increasing. In this work, we describe the antiadenoviral activity of the synthetic stigmastane (22S, 23S)-22,23-dihydroxystigmast-4-en-3-one (Compound 1) with already reported antiviral and antiinflammatory activities against other viruses of clinical importance. Compound 1 displayed no virucidal activity and did not affect ADV entry to the cells. The compound inhibited viral replication and it also reduced cytokine secretion in epithelial and inflammatory infected cells. Thus, Compound 1 would be a promissory drug potentially useful against adenoviral infections as well as an adjuvant of adenoviral vectors in gene therapy.
Collapse
Affiliation(s)
- Flavia M Michelini
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.
| | - Carlos A Bueno
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Yanina B Areco
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Laura E Alché
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| |
Collapse
|
6
|
Kaur Kohli S, Bhardwaj A, Bhardwaj V, Sharma A, Kalia N, Landi M, Bhardwaj R. Therapeutic Potential of Brassinosteroids in Biomedical and Clinical Research. Biomolecules 2020; 10:E572. [PMID: 32283642 PMCID: PMC7226375 DOI: 10.3390/biom10040572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/28/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022] Open
Abstract
Steroids are a pivotal class of hormones with a key role in growth modulation and signal transduction in multicellular organisms. Synthetic steroids are widely used to cure large array of viral, fungal, bacterial, and cancerous infections. Brassinosteroids (BRs) are a natural collection of phytosterols, which have structural similarity with animal steroids. BRs are dispersed universally throughout the plant kingdom. These plant steroids are well known to modulate a plethora of physiological responses in plants leading to improvement in quality as well as yield of food crops. Moreover, they have been found to play imperative role in stress-fortification against various stresses in plants. Over a decade, BRs have conquered worldwide interest due to their diverse biological activities in animal systems. Recent studies have indicated anticancerous, antiangiogenic, antiviral, antigenotoxic, antifungal, and antibacterial bioactivities of BRs in the animal test systems. BRs inhibit replication of viruses and induce cytotoxic effects on cancerous cell lines. Keeping in view the biological activities of BRs, this review is an attempt to update the information about prospects of BRs in biomedical and clinical application.
Collapse
Affiliation(s)
- Sukhmeen Kaur Kohli
- Plant Stress Physiology Lab, Department of Botanical and Environment Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (S.K.K.); (A.S.)
| | - Abhay Bhardwaj
- Department of Bio-organic and Biological Chemistry, Kharkiv National Medical University, Kharkiv 61000, Ukraine; (A.B.); (V.B.)
| | - Vinay Bhardwaj
- Department of Bio-organic and Biological Chemistry, Kharkiv National Medical University, Kharkiv 61000, Ukraine; (A.B.); (V.B.)
| | - Anket Sharma
- Plant Stress Physiology Lab, Department of Botanical and Environment Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (S.K.K.); (A.S.)
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Namarta Kalia
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India;
| | - Marco Landi
- Department of Agriculture, Food & Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Renu Bhardwaj
- Plant Stress Physiology Lab, Department of Botanical and Environment Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (S.K.K.); (A.S.)
| |
Collapse
|
7
|
Kvasnica M, Oklestkova J, Bazgier V, Rárová L, Korinkova P, Mikulík J, Budesinsky M, Béres T, Berka K, Lu Q, Russinova E, Strnad M. Design, synthesis and biological activities of new brassinosteroid analogues with a phenyl group in the side chain. Org Biomol Chem 2018; 14:8691-8701. [PMID: 27714217 DOI: 10.1039/c6ob01479h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have prepared and studied a series of new brassinosteroid derivatives with a p-substituted phenyl group in the side chain. To obtain the best comparison between molecular docking and biological activities both types of brassinosteroids were synthesized; 6-ketones, 10 examples, and B-lactones, 8 examples. The phenyl group was introduced into the steroid skeleton by Horner-Wadsworth-Emmons. The docking studies were carried out using AutoDock Vina 1.05. Plant biological activities were established using different brassinosteroid bioassays in comparison with natural brassinosteroids. Differences in the production of the plant hormone ethylene were also observed in etiolated pea seedlings after treatment with new brassinosteroids. The most active compounds were lactone 8f and 6-oxo derivatives 8c and 9c, their biological activities were comparable or even better than naturally occurring brassinolide. Finally the cytotoxicity of the new derivatives was studied using human normal and cancer cell lines.
Collapse
Affiliation(s)
- M Kvasnica
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
| | - J Oklestkova
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
| | - V Bazgier
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic. and Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17. Listopadu 12, 77146 Olomouc, Czech Republic
| | - L Rárová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - P Korinkova
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
| | - J Mikulík
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
| | - M Budesinsky
- Institute of Organic Chemistry and Biochemistry, ASCR, Flemingovo n. 2, 16610 Prague 6, Czech Republic
| | - T Béres
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - K Berka
- Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17. Listopadu 12, 77146 Olomouc, Czech Republic and Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry Palacky University in Olomouc, 17. listopadu 1131, Olomouc CZ779 00, Czech Republic
| | - Q Lu
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - E Russinova
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - M Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
| |
Collapse
|
8
|
Michelini FM, Lombardi MG, Bueno CA, Berra A, Sales ME, Alché LE. Synthetic stigmasterol derivatives inhibit capillary tube formation, herpetic corneal neovascularization and tumor induced angiogenesis: Antiangiogenic stigmasterol derivatives. Steroids 2016; 115:160-168. [PMID: 27623061 DOI: 10.1016/j.steroids.2016.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/21/2016] [Accepted: 09/02/2016] [Indexed: 12/19/2022]
Abstract
Angiogenesis plays a critical role in initiating and promoting several diseases, such as cancer and herpetic stromal keratitis (HSK). Herein, we studied the inhibitory effect of two synthetic stigmasterol derivatives on capillary tube-like structures and on cell migration in human umbilical vein endothelial cells (HUVEC): (22S,23S)-22,23-dihydroxystigmast-4-en-3-one (compound 1) and (22S,23S)-3β-bromo-5α,22,23-trihydroxystigmastan-6-one (compound 2). We also studied their effect on VEGF expression in IL-6 stimulated macrophages and in LMM3 breast cancer cells. Furthermore, we investigated the antiangiogenic activity of the compounds on corneal neovascularization in the murine model of HSK and in an experimental model of tumor-induced angiogenesis in mice. Both compounds inhibited capillary tube-like formation, but only compound 1 restrained cell migration. Compound 1, unlike compound 2, was able to reduce VEGF expression. Only compound 1 not only reduced the incidence and severity of corneal neovascularization, when administered at the onset of HSK, but it also restrained the development of neovascular response induced by tumor cells in mice skin. Our results show that compound 1 inhibits angiogenesis in vitro and in vivo. Therefore, compound 1 would be a promising drug in the treatment of those diseases where angiogenesis represents one of the main pathogenic events.
Collapse
Affiliation(s)
- Flavia M Michelini
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Virología, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Pabellón 2, 4to. piso, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - María Gabriela Lombardi
- Universidad de Buenos Aires, Facultad de Medicina, Segunda Cátedra de Farmacología, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Paraguay 2155 Piso 16°, C1121ABG Buenos Aires, Argentina
| | - Carlos A Bueno
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Virología, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Pabellón 2, 4to. piso, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Alejandro Berra
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Laboratorio de Investigaciones Oculares, J. E. Uriburu 950, EP, C1114AAD Buenos Aires, Argentina
| | - María Elena Sales
- Universidad de Buenos Aires, Facultad de Medicina, Segunda Cátedra de Farmacología, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Paraguay 2155 Piso 16°, C1121ABG Buenos Aires, Argentina
| | - Laura E Alché
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Virología, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Pabellón 2, 4to. piso, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina.
| |
Collapse
|
9
|
Michelini FM, Bueno CA, Molinari AM, Galigniana MD, Galagovsky LR, Alché LE, Ramírez JA. Synthetic stigmastanes with dual antiherpetic and immunomodulating activities inhibit ERK and Akt signaling pathways without binding to glucocorticoid receptors. Biochim Biophys Acta Gen Subj 2016; 1860:129-39. [DOI: 10.1016/j.bbagen.2015.10.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/07/2015] [Accepted: 10/23/2015] [Indexed: 01/09/2023]
|
10
|
Petrera E, Níttolo AG, Alché LE. Antiviral action of synthetic stigmasterol derivatives on herpes simplex virus replication in nervous cells in vitro. BIOMED RESEARCH INTERNATIONAL 2014; 2014:947560. [PMID: 25147828 PMCID: PMC4131461 DOI: 10.1155/2014/947560] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/30/2014] [Accepted: 07/09/2014] [Indexed: 11/18/2022]
Abstract
Polyfunctionalized stigmasterol derivatives, (22S,23S)-22,23-dihydroxystigmast-4-en-3-one (compound 1) and (22S,23S)-3β-bromo-5α,22,23-trihydroxystigmastan-6-one (compound 2), inhibit herpes simplex virus type 1 (HSV-1) replication and spreading in human epithelial cells derived from ocular tissues. Both compounds reduce the incidence and severity of lesions in a murine model of herpetic stromal keratitis when administered in different treatment modalities. Since encephalitis caused by HSV-1 is another immunopathology of viral origin, we evaluate here the antiviral effect of both compounds on HSV-1 infected nervous cell lines as well as their anti-inflammatory action. We found that both stigmasterol derivatives presented low cytotoxicity in the three nervous cell lines assayed. Regarding the antiviral activity, in all cases both compounds prevented HSV-1 multiplication when added after infection, as well as virus propagation. Additionally, both compounds were able to hinder interleukin-6 and Interferon-gamma secretion induced by HSV-1 infection in Neuro-2a cells. We conclude that compounds 1 and 2 have exerted a dual antiviral and anti-inflammatory effect in HSV-1 infected nervous cell lines, which makes them interesting molecules to be further studied.
Collapse
Affiliation(s)
- Erina Petrera
- Laboratorio de Virología, Departamento de Química Biológica, IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, 4to. Piso, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Analía G. Níttolo
- Laboratorio de Virología, Departamento de Química Biológica, IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, 4to. Piso, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Laura E. Alché
- Laboratorio de Virología, Departamento de Química Biológica, IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, 4to. Piso, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| |
Collapse
|